Pseudo-compressibility 방법에서이상유동해석을위한 Level Set 방법의적용 Level Set Method Applied on Pseudo-compressibility Method for the Analysis of Two-phase Flow

Σχετικά έγγραφα
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

High order interpolation function for surface contact problem

Study of Excess Gibbs Energy for a Lattice Solution by Random Number Simulation

Discretization of the Convection Term

3-dimensional motion simulation of a ship in waves using composite grid method

Computing the Gradient

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Lifting Entry (continued)

Numerical Analysis FMN011

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

L p approach to free boundary problems of the Navier-Stokes equation

Buried Markov Model Pairwise

Eulerian Simulation of Large Deformations

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint


Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Spherical Coordinates

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Geodesic Equations for the Wormhole Metric

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΟΧΙΑΚΗΣ ΠΑΡΑΚΤΙΑΣ ΑΝΑΒΛΥΣΗΣ ΣΤΟ Β.Α. ΑΙΓΑΙΟ. Τμήμα Επιστημών της Θάλασσας, Πανεπιστήμιο Αιγαίου 2

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Wavelet based matrix compression for boundary integral equations on complex geometries

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Graded Refractive-Index

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, ΥΠΟΛΟΓΙΣΤΙΚΑ ΠΑΚΕΤΑ. ΕΦΑΡΜΟΓΕΣ και ΠΑΡΑΔΕΙΓΜΑΤΑ

SHUILI XUEBAO. KFVS( Kinetic Flux Vector Splitting) Boltzmann, KFVS( Kinetic Flux Vector Splitting) BGK(Bhatnagar2Gross2Krook) (Well2balanced),

Hydrologic Process in Wetland

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

6.4 Superposition of Linear Plane Progressive Waves

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Detection and Recognition of Traffic Signal Using Machine Learning

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Srednicki Chapter 55

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

Homework 8 Model Solution Section

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

derivation of the Laplacian from rectangular to spherical coordinates

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Parametrized Surfaces

1 String with massive end-points

Oscillatory Gap Damping

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Approximation of distance between locations on earth given by latitude and longitude

D Alembert s Solution to the Wave Equation

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Multi-GPU numerical simulation of electromagnetic waves

Inverse trigonometric functions & General Solution of Trigonometric Equations

Reminders: linear functions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

ΤΕΧΝΙΚΕΣ ΔΙΑΓΝΩΣΗΣ ΤΗΣ ΝΟΣΟΥ ΑΛΤΣΧΑΙΜΕΡ ΜΕ FMRI

Matrices and Determinants

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Journal of the Institute of Science and Engineering. Chuo University

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Second Order RLC Filters

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ


ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Partial Differential Equations in Biology The boundary element method. March 26, 2013

P ˆ.. Ö±μ 1,.. ²μ 1,..ˆ μ 1,.. μ²μ μ 1,2,.. μ ² μ 3,.. É ±μ 1,.. 4. Š ƒ ˆ ˆ Š Š ˆ Š ˆ Šˆ. ² μ Ê ² Ó³ Ÿ

Research on real-time inverse kinematics algorithms for 6R robots

Quick algorithm f or computing core attribute

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

SPECIAL FUNCTIONS and POLYNOMIALS

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Study of urban housing development projects: The general planning of Alexandria City

Η Ρευστομηχανική από τον Αρχιμήδη μέχρι σήμερα. μια σύντομη ιστορική αναδρομή

ER-Tree (Extended R*-Tree)

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

4.4 Superposition of Linear Plane Progressive Waves

RECIPROCATING COMPRESSOR CALCULATION SHEET

Fractional Colorings and Zykov Products of graphs

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Section 8.3 Trigonometric Equations

Example Sheet 3 Solutions

CYLINDRICAL & SPHERICAL COORDINATES

Transcript:

