Contents. 1 Introduction. 2 Shape of the Earth. 3 NAD 27 vs NAD 83

Σχετικά έγγραφα
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Approximation of distance between locations on earth given by latitude and longitude

is like multiplying by the conversion factor of. Dividing by 2π gives you the

APPENDIX B NETWORK ADJUSTMENT REPORTS JEFFERSON COUNTY, KENTUCKY JEFFERSON COUNTY, KENTUCKY JUNE 2016

Spherical Coordinates

CRASH COURSE IN PRECALCULUS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

MATH 150 Pre-Calculus

CORDIC Background (2A)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Aluminum Electrolytic Capacitors

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Aluminum Electrolytic Capacitors (Large Can Type)

Core Mathematics C12

Formula for Success a Mathematics Resource

Section 8.3 Trigonometric Equations

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

CORDIC Background (4A)

If we restrict the domain of y = sin x to [ π 2, π 2

Trigonometric Formula Sheet

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Fundamentals of Signals, Systems and Filtering

11.4 Graphing in Polar Coordinates Polar Symmetries

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Χρήση συστημάτων πληροφορικής στην οδική υποδομή

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Reminders: linear functions

Instruction Execution Times

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Lecture 21: Scattering and FGR

derivation of the Laplacian from rectangular to spherical coordinates

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ.

4. Αεροτριγωνισμός Προετοιμασία Δεδομένων Επίλυση Αεροτριγωνισμού

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

CURVILINEAR COORDINATES

Rectangular Polar Parametric

Section 8.2 Graphs of Polar Equations

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Math 6 SL Probability Distributions Practice Test Mark Scheme

Mechanics of Materials Lab

Chapter 7 Analytic Trigonometry

Core Mathematics C34

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

Homework 8 Model Solution Section

Cross sectional area, square inches or square millimeters

DERATING ELECTRICAL STRESS ANALYSIS REPORT FOR THE SAM POWER SUPPLY. Prepared by

Visual Systems Division Technical Bulletin MultiSync MT820/MT1020 Installation Data Desk Top and Ceiling Mount


Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Lecture 2. Soundness and completeness of propositional logic

Artiste Picasso 9.1. Total Lumen Output: lm. Peak: cd 6862 K CRI: Lumen/Watt. Date: 4/27/2018

bits and bytes q Ο υπολογιστής χρησιμοποιεί τη κύρια μνήμη για αποθήκευση δεδομένων

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Συστήματα Συντεταγμένων

Cable Systems - Postive/Negative Seq Impedance

CYLINDRICAL & SPHERICAL COORDINATES

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Core Mathematics C34

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Section 9.2 Polar Equations and Graphs

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Parametrized Surfaces

THICK FILM LEAD FREE CHIP RESISTORS

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

DuPont Suva 95 Refrigerant

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Section 7.6 Double and Half Angle Formulas

New bounds for spherical two-distance sets and equiangular lines

Lecture 6 Mohr s Circle for Plane Stress

Trigonometry Functions (5B) Young Won Lim 7/24/14

NMBTC.COM /

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

TRIGONOMETRIC FUNCTIONS

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

ΠΕΡΙΓΡΑΦΗ ΨΗΦΙΑΚΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΤΗΣ ΑΣΚΗΣΗΣ 2

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Γραφικά Υπολογιστών: 2D Μετασχηματισμοί (transformations)

Second Order RLC Filters

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

! " # $ &,-" " (.* & -" " ( /* 0 (1 1* 0 - (* 0 #! - (#* 2 3( 4* 2 (* 2 5!! 3 ( * (7 4* 2 #8 (# * 9 : (* 9

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Ακριβής 3Δ Προσδιορισμός Θέσης των Σημείων του Κεντρικού Τομέα του Δικτύου LVD με τη μέθοδο του Σχετικού Στατικού Εντοπισμού

AKC Spectrum Analyzer User s Manual.

