What happens when two or more waves overlap in a certain region of space at the same time?

Σχετικά έγγραφα
A. Two Planes Waves, Same Frequency Visible light

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

D Alembert s Solution to the Wave Equation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

PARTIAL NOTES for 6.1 Trigonometric Identities

Relativistic Kinematics. Chapter 1 of Modern Problems in Classical Electrodynamics by Charles Brau

Section 8.3 Trigonometric Equations

EE434 ASIC & Digital Systems Arithmetic Circuits

Συστήματα Αυτομάτου Ελέγχου Ι

Electronic Analysis of CMOS Logic Gates

Απόκριση σε Αρμονική Διέγερση

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Srednicki Chapter 55

Numerical Analysis FMN011

Access Control Encryption Enforcing Information Flow with Cryptography

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε.


Graded Refractive-Index

Συστήματα Αυτομάτου Ελέγχου Ι

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Homework 8 Model Solution Section


EE512: Error Control Coding

Math221: HW# 1 solutions

1 String with massive end-points

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Matrices and Determinants

6.4 Superposition of Linear Plane Progressive Waves

Areas and Lengths in Polar Coordinates

Derivation of Optical-Bloch Equations

Theoretical Question 2: Strong Resistive Electromagnets SOLUTION

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 9.2 Polar Equations and Graphs

2 Composition. Invertible Mappings

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Strain gauge and rosettes

the total number of electrons passing through the lamp.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

CRASH COURSE IN PRECALCULUS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Προσομoίωση Απόκρισης Συστήματος στο MATLAB

Areas and Lengths in Polar Coordinates

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Επίλυση Δυναμικών Εξισώσεων

Second Order RLC Filters

Solutions to Exercise Sheet 5

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CT Correlation (2B) Young Won Lim 8/15/14

6.003: Signals and Systems. Modulation

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

4.4 Superposition of Linear Plane Progressive Waves

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Quadratic Expressions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Finite difference method for 2-D heat equation

Section 7.6 Double and Half Angle Formulas

[1] P Q. Fig. 3.1

is like multiplying by the conversion factor of. Dividing by 2π gives you the

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc)

Second Order Partial Differential Equations

( ) Sine wave travelling to the right side

Answer sheet: Third Midterm for Math 2339

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Finite Field Problems: Solutions

TMA4115 Matematikk 3

EE101: Resonance in RLC circuits

F19MC2 Solutions 9 Complex Analysis

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Forced Pendulum Numerical approach

Probability and Random Processes (Part II)

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Concrete Mathematics Exercises from 30 September 2016

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ

derivation of the Laplacian from rectangular to spherical coordinates

Spherical Coordinates

Example 1: THE ELECTRIC DIPOLE

Φυσική Ι. Ενότητα 11: Ταλαντώσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών


( ) 2 and compare to M.

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Trigonometric Formula Sheet

Από τις (1) και (2) έχουμε:

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ECE 468: Digital Image Processing. Lecture 8

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Example of the Baum-Welch Algorithm

Instruction Execution Times

Transcript:

Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields (EE & BB) of the individual waves. We should not sum the energy density (uu EE, BB ) nor the power density (SS EE BB) of the individual waves. After we have found the resulting wave, we can then calculate the resulting energy density and power density. Note: Starting in the next slide, I will be using the Greek letter ψψ as a placeholder for a Cartesian component of the electric (EE) or magnetic (BB) fields. 1

Given two waves ψψ 1 rr, tt & ψψ rr, tt just add them up!! ψψ rr, tt = ψψ rr, tt + ψψ rr, tt

A) Two Planes Waves, Same Frequency ψψ 1 rr, tt = ψψ 0,1 cccccc αα 1 ωω tt αα 1 kk 1. rr + εε 1 ψψ rr, tt = ψψ 0, cccccc αα ωω tt αα kk. rr + εε ψψ rr, tt = ψψ 1 rr, tt + ψψ rr, tt = ψψ 0,1 cccccc αα 1 ωω tt + ψψ 0, cccccc αα ωω tt ψψ 0 cccccc αα ωω tt ψψ 0 =?? αα =?? to be determined 3

