Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Σχετικά έγγραφα
Τεχνική Έκθεση Μαθηματικό Μοντέλο προσομοίωσης καρκινικών όγκων στον Εγκέφαλο

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

D Alembert s Solution to the Wave Equation

High order interpolation function for surface contact problem

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Homework 8 Model Solution Section

Eulerian Simulation of Large Deformations

Αριθµητικές Μέθοδοι Collocation. Απεικόνιση σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές

Second Order Partial Differential Equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

Τεχνική Έκθεση Ανάπτυξη Υβριδικής Collocation - ΜΧΔ (HC-IR) μεθόδου στις 1+1. διαστάσεις... 4

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Spherical Coordinates

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Τεχνική Έκθεση DIRK και SSP Runge-Kutta Σχήματα Δακριτοποίησης Χρόνου.. 3

Lecture 26: Circular domains

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Parts Manual. Trio Mobile Surgery Platform. Model 1033

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Example Sheet 3 Solutions

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

1 String with massive end-points

ST5224: Advanced Statistical Theory II

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Parametrized Surfaces

Τεχνική Έκθεση Μέθοδος Φωκά για γραμμικά προβλήματα πολλαπλών πεδίων. εξαρτώμενους συντελεστές Μέθοδος Φωκά σε διατάσεις...

Areas and Lengths in Polar Coordinates

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Math221: HW# 1 solutions

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Areas and Lengths in Polar Coordinates

ADVANCED STRUCTURAL MECHANICS

Exercises to Statistics of Material Fatigue No. 5

Numerical Analysis FMN011

Geodesic Equations for the Wormhole Metric

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Solutions to Exercise Sheet 5

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Matrices and Determinants

Solution Series 9. i=1 x i and i=1 x i.

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Supporting Information

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Θαλής MATENVMED - ΜΙΣ Δράση Μέθοδοι Μετασχηματισμού Φωκά

Dark matter from Dark Energy-Baryonic Matter Couplings

Bayesian modeling of inseparable space-time variation in disease risk

Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα Παράλληλοι Αλγόριθμοι ΜΧΔ...

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Probability and Random Processes (Part II)

Local Approximation with Kernels

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

S

Homework 3 Solutions

Ηλεκτρονικοί Υπολογιστές IV

MSWD = 1.06, probability = 0.39

6.3 Forecasting ARMA processes

The Simply Typed Lambda Calculus

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017


SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

On the Galois Group of Linear Difference-Differential Equations

Derivation of Optical-Bloch Equations

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Finite difference method for 2-D heat equation

Introduction to the ML Estimation of ARMA processes

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Reminders: linear functions

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Fourier Analysis of Waves

MEM 253. Αριθμητική Λύση ΜΔΕ * * *

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Differential equations

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

SPECIAL FUNCTIONS and POLYNOMIALS

Graded Refractive-Index

Cable Systems - Postive/Negative Seq Impedance

Statistical Inference I Locally most powerful tests

Srednicki Chapter 55

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

Transcript:

1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100, Greece gathanasakis@gmail.com

Gliomas Gliomas are primary brain tumours that originate from brain s glial cells. They usually occur in the cerebral (upper) brain s hemisphere and they are characterized by their aggressive di usive invasion of brain normal tissue.

Analytical Deterministic Models @c @t = r (Drc)+ g(c), (Cruywagen et.al 1995) c(x, t) : tumour cell density at location x and time t D : di usion coe cient representing the active motility (0.0013 cm /day) : net proliferation rate (0.01/day) g(c) = c, exponential growth c c(1 K ), logistic growth, K :carryingcapacity Zero flux BC on the anatomy boundaries : @c @ =0 Initial spatial distribution malignant cells : c(x, 0) = f (x) 3

Analytical Deterministic Models 4 Homogeneous Brain Tissue (Cruywagen et.al 1995) # D is constant # @c @t = Dr c + g(c)

Analytical Deterministic Models 5 Heterogeneous Brain Tissue (Swanson 1999) # D(x) = Dg, x in Grey Matter D w, x in White Matter, D w > D g # @c @t = r (Drc)+ g(c) continuity and flux preservation conditions at the interfaces

Exponential Growth 3-region Model in 1+1 Dimensions Dimensionless variables x q D w x, t t, c(x, t) c < D = : q D w x, t Dw N 0, apple x < w 1 1, w 1 apple x < w, = Dg D w < 1, w apple x apple b 1 1 γ γ a w 1 w b Transformation c(x, t) =e t u(x, t) Interface conditions at x = w k, k =1, Continuity : [u] :=u + u =0, Conservation of flux : [Du x ]:=D + u + x D u x =0, 6

Exponential Growth 3-region Model in 1+1 Dimensions u t = Du xx, x R`, ` =1,, 3, t > 0 >< >: u x (, t) =0 and u x (b, t) =0 [u] =0 and [Du x ]=0 atx = w k, k =1, u(x, 0) = f (x) R 1 := (, w 1 ), R := (w 1, w ), R 3 := (w, b) t ux =0 u t = u xx u t = u xx u t = u xx ux =0 a w 1 w b 7