w w Áw œwz 7 «3 y, pp. 58~65, 25 9 Pseudo-compressibility 방법에서이상유동해석을위한 Level Set 방법의적용 Level Set Method Applied on Pseudo-compressibility Method for the Analysis of Two-phase Flow *Á½ *Á **Á ** Seung-Won Ihm*, Chongam Kim*, Jae-Seol Shim** and Dong-Young Lee** : Level Set w» wì w w ww. Level Set w l y w, w y ƒ wš e w. Level Set w w w w, pseudo-compressibility wì t. w ƒ w š t w š, ew w w wì w. w g t»s w w q w k w. w :, Level Set, pseudo-compressibility, š t,»s w, q Abstract : In order to analyze incompressible two-phase flow, Level Set method was applied on pseudocompressibility formulation. Level Set function is defined as a signed distance function from the phase interface, and gives the information of the each phase location and the geometric data to the flow. In this study, Level Set function transport equation was coupled with flow conservation equations, and owing to pseudo-compressibility technique we could solve the resultant vector equation iteratively. Two-phase flow analysis code was developed on general curvilinear coordinate, and numerical tests of bubble dynamics and surging wave problems demonstrate its capability successfully. Keywords : two-phase flow, Level Set method, pseudo-compressibility method, general curvilinear coordinate, bubble dynamics, surging wave.» (phase) w w œw w», œ w. w y w w, v r w w œ (cavita-tion) x, þƒ l (boiling) x (two-phase flow). e w w» w e w ƒ v w. w j w (Unverdi and Tryggvason, 992 ) ü w w w (Hirt and Nichols, 98; Osher and Sethian, 988 ) w, w x ƒ ƒ wš 3 y w z y š. ü w w t volume * w» wœœw (Corresponding author: Chongam Kim, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 5-744, Korea. chongam@ snu.ac.kr) **w w Áw œw (Coastal and Harbor Engineering Research Division, KORDI) 58

Pseudo-compressibility w w Level Set 59 of fluid(vof) Hirt and Nichols (98) w z š. w wš v w w, v w. wr Osher and Sethian(988) v ƒ y w w Level Set w. Level Set w l y w, w y wš, w œ. Level Set VOF w, VOF š v š, w ù š x y w (, 23). x ¾ Level Set w w t w, t projection pressure correction (Zhu and Sethian, 992; Osher and Fedkiw, 2). Level Set w w l Chorin(967) pseudo-compressibility wì t w. š t w w ƒ w w, g» s w w q w w. 2. 2. w». u u l ùkü. t š Navier- Stokes w. ρ u ----- + u u p + µ 2 u + ρg + σκδn t» ρ, µ, ƒ, g ƒ l. t w () (2) σκδn σ t, κ( n) š, n w ùkü. δ w dirac delta w.» ƒ w w sx (hydrostatic equilibrium) k p ρ g š š ƒ w, w y r» w., p, ρ w sx k š, ρ ρ +ρ', p p + p' l (2) x. u ----- + u u t (3)» p'. 2.2 Pseudo-compressibility () (3) l w wì tš w, () w w w w»ƒ. Chorin(967) w š x(hyperbolic)» w ƒ (pseudo time) τ w. p -- ----- + β u ρ τ (4), (5) τ w w w (), (3) z š, ƒ w š x w w. (4) β ƒ, w y 2 w (Ok, 993). 2.3 Level Set Level Set w Φ š, w w, w ƒ. w Level Set w w (Sussman, 994). p' µ ------- -- 2 u ---g σκδn + + + ------------ ρ ρ ρ ρ u p µ ----- + u u -------- -- 2 u ρ ---- g σκδn u + + + ------------ ----- τ ρ ρ ρ ρ t φ ----- + u φ t (3) (4) (5) (6) Pseudo-compressibility w» w ƒ ρ'

6 Á½ Á Á τ w w sww (6) x. (7) t e š, Φ y e w. w 2 2 ùkü, H ε e ùkü Heaviside w. ε e y w» w Ì, j».5. φ φ ----- + u φ ----- τ t ρ ρ + ( ρ 2 ρ )H ε ( φ), µ µ + ( µ 2 µ )H ε ( φ) H ε ( φ) if φ < ε φ + ε sin( πφ ε) ---------- + ----------------------- 2ε 2π if φ ε if φ > ε Fig. Level Set w e. w e φ š, w, w ƒ ƒ φ e ùkú. ù ƒ yw, (8) e e Ì ü w. (5) ùkù t w w n dirac delta w δ Level Set w φ l w. n( φ) φ -------- φ (7) (8) (9) --( + cos( πφ ε) ) ε, if φ ε δ δ( φ) 2, otherwise () () Ì 2εü t w w (Brackbill et al., 992). wr (7) t ùƒ Level Set w w w» w»y t φ φ ------ sign( φ )( φ ) τ j φ w. () () t» x. 4., 4.2 e tƒ ú, 4.3 e ƒ τƒ 5 ú () Ì ü g. 2.4 t x w w w ξ η š t w w. x-y t ξ η t y (Hoffmann, 2). ξ ξ ξ x y x η η x η y y ξ x, ξ y, η x, η y y metric š, ξ η. (4), (5) Level Set w (7) t lx ùkü. Q -- ------ τ J Q E F + ----- + ξ η ----- S v + S g + S s S t p ρ( φ) u v φ uu, E -- J uu + + βu ξ x p ρ( φ) ξ y p ρ( φ) φu, (2) µ ( φ) u xx + u yy S ij ------------- Jρ( φ) v xx + v yy, S s ------------- Jρ( φ) τκ( φ)δ( φ)n x ( φ) τκ( φ)δ( φ)n y ( φ) Fig.. Numerical property in Level Set approach. S t ------- J t u v φ