ψψ 0 cccccc αα ωω tt = ψψ 0,1 cccccc αα 1 ωω tt + ψψ 0, cccccc αα ωω tt ψψ 0 cccccc αα cccccc ωω tt + ssssss αα ssssss ωω tt = = ψψ 0,1 cccccc αα 1 cccccc ωω tt + ssssss αα 1 ssssss ωω tt + ψψ 0, cccccc αα cccccc ωω tt + ssssss αα ssssss ωω tt ψψ 0 cccccc αα = ψψ 0,1 cccccc αα 1 + ψψ 0, cccccc αα ψψ 0 ssssss αα = ψψ 0,1 ssssss αα 1 + ψψ 0, ssssss αα 4

Phase: tttttt αα = ψψ 0,1 ssssss αα 1 + ψψ 0, ssssss αα ψψ 0,1 cccccc αα 1 + ψψ 0, cccccc αα Amplitude: ψψ 0 = ψψ 0,1 + ψψ 0, + ψψ 0,1 ψψ 0, cccccc αα αα 1 = ψψ 0,1 ψψ 0, + 4 ψψ0,1 ψψ 0, cccccc αα αα 1 Full Wave: ψψ rr, tt = ψψ 0 cccccc αα ωω tt 5

Graphical Representation & Phasor: ψψ 0, ssssss αα αα αα αα 1 ψψ 0 ψψ 0, ψψ 0,1 ssssss αα 1 αα 1 αα ψψ 0,1 ψψ 0,1 cccccc αα 1 ψψ 0, cccccc αα 6

Examples 7

A.1) Two Waves Propagating in a Collinear Direction kk 1 = kk = kk kk 1 kk αα 1 = kk. rr + εε 1 αα = kk. rr + εε 8

Collinear Direction: Phase kk 1 = kk = kk αα 1 = kk. rr + εε 1 αα = kk. rr + εε tttttt αα = ψψ 0,1 ssssss kk. rr + εε 1 + ψψ 0, ssssss kk. rr + εε ψψ 0,1 cccccc kk. rr + εε 1 + ψψ 0, cccccc kk. rr + εε αα kk. rr + εε tttttt εε = ψψ 0,1 ssssss εε 1 + ψψ 0, ssssss εε ψψ 0,1 cccccc εε 1 + ψψ 0, cccccc εε 9

Collinear Direction: Amplitude kk 1 = kk = kk αα 1 = kk. rr + εε 1 αα = kk. rr + εε αα αα 1 = εε εε 1 ψψ 0 = ψψ 0,1 + ψψ 0, + ψψ 0,1 ψψ 0, cccccc εε εε 1 = ψψ 0,1 ψψ 0, + 4 ψψ0,1 ψψ 0, cccccc εε εε 1 10

Collinear Direction: Summary kk 1 = kk = kk αα 1 = kk. rr + εε 1 αα = kk. rr + εε αα kk. rr + εε tttttt εε = ψψ 0,1 ssssss εε 1 + ψψ 0, ssssss εε ψψ 0,1 cccccc εε 1 + ψψ 0, cccccc εε ψψ 0 = ψψ 0,1 + ψψ 0, + ψψ 0,1 ψψ 0, cccccc εε εε 1 = ψψ 0,1 ψψ 0, + 4 ψψ0,1 ψψ 0, cccccc εε εε 1 ψψ rr, tt = ψψ 0 cccccc kk. rr ωω tt + εε 11

A.) Two Plane Waves Propagating in Opposite Direction kk 1 = kk = kk kk 1 kk αα 1 = kk. rr + εε 1 αα = kk. rr + εε 1

Opposite Direction: Phase kk 1 = kk = kk αα 1 = kk. rr + εε 1 αα = kk. rr + εε tttttt αα = ψψ 0,1 ssssss kk. rr + εε 1 + ψψ 0, ssssss kk. rr + εε ψψ 0,1 cccccc kk. rr + εε 1 + ψψ 0, cccccc kk. rr + εε αα kk. rr + εε tttttt εε = ψψ 0,1 ssssss εε 1 + ψψ 0, ssssss εε ψψ 0,1 cccccc εε 1 + ψψ 0, cccccc εε 13

Opposite Direction: Amplitude kk 1 = kk = kk αα 1 = kk. rr + εε 1 αα = kk. rr + εε αα αα 1 = kk kk 1. rr + εε εε 1 = kk. rr + εε εε 1 ψψ 0 = ψψ 0,1 + ψψ 0, + ψψ 0,1 ψψ 0, cccccc kk. rr + εε εε 1 = ψψ 0,1 ψψ 0, + 4 ψψ0,1 ψψ 0, cccccc kk. rr + εε εε 1 14