Domain Discretization Discretization t n+1 t h (x m,t n ) t n = n t n 1 t t =0 x = x = b x m := +(m 1)h, m =1,...,N+1, t n = n, n =0, 1,... < h 1 := (w 1 )/N 1 h = h := (w w 1 )/N, N = N 1 + N + N 3, = t : h 3 := (b w )/N 3

Hermite Collocation 9 U(x, t) = N+1 X m=1 >< m 1(x) = [ m 1 (t) m 1 (x)+ m (t) m (x)] x m x x h, x [x m 1, x m ] x m h, x [x m, x m+1 ] >: 0, otherwise h xm x h, x [x m 1, x m ] >< m(x) = h x xm h, x [x m, x m+1 ] >: 0, otherwise, (1) (s) =(1 s) (1 + s), (s) =s(1 s), s [0, 1]

Interface Conditions [DU x ]:=D + U + x D U x =0, at x = w k, k =1, # # i(x i )= i (x + i ) i(x i )= i (x + x i w 1 x i w i = N 1 +1 i = N 1 + N +1 i ) i(x) = >< >: # # h x i x h h x x i h 0 10 i(x) = >< >: h x i x h h x x i h 0

Hermite Elements at the Interfaces x i 1 x i x i+1 11 φ i 1 (x) x i 1 x i x i +1 φ i (x) i = N 1 +1 φ i 1 (x) φ i (x) i = N 1 + N +1

Boundary Collocation equations 1 U x (, t) =0! (t) =0! (t) =0 U x (b, t) =0! N+ (t) =0! N+ (t) =0

Interior Collocation equations 13 XN+1 XN+1 [ j 1 (t) j 1 ( i )+ j (t) j ( i )] = D j 1 (t) 00 j 1( i )+ j (t) 00 j( i ) j=1 j=1 where i, i = 1,...,N are the Gauss points (two per subinterval) # C (0) j 6 4 j 1 j j+1 Elemental Collocation equations 3 3 7 5 = D h C () j 6 4 j 1 j j+1 7 5, j =1,...,N j+ j+

Elemental Collocation matrices 14 C (apple) j = 6 4 s (apple) 1 s (apple) 3 h j s (apple) s (apple) 3 h j s (apple) 4 s (apple) 1 h s(apple) j 4 h s(apple) j 3 7 5, apple =0, s (0) 1 = 9+4p 3 1, s (0) = 3+p 3 s () 1 = p 3, s () = 1 3 = 9 4p 3 1, s (0) 4 = 3 p 3 36, p () 3, s 3 = p 3 and s () 4 = 1+ p 3 36, s (0) < 1, j 6= N 1 + N +1 j = :, j = N 1 + N +1 < 1, j 6= N 1, j =. :, j = N 1

Collocation system of ODEs 15 Aȧ = Ba where ȧ = 1 3 N+1 T, a = 1 3 N+1 T Ã 1 B 1 A B A = 6 4 A N 1 B N 1 A N BN 3 7 5, B = 6 4 F 1 G 1 F G F N 1 G N 1 F N 3 7 5. GN Aj B j = C (0) j and F j G j = D h C () j. ȧ = C(a, t) where C(a, t) =A 1 Ba

Backward Euler (BE) - Crank Nicolson (CN) 16 BE: a (n+1) a (n) = C (n+1) (a, t) or (A B)a (n+1) = Aa (n) CN: a (n+1) (A a (n) = 1 (C (n+1) (a, t)+c (n) (a, t)) or B) a(n+1) =(A + B) a(n)

Diagonally Implicit RK3 (DIRK) 17 DIRK: a (n,1) = a (n) + C (n,1) (a, t) a (n,) = a (n) + (1 )C n,1 (a, t)+ C n, (a, t) a (n+1) = a (n) + h i C (n,1) (a, t)+c (n,) (a, t) or (A B) a (n,1) = A a (n) (A B) a (n,) = A a (n) + (1 )B a (n,1) A a (n+1) = A a (n) + [B a(n,1) + B a (n,) ]

Numerical Results - Model Problem 1 1 R 1 := ( 5, 1), R := ( 1, 1), R 3 := (1, 5), =0.5 and f (x) = 1 p e x /, with =0.. 1 τ=0.1 t max =4 10 Tumour growth c(x,t) 6 4 0 5 4 3 1 0 1 3 4 5 Spatial variable x

Numerical Results - Model Problem R 1 := ( 5, 1), R := (1, 1.5), R 3 := (1.5, 5), =0.5 and f (x) = 1 p (e (x+3.5) / + e (x 3) / ), with =0.. 1 τ=0.1, t max =4 16 14 Tumour growth c(x,t) 1 10 6 4 0 5 4 3 1 0 1 3 4 5 Spatial variable x 19

Numerical Results - Spatial Relative Error 0 Model Problem 1 Model Problem 10 1 g=0.5 ksi=0 w1= 1 w=1 [ 5 5] dt=0.01 10 1 10 10 3 DIRK CN BE 10 10 3 DIRK CN BE 10 4 10 4 Relative Error 10 5 10 6 Relative Error 10 5 10 6 10 7 10 7 10 10 10 9 10 9 10 10 10 10 10 Number of Elements 10 11 10 Number of Elements