Solutions to Exercise Sheet 5

PPA Metallized polypropylene film capacitor MKP - Snubber/pulse - High current

Thin Film Chip Resistors

Derivations of Useful Trigonometric Identities

Transcript:

Special Report Notice of Disclaimer...................... iii List of Figures.................................... x List of Tables.................................... Preface................................... Preface 1 1 Introduction 1.1 Overview....................................... 1 1 1.1.1 The V&H Coordinate Grid.......................... 1 2 1.1.2 Tariffs...................................... 1 3 1.1.3 Cartography Applications........................... 1 4 1.1.4 Service Cost Applications.......................... 1 4 1.1.5 Alaska V&H Coordinates........................... 1 4 1.1.6 LocateIt System............................... 1 5 1.1.7 About Telcordia Routing Administration.................. 1 6 1.2 Document Structure................................. 1 8 1.3 Why the Mystery?.................................. 1 9 1.4 Accuracy of V&H Coordinates........................... 1 13 1.4.1 Rounding to Nearer Integer......................... 1 13 1.4.2 NAD 27 vs NAD 83............................... 1 13 1.4.3 Distance Calculation Long or Short Calculation Method...... 1 13 1.4.4 Precision of Calculations........................... 1 14 1.4.5 Initial Accuracy of Latitude and Longitude Measurements........ 1 14 2 Shape of the Earth 2.1 Introduction..................................... 2 1 2.2 Topographical Earth................................. 2 1 2.3 Mean Sea Level Geoid................................ 2 1 2.4 Reference Ellipsoid................................. 2 2 2.5 The Earth s Flattening................................ 2 4 2.6 Reference Surfaces Used In Computing V&H Coordinates........... 2 5 3 NAD 27 vs NAD 83 3.1 Introduction..................................... 3 1 3.2 Geodetic Datums................................... 3 1 3.2.1 National Geodetic Survey........................... 3 2 3.3 Transformations between Datums......................... 3 4 3.3.1 NADCON.................................... 3 4 3.3.2 CORPSCON.................................. 3 5 3.4 Commingling Position Data............................. 3 6 3.5 Input to Conversion Algorithm........................... 3 7 xi v

3.5.1 Latitude and Longitude to V&H Coordinates................ 3 7 3.5.2 V&H Coordinates to Latitude and Longitude................ 3 8 3.6 Impact of Change from NAD 27 To NAD 83.................... 3 8 4 V&H Coordinate Basics 4.1 Introduction..................................... 4 1 4.2 Great Circles..................................... 4 2 4.3 Radian Measure................................... 4 4 4.3.1 Conversion Factors.............................. 4 5 4.3.2 Conversion of Degrees, Minutes, and Seconds to Decimal Degrees... 4 5 4.3.3 Jay K. Donald Method............................. 4 6 4.3.4 Calculation of Seconds To Radians Conversion Factor......... 4 7 4.3.5 Summary of Conversion Factors....................... 4 7 4.3.6 Arc Length, Central Angle, and Radius................... 4 7 4.4 XYZ Coordinates................................... 4 9 4.4.1 Definitions................................... 4 9 4.4.2 Naming Convention.............................. 4 10 4.4.3 Latitude and Longitude to XYZ........................ 4 11 4.4.4 XYZ to Latitude and Longitude........................ 4 12 5 Basic V&H Coordinates 5.1 Adjusted Latitude.................................. 5 2 5.1.1 Operation.................................... 5 2 5.1.2 Calculation................................... 5 2 5.1.3 Discussion................................... 5 3 5.2 Adjusted Longitude................................. 5 6 5.2.1 Operation.................................... 5 6 5.2.2 Calculation................................... 5 6 5.2.3 Discussion................................... 5 7 5.3 XYZ Coordinates................................... 5 7 5.3.1 Operation.................................... 5 7 5.3.2 Calculation................................... 5 8 5.3.3 Discussion................................... 5 8 5.4 East and West Reference Points.......................... 5 10 5.4.1 Discussion................................... 5 10 5.5 Arcs PE and PW................................... 5 12 5.5.1 Operation.................................... 5 12 5.5.2 Calculation................................... 5 12 5.5.2.1 XYZ Coordinate Data.......................... 5 12 5.5.2.2 Formulas................................. 5 12 5.5.2.3 Calculation of Arcs PE and PW.................... 5 13 5.5.3 Discussion................................... 5 13 5.5.4 Dot Product Principles............................ 5 15 5.5.5 Calculations on a Unit Sphere........................ 5 15 5.5.6 Summary.................................... 5 16 5.5.7 Programming Method............................. 5 18 vi