Opposite Direction: Summary kk 1 = kk = kk αα 1 = kk. rr + εε 1 αα = kk. rr + εε αα kk. rr + εε tttttt εε = ψψ 0,1 ssssss εε 1 + ψψ 0, ssssss εε ψψ 0,1 cccccc εε 1 + ψψ 0, cccccc εε ψψ 0 = ψψ 0,1 + ψψ 0, + ψψ 0,1 ψψ 0, cccccc kk. rr + εε εε 1 = ψψ 0,1 ψψ 0, + 4 ψψ0,1 ψψ 0, cccccc kk. rr + εε εε 1 ψψ rr, tt = ψψ 0 cccccc kk. rr ωω tt + εε 15

ψψ 1 rr, tt = 1 ψψ rr, tt = r 16

Opposite Direction Different Amplitudes ψψ rr, tt ψψ 1 rr, tt 17

Opposite Direction Same Amplitude ψψ 0,1 = ψψ 0, ψψ 0 = ψψ 0, cccccc kk. rr + εε εε 1 ψψ rr, tt ψψ 1 rr, tt 18

A.3) If the waves have the same frequency ωω 1 = ωω then kk 1 = kk, and: i) co-propagating kk kk, kk 1, kk, kk, kk 1, kk 1, ii) counter propagating kk 1 kk, kk 1, 19

B) Two Planes Waves, Different Frequencies ψψ 1 rr, tt = ψψ 0,1 cccccc φφ 1 = ψψ 0,1 cccccc kk 1. rr ωω 1 tt + εε 1 ψψ rr, tt = ψψ 0, cccccc φφ = ψψ 0, cccccc kk. rr ωω tt + εε ψψ rr, tt = ψψ 1 rr, tt + ψψ rr, tt 0

AA 1 kk 1 + kk. rr 1 ωω 1 + ωω tt + 1 εε 1 + εε BB 1 kk 1 kk. rr 1 ωω 1 ωω tt + 1 εε 1 εε aa 1 ψψ 0,1 + ψψ 0, bb 1 ψψ 0,1 ψψ 0, ψψ 1 ψψ rr, tt = aa + bb cccccc AA + BB rr, tt = aa bb cccccc AA BB 1

ψψ rr, tt = ψψ 1 rr, tt + ψψ rr, tt = aa + bb cccccc AA + BB + aa bb cccccc AA BB = aa cccccc AA + BB + cccccc AA BB + bb cccccc AA + BB cccccc AA BB = aa cccccc AA cccccc BB bb ssssss AA ssssss BB

Same Amplitude ψψ 0,1 = ψψ 0, aa 1 ψψ 0,1 + ψψ 0, = ψψ 0,1 bb 1 ψψ 0,1 ψψ 0, = 0 ψψ rr, tt = aa cccccc AA cccccc BB = ψψ 0,1 cccccc 1 kk 1 + kk. rr 1 ωω 1 + ωω tt + 1 εε 1 + εε cccccc 1 kk 1 kk. rr 1 ωω 1 ωω tt + 1 εε 1 εε 3

kk 1 kk 1 + kk ωω 1 ωω 1 + ωω εε 1 εε 1 + εε kk 1 kk 1 kk ωω 1 ωω 1 ωω εε 1 εε 1 εε ψψ rr, tt = = ψψ 0,1 cccccc kk. rr ωω tt + εε cccccc kk. rr ωω tt + εε 4

kk. rr ωω tt + εε = φφ phase velocity vv pp = ωω kk kk. rr ωω tt + εε = φφ mm group velocity vv gg = ωω kk = ddωω dddd 5

Phase & Group Velocities 6

Phase & Group Velocities 7

kk ωω = nn ωω kk oo = nn ωω ωω cc nn ωω = cc vv pp phase velocity dddd ωω dddd = 1 cc nn ωω + ωω dddd ωω dddd nn gg ωω cc vv gg = cc dddd dddd = nn ωω + ωω dddd ωω dddd group velocity normal dispersion dddd ωω dddd > 0 dddd ωω dddd < 0 anomalous dispersion dddd ωω dddd > 0 normal dispersion 8