Pseudo-compressibility w w Level Set 6 S v w, S g w, S s t w ùkü, S t t w w 2 z w. J ξ x η y η x ξ y, U ξ x u + ξ y v, V η x u + η y v ƒƒ ξ,η const.. 3. ew 3. z w v E, F ü w, (2) (Hoffmann, 2). A B -------- + ------ + ----- Q E F ------ + ----- + S J τ ξ η ξ η v + S g + S s S t (3)» QQ n+ -Q n š, n ƒ time level. n+ Q z w» w Q w t Yoon and Jameson (988) LU-SGS w. Jacobian w A E ------ B F,, š, Q Q ------ 3.2» w. ƒ w (steady) k ƒ, τ w (Hirsh, 989). 3.2 œ y (3) v E F Rogers and Kwak (99) t w. v š ù, w w Level Set w sww w. E ξ w v E w ----- E ξ i + 2 E i 2 i+/2 v (Rogers and Kwak, 99). E i + 2 ± E i + 2 R n -- ( E i + E i + ) -- E + ( i + E 2 i + 2 ) 2 2 A ± ( Q) Q i + 2 (4) (5) Q e, e s³w. Jacobian w A. n A βξ x βξ y E Q ------ ξ x U + ξ x u ξ x u -- J ξ y ξ x v U + ξ y v ξ x φ ξ y φ U (6) (5) A ± w š y w. A ± J --XΛ± X U U Λ U D U + D X DU ( + D) DU ( D) ξ y ξ y V ξ x D ξ y V + ξ x D ξ x ξ x V ξ y D ξ x V + ξ y D 2 2 2 2 φ( ξ x + ξ y ) φ( ξ x + ξ y ) (7) Λ ƒ w A š, Λ ± š y ù. X š š l w š, D U. η w 2 2 2 + β( ξ x + ξ y ) v F w Jacobian w B w ξ η w ã. š œ y» w e 3 MUSCL w (Hirsh, 989). w e yƒ e y y w» w minmod van Leer w (limiter) w (Hirsch, 989). w r v 2 w., 3.3 4. 4.2 w (nonslip) w. 4.3 w ww, ñ (slip) w. wš, w. t» w v ƒ. 4.3 q q y j» w ƒ (sponge layer, or absorbing beach) w (Barone 23).

62 Á½ Á Á Q ------ + RQ ( ) ax ( )( Q Q ref ) τ + x L x ax ( ) a o -------------------- L (8) x d q ¼ ƒ ¼ L w š, a 8 w. Q ref Q l». 3, x o L x x o 4. ew 4. 4.2, t sww w g w» w»s w w.»s»s x p ƒ. 4.3 w q mw w g ƒ š t w š, w j š w w w w ƒ r. 4. Chang»s Chang et al.(996) Level Set w ƒ»sƒ w ww w w. Boussinesq ƒ w š, y.4 256 256 w.»»s (.5,.35). š,»s (.5,.65).5.»s ƒƒ,.25.5. t σ.5 t j skirt x w. Fig. 2 Chang et al.(996). ùkü š, Fig. 3 w.»s x ew y w. 4.2 Unverdi»s Unverdi et al.(992) w w ƒ ƒƒ 4 w w.»s.264,.2343 š, t σ.882 t j.. 64 28. Fig. 4 Unverdi et al.(992) w, w. Fig. 5 w w.»s w»sƒ š f, t j w w. w Fig. 2. Bubble shape of Chang et al. at t,.,.2,.3,.4 sec. Fig. 3. Bubble shape of present approach at t.,.2,.3,.4 sec.(non-dimensional size)