5.5.8 Arccosine Function Not Available...................... 5 19 5.5.9 Overview of Alternate Calculation...................... 5 19 5.5.10 Details of Alternate Calculation...................... 5 21 5.5.11 Summary of Methods............................ 5 23 5.5.11.1 Arccosine Formulas.......................... 5 23 5.5.11.2 Arctangent Formulas......................... 5 24 5.6 Calculation of Basic...................... 5 25 5.6.1 Operation.................................... 5 25 5.6.2 Calculation................................... 5 26 5.6.3 Discussion................................... 5 26 5.7 Sign of the Basic V Coordinate........................... 5 30 5.7.1 Operation.................................... 5 30 5.7.2 Calculation................................... 5 30 5.7.3 Discussion................................... 5 31 5.7.4 Calculation Principles............................. 5 32 5.7.5 Example.................................... 5 34 5.7.6 Jay K. Donald Calculation.......................... 5 34 6 Calculation of Final V&H Coordinates 6.1 Operation....................................... 6 1 6.2 Calculation...................................... 6 1 6.3 Discussion...................................... 6 1 6.3.1 Rotation of the H and V Axes........................ 6 2 6.3.2 Conversion of Units from Radians as Measured on a Unit Sphere to V&H Units..................................... 6 2 6.3.3 0.3% Reduction in Scale............................ 6 3 6.3.4 Inversion of the V Axis............................ 6 4 6.3.5 Translation of Axes (Shift of Origin).................... 6 4 7 Distance Calculations 7.1 Length of a V&H Unit................................ 7 1 7.2 Rate Mileage Calculations.............................. 7 1 7.2.1 Method 1 - Short Calculation........................ 7 2 7.2.2 Method 2 - Long Calculation........................ 7 2 7.3 Point to Point Short Calculation......................... 7 3 7.4 Message Telecommunications Service Long Calculation........... 7 5 7.4.1 Sample MTS Distance Calculation...................... 7 6 Appendix A: Overview - Latitude and Longitude to V&H Coordinates A.1 Adjust Latitude and Longitude of Given Point............ Appendix A 1 A.2 Calculate XYZ Coordinates on Unit Sphere.............. Appendix A 1 A.3 Calculate Basic V&H Coordinates.................. Appendix A 2 A.4 Calculate Final V&H Coordinates.................. Appendix A 2 vii

Appendix B: Flow Diagram - Conversion of Latitude & Longitude to V&H Coordinates Appendix C: Reference Surfaces Used In Converting Latitude & Longitude to V&H Coordinates Appendix D: Radian Measure D.1 Introduction............................... Appendix D 1 D.2 Conversion Factors........................... Appendix D 2 D.3 Degrees to Radians Conversion Factor................ Appendix D 2 D.4 Example: Convert 45 Degrees to Radians............... Appendix D 3 D.5 Radians to Degrees Conversion Factor................ Appendix D 3 D.6 Example: Convert One (1) Radian to Degrees............ Appendix D 4 Appendix E: Basic Plane Trigonometry E.1 Basic Plane Trigonometry....................... Appendix E 2 E.2 Graphs of Sin (X) and Cos (X)..................... Appendix E 4 E.3 Radian, Sine, Cosine, and Tangent Values.............. Appendix E 6 Appendix F: Dot Product Principles F.1 Derivation of the Algebraic Definition................. Appendix F 1 F.2 Derivation of the Geometric Definition................ Appendix F 3 Appendix G: Adjusted Latitude G.1 Analysis of Code Used for Computing "Adjusted" Latitude..... Appendix G 1 G.2 Formulas for Adjusted Latitude.................... Appendix G 3 Appendix H: Power Series Formula for Adjusted Latitude H.1 Introduction............................... Appendix H 1 H.2 Part 1: Length of Arc on Ellipse.................... Appendix H 4 H.3 Part 2: Restatement of Important Term................ Appendix H 9 H.4 Part 3: Multiplication of f Times α................. Appendix H 10 H.4 Part 3: Multiplication of f Times β................. Appendix H 11 H.4 Part 3: Multiplication of f Times δ and f Times γ......... Appendix H 12 H.5 Part 4: Calculation of Power Series Formula............ Appendix H 13 H.6 Part 5: Calculation of Power Series Coefficients.......... Appendix H 17 H.6.1 Final Calculations........................ Appendix H 17 Appendix I: Projections I.1 Orthographic Projection.......................... Appendix I 1 I.2 Azimuthal Equidistant Projection..................... Appendix I 3 viii