Beat Frequency: ωω ωω TT = ππ TT = ππ ωω = 1 υυ 9

Fourier Analysis in a nutshell 30

Let s start with a periodic function: ff xx = aa 0 + aa mm cccccc mm = 1 ππ PP mm xx + mm = 1 bb mm ssssss ππ PP mm xx aa mm = PP PP +PP ff xxx cccccc ππ PP mm xxx ddddd mm = 0, 1,, 3, bb mm = PP PP +PP ff xxx ssssss ππ PP mm xxx ddddd mm = 1,, 3, 31

ff xx = aa 0 + aa mm cccccc mm = 1 ππ PP mm xx + bb mm ssssss mm = 1 ππ PP mm xx on both sides of the equation, multiply by PP cccccc ππ PP mmm xx and integrate over +PP dddd PP +PP PP ff xx cccccc PP ππ PP mmm xx dddd = +PP PP aa 0 ππ cccccc PP PP mmm xx dddd + PP mm = 1 aa mm +PP cccccc PP ππ PP mm xx cccccc ππ PP mmm xx dddd + PP mm = 1 bb mm +PP ssssss PP ππ PP mm xx cccccc ππ PP mmm xx dddd +PP aa 0 = PP PP cccccc ππ PP mmm xx dddd + 1 PP mm = 1 aa mm +PP PP cccccc ππ PP ππ mm mmm xx + cccccc PP mm + mmm xx dddd + 1 PP mm = 1 bb mm +PP PP ssssss ππ PP ππ mm mmm xx + ssssss PP mm + mmm xx with = aa mmm mm = 0, 1,, 3, 3

ff xx = aa 0 + aa mm cccccc mm = 1 ππ PP mm xx + bb mm ssssss mm = 1 ππ PP mm xx on both sides of the equation, multiply by PP ssssss ππ PP mmm xx and integrate over +PP dddd PP +PP PP ff xx ssssss PP ππ PP mmm xx dddd = +PP PP aa 0 ππ ssssss PP PP mmm xx dddd + PP mm = 1 aa mm +PP cccccc PP ππ PP mm xx ssssss ππ PP mmm xx dddd + PP mm = 1 bb mm +PP ssssss PP ππ PP mm xx ssssss ππ PP mmm xx dddd +PP aa 0 = PP PP ssssss ππ PP mmm xx dddd + 1 PP mm = 1 aa mm +PP PP ssssss ππ PP ππ mm mmm xx + ssiiii PP mm + mmm xx dddd + 1 PP mm = 1 bb mm +PP PP cccccc ππ PP ππ mm mmm xx cccccc PP mm + mmm xx = bb mm with mmm = 1,, 3, 33

ff xx = = 1 +PP ff PP aa 0 xxx ddxx + PP + mm = 1 PP PP +PP ff xxx cccccc aa mm ππ PP mm xxx ddddd cccccc ππ PP mm xx + + mm = 1 PP PP +PP ff xxx ssssss bb mm ππ PP mm xxx ddxx ssssss ππ PP mm xx 34

ff xx = = 1 PP PP +PP ff xxx ddxx + mm = 1 PP PP +PP ππ ff xxx cccccc PP mm xx xx ddddd kk ππ PP mm kk ππ = PP mm 35

ff xx = = 1 PP PP Make the period goes to +PP ff xxx 0 infinity: lim PP ddxx + mm = 1 PP PP +PP ππ ff xxx cccccc PP mm xx xx ddddd + dddd = 0 ππ ff xxx cccccc kk xx xx ddddd + dddd = ππ ff xxx cccccc kk xx xx ddddd 36

+ dddd ff xx = ππ ff xxx cccccc kk xx xx ddxx + dddd 0 = ii ππ ff xxx ssssss kk xx xx ddxx + dddd ff xx = ππ ff xxx ee ii kk xx xx ddxx = 1 ππ FF kk ee ii kk xx dddd where FF kk + ff xxx ee + ii kk xx ddxx 37

space x and spatial frequency k xx, kk ff xx = 1 ππ FF kk ee ii kk xx dddd FF kk = + ff xxx ee + ii kk xx ddxx time t and angular frequency ω tt, ωω ff(tt) = 1 ππ FF ωω ee ii ωω tt ddωω FF ωω = + ff ttt ee + ii ωω tt ddtt 38