Pseudo-compressibility w w Level Set 63 spherical cap xkƒ. Fig. 5 k w q. Fig. 4. Bubble shape (a) and indicator function (b) of Unverdi et al.(992). 4.3 w q w c*.34 m ¼ L m x U.849 m/s w q ƒ w w (Liou, 2). ew Fig. 6 w w U w. ƒ û» w w j, g t wš, wz w ƒ j w w w ƒ r» w kw. Liou(2) w w w w, w wš w ü Fig. 4 w w, w z ùkü indicator w ƒ ü û. Unverdi et al.(992)»s»s x w ww, Fig. 6. Surging wave problem. Fig. 5. Present result at every.2 sec. (non-dimensional size)

64 Á½ Á Á Fig. 9. Pressure around wave surface. Fig. 7. Computational region and grid. Fig. 8. Pressure variation due to hydrofoil. Fig.. Comparison of wave elevation. VOF w (½, 22; x Á½, 23). œ» w w, Liou ƒ ƒ w. w x ƒ o α 5 NACA2 w. Froude Fr U gc, x *.567 w q ¼ λ2πfr 2 2.2 m l 3.3 w ƒ 7.98m x m w. œ» ƒƒ 3.226 kg/m kg/m 3 š, t 2 σ.882 kg/s w ( x, 992). Fig. 7 w 23 2 w š. w w. m w», Level Set w Ì ε.2m w. w Fig. 8~ r e y w ùkü. Fig. 8 w y, û ü š, z q ƒ w. Fig. 9 (» 325Pa) w. w -y w Fig.. Velocity vectors near the interface. ƒw ƒ w x z w y w. w Fig. xe Liou(2) w. Liou (2) ƒ x5 l w. w w w qx xe Liou(2) ew y w. q q ¼ x dw ew 2., l Fig. œ» y w Ì r.

Pseudo-compressibility w w Level Set 65 5. w w Level Set w sww pseudo-com-pressibility w. wì Level Set w lx wì w t ý, w ƒ w t w. e» w ü t Jacobian w w š, š l w., t š w w g»s q w w. w œw ù sw ƒ», wz ù z sww ƒ v w q. w w ww w» y (KORDI PE292) w.. š x ½, Ÿy, ½ (22). n w q w q x w. w w Áw œwz, 4(2), 7-8. x (992). w»..,, ½ (23). w w Level Set» volume of fluid». w w œ wz w z, KSAS3-224. x, ½ (23). e w e. w w Áw œw z, 5(3), 5-58. Barone, M.F. (23). Receptivity of compressible mixing layers. Ph.D. Dissertation, Stanford Univ., U.S.A. Brackbill, J.U., Kothe, D.B. and Zemach, C. (992). A continuum method for modeling surface tension. J. Comput. Phys.,, 335-354. Chang, Y.C., Hou, T.Y., Merrian, B. and Osher, S. (996). A level set formulation of Eularian interface capturing methods for incompressible fluid flow. J. Comput. Phys., 24, 449-464. Chorin, A.J. (967). A numerical method for solving incompressible viscous flow problems. J. Comput. Phys., 2, 2-26. Hirsch, C. (989). Numerical Computation of Internal and External Flows. John Wiley & Sons, U.K. Hirt, C.W. and Nichols, B.D. (98). Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39, 2-225. Hoffmann, K.A. and Chiang, S.T. (2). Computational Fluid Dynamics, 4th Ed. Engineering Education System, Kansas, U.S.A. Liou, B.H. (2). Calculation of nonlinear free surface waves with a fully-implicit adaptive-grid method. Ph.D. Dissertation, Princeton Univ., U.S.A. Ok, H. (993). Development of an incompressible Navier- Stokes solver and its application to the calculation of separated flow. Ph.D. Dissertation, Univ. of Washington, U.S.A. Osher, S. and Fedkiw, R.P. (2). Level set methods: an overview and some recent results. J. Comput. Phys., 69, 463-52. Osher, S. and Sethian, J.A. (988). Front propagation with curvature dependent speed: Algorithms based on Hamilton- Jacobi formulations. J. Comput. Phys., 79, 2-49. Rogers, S.E. and Kwak, D. (99). Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations. AIAA J., 28(2), 253-262. Sussman, M., Smereka, P. and Osher, S. (994). A level set approach for computing solutions to incompressible twophase flow. J. Comput. Phys., 4, 46-59. Unverdi, S.O. and Tryggvason, G. (992). A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys.,, 25-37. Yoon, S. and Jameson, A. (988). Lower-upper symmetric- Gauss-Seidel method for the Euler and Navier Stokes equations. AIAA J., 26(9), 25-26. Zhu, J. and Sethian, J. (992). Projection methods coupled to level set interface techniques. J. Comput. Phys., 2, 28-38. Received February 8, 25 Accepted July 26, 25