Appendix J: Point "S" XYZ Coordinates Appendix K: Adjustments K.1 Rotation of Axes............................. Appendix K 1 K.2 Conversion of Units........................... Appendix K 3 K.2.1 Arc Length, Central Angle, and Radius............. Appendix K 3 K.2.2 Arc Length - Scale Changes................... Appendix K 4 K.2.3 Arc Length Scale Conversion Principle............. Appendix K 4 K.2.4 Example.............................. Appendix K 5 K.2.5 Application To V&H Coordinates................ Appendix K 6 K.3 Scale Adjustment............................ Appendix K 8 K.4 Inversion of the V Axis......................... Appendix K 9 K.5 Translation of Axes (Shift of Origin)................ Appendix K 10 K.5.1 Point Remains Stationary, Coordinate System Moves.... Appendix K 10 K.5.2 General Coordinate System Translation Formulas..... Appendix K 11 K.5.3 Application to V&H Coordinates............... Appendix K 11 Appendix L: North American Datum Conversion NAD 27 to NAD 83 NADCON Program, Version 2.11 Appendix M: What Kind of Miles? M.1 Background............................... Appendix M 1 Appendix N: Bibliography Note...................................... Appendix N 3 To Contact Telcordia Customer Service or to Order Documents.. Appendix N 3 To Order Documents From Within Telcordia (Employees Only).. Appendix N 3 ix

List of Figures List of Figures Figure 1-1 V&H Coordinate Grid.......................... 1 2 Figure 2-1 Reference Surfaces........................... 2 1 Figure 3-1 Latitude & Longitude Input to J.K. Donald Algorithm........ 3 7 Figure 3-2 Conversion of NAD 27 V&H Coordinates to Latitude & Longitude. 3 8 Figure 4-1 Great Circles............................... 4 3 Figure 4-2 Radian Measure............................. 4 4 Figure 4-3 Arc Length on a Unit Sphere...................... 4 5 Figure 4-4 Measurement of Arc Length...................... 4 8 Figure 4-5 XYZ Coordinate Definitions...................... 4 9 Figure 4-6 Latitude and Longitude to XYZ Coordinates............. 4 11 Figure 5-1 Adjusted Latitude Principles...................... 5 3 Figure 5-2 Calculation of Adjusted Latitude................... 5 4 Figure 5-3 Adjusted Longitude........................... 5 7 Figure 5-4 XYX Coordinates of the ABC Rate Center............. 5 8 Figure 5-5 Overview Transition from Unit Sphere to Plane......... 5 9 Figure 5-6 East and West Reference Points.................... 5 11 Figure 5-7 Arcs PE and PW............................. 5 14 Figure 5-8 Arc Length Calculations........................ 5 17 Figure 5-9 Alternate Calculation of Arcs PE and PW Overview........ 5 19 Figure 5-10 Alternate Calculation of Arcs PE and PW Details......... 5 21 Figure 5-11 Overview Basic V& H Coordinates................. 5 27 Figure 5-12 Basic V&H Coordinates......................... 5 28 Figure 5-13 Basic V&H Coordinates Negative H Value............. 5 29 Figure 5-14 Sign of the Basic V Coordinate Point S.............. 5 31 Figure 5-15 Sign of the Basic V Coordinate Calculation Principles...... 5 32 Figure 5-16 Sign of the Basic V Coordinate Projection............. 5 33 Figure 6-1 Summary - Conversion of Basic V&H Coordinates to Final V&H Coordinates............................... 6 5 Figure 6-2 Rotation and Translation Overview.................. 6 7 Figure D-1 Radian Measure Conversion Factors........... Appendix D 1 Figure E-1 Graphs of the Sine and Cosine Functions........ Appendix E 4 Figure F-1 Geometric Definition of the Dot Product......... Appendix F 3 Figure I-1 Orthographic Projections.................. Appendix I 2 Figure I-2 Azimuthal Equidistant Projection.............. Appendix I 4 Figure K-1 Rotation of Axes...................... Appendix K 2 Figure K-2 Measurement of Arc Length................ Appendix K 3 Figure K-3 Inversion of the V Axis................... Appendix K 9 Figure K-4 Translation of Axes.................... Appendix K 10 x

List of Tables List of Tables Table 2-1 Representative List of Ellipsoids................... 2 4 Table 3-1 NAD 27 and NAD 83 Datums...................... 3 1 Table 3-2 Impact of Change from NAD 27 to NAD 83.............. 3 9 xi