Big picture: ff(tt) FF ωω ωω tt ff(tt) FF ωω 39

Fourier Transform Pairs with Mathematica 40

(Lateral) Spatial Confinement and Wave Divergence kk 1 LL 41

Example: top hat function ff xx = AA when LL xx +LL 0 otherwise ff xx LL xx 4

FF kk = LL +LL AA ee + ii kk xx ddxx FF kk = AA LL sssssscc kk LL kk mm LL FF kk = 0 at ssssssss = mm ππ mm = ±1, ±, ±3, kk LL 3ππ ππ ππ +ππ +ππ +3ππ +4ππ kk LL kk +1 kk 1 = 4 ππ LL LL kk 4 ππ 43

ff xx = AA 0 when LL otherwise xx +LL FF kk AA LL FF kk = AA LL sssssscc even function kk LL kk LL ff(xx) = 1 ππ AA LL sssssscc FF kk kk LL ee ii kk xx dddd ff(xx) = 1 ππ 0 AA LL sssssscc kk LL cos(kk xx) dddd 44

(Longitudinal) Pulse Duration and Spectral Width νν 1 TT 45

Example: truncated harmonic wave ff tt = AA cos ωω oo tt when TT tt +TT 0 otherwise ff tt AA = 1 tt TT = ωω oo = 100 46

FF ωω = TT +TT AA cos ωωoo tt ee + ii ωω tt ddtt FF ωω = AA TT ssssssss TT ωω + ωω oo + ssssssss TT ωω ωω oo even function 47

FF ωω AA = 1 TT = ωω oo = 100 ωω ssssssss TT ωω + ωω oo = 0 at ωω mm TT = ωω oo TT + mm ππ mm = ±1, ±, ±3, ssssssss TT ωω ωω oo = 0 at ωω mm TT = ωω oo TT + mm ππ ωω +1 ωω 1 = 4 ππ TT TT ωω 4 ππ 48

ff(tt) = 1 ππ FF ωω ee ii ωω tt ddωω FF ωω = AA TT ssssssss TT ωω + ωω oo + ssssssss TT ωω ωω oo even function ff(tt) = 1 ππ AA TT ssssssss TT ωω + ωω oo + ssssssss TT FF ωω ωω ωω oo ee ii ωω tt ddωω ff(tt) = 1 ππ AA TT ssssssss TT 0 ωω + ωω oo + ssssssss TT ωω ωω oo ccoooo ωω tt ddωω ff(tt) 1 ππ AA TTTTTTTTTT TT 0 ωω ωω oo ccoooo ωω tt ddωω 49

Example: light emission and lifetime of an excited state After emission Do we get photons with just one single frequency? or Is the emitted light completely monochromatic? 50

ff tt AA ee tt TT 51

ff tt = AA cos ωω oo tt ee tt TT ff tt tt AA = 1 TT = ωω oo = 40 5

FF ωω = tt AA cos ωω oo tt ee TT ee + ii ωω tt ddtt = AA TT 1 + TT ωω ωω + AA TT oo 1 + TT ωω + ωω oo even function FF ωω AA = 1 ωω TT = ωω oo = 40 53

ff(tt) = 1 ππ AA TT 1 + TT ωω ωω + AA TT oo 1 + TT ωω + ωω ee ii ωω tt ddωω oo ff(tt) = 1 ππ AA TT 1 + TT ωω ωω oo + AA TT 1 + TT ωω + ωω oo ccoooo ωω tt ddωω = 1 ππ 0 AA TT 1 + TT ωω ωω + AA TT oo 1 + TT cccccc ωω tt ddωω ωω + ωω oo AA TT 1 ππ 0 1 + TT ωω ωω oo cccccc ωω tt ddωω 54

νν 1 TT νν = EE EE 1 h ± 1 TT 55

Coherence Time & Coherence Length TT tt TT tt tt < TT Phase difference is constant coherent tt > TT Phase difference varies randomly incoherent TT 1 νν ll = cc TT cc νν Coherence Time Coherence Length 56

Examples of coherence length cc = λλ νν νν = cc λλ λλ ll cc νν = λλ λλ White light λλ 550 nnnn λλ 300 nnnn ll 1 μμμμ He-Cd laser λλ 44.5 nnnn νν 163 MHz ll 1.8 mm Fiber laser λλ 1.55 μμμμ νν 1.4 khz ll 10 kkkk 57