Logistic Growth 3-region Model in 1+1 Dimensions 1 c t = Dc xx + c(1 c), x R`, ` =1,, 3, t 0 >< >: c x (a, t) =0 and c x (b, t) =0 [c] =0 and [Dc x ]=0 atx = w k, k =1, c(x, 0) = f (x) R 1 := (, w 1 ), R := (w 1, w ), R 3 := (w, b) <, apple x < w 1 D(x) = 1, w 1 apple x < w :, w apple x apple b

Interior Collocation equations N+ X N+ X N+ X [ j (t) j ( i )] = D [ j (t) 00 j ( i )] + [ j (t) j ( i )] j=1 j=1 j=1 N+ X [ j (t) j ( i )] j=1! C (0) j 6 4 j 1 j j+1 j+ 3 7 5 = DC () j 6 4 j 1 j j+1 j+ 3 7 5 + C (0) j 6 4 j 1 j j+1 j+ 3 7 5 0 B @ C (0) j 6 4 j 1 j j+1 j+ 31 7C 5A.

Collocation System of ODEs 3 where M = 6 4 Aȧ = Ma + P 1 Q 1 P Q C (0) j a. P N 1 Q N 1 P N 3 7 5, Q N () Pj Q j = C j + C (0) j where ȧ = K(a, t) K(a, t) =A 1 h Ma + C (0) a.i

Time Discretization 4 BE: CN: (A M)a (n+1) C (0) a (n+1). = Aa (n) (A M) a(n+1) C (0) a (n+1). =(A+ M) a(n) + C (0) a (n). DIRK: (A M) a (n,1) (A M) a (n,) C (0) a (n,1). = A a (n) C (0) a (n,). = A a (n) + (1 ) M a (n,1) + C (0) a (n,1). A a (n+1) = A a (n) + [M a(n,1) + C (0) a (n,1). + M a (n,) + C (0) a (n,). ]

Numerical Results 5 Model Problem 1 Model Problem 3 τ=0.1 t max =4 3 τ=0.1 t max =4.5.5 Tumour growth c(x,t) 1.5 1 Tumour growth c(x,t) 1.5 1 0.5 0.5 0 5 4 3 1 0 1 3 4 5 Spatial variable x 0 5 4 3 1 0 1 3 4 5 Spatial variable x

Numerical Results - Spatial Relative Error 6 Model Problem 1 Model Problem 10 1 10 1 10 DIRK CN 10 DIRK CN 10 3 BE 10 3 BE 10 4 10 4 Relative Error 10 5 10 6 Relative Error 10 5 10 6 10 7 10 7 10 10 10 9 10 9 10 10 10 10 10 Number of Elements 10 11 10 Number of Elemets

Generalization in m+1 Regions R 1 =(, w 1 ), R =(w 1, w ),..., R m+1 =(w m, b) D(x) =, x [, w 1 ) [ [w, w 3 ) [...[ [w m, b] 1, x else 1 1 1 1 w m w m 1 w m w 1 w w 3 b # [c] =0 and [Dc x ]=0 atx = w k, k =1,...,m 7

Interface Conditions [DU x ]:=D + U + x D U x =0, at x = w k, k =1,...,m # # i(x) = i(x i )= i (x + i ) i(x i )= i (x + x i w k, kodd x i w k, keven P i = k P N j +1 i = k N j +1 >< >: j=1 j=1 # # h x i x h h x x i h 0 i(x) = >< >: i ) h x i x h h x x i h 0

Numerical Results 10 9 7 6 5 4 3 1 9 15 10 5 0 10 6 4 0 4 6 10 Model Problem 1 Model Problem τ=0.1 t max =4 τ=0.1 t max =4 Tumour growth c(x,t) Tumour growth c(x,t) 0 5 4 3 1 0 1 3 4 5 Spatial variable x Spatial variable x

Numerical Results - Spatial Relative Error 10 11 30 10 11 Model Problem 1 Model Problem 10 1 10 1 10 DIRK C.N. 10 DIRK C.N. 10 3 B.E. 10 3 B.E. 10 4 10 4 Relative Error 10 5 10 6 10 7 Relative Error 10 5 10 6 10 7 10 10 10 9 10 9 10 10 10 10 10 1 10 Number of Elements 10 Number of Elements

Exponential Growth 3-region Model in +1 Dimensions 31 <, (x, y) [, w 1 ) [, b] D = 1, (x, y) [w 1, w ) [, b] :, (x, y) [w, b] [, b], >< u t = Du xx + Du yy, x R`, ` =1,, 3, t > 0 @u @ =0 [u] =0 and [D x u x ]=0 atx = w k, k =1, andy (, b) >: u(x, y, 0) = f (x, y) R 1 := (, w 1 ) (, b), R := (w 1, w ) (, b), R 3 := (w, b) (, b)

Exponential Growth 3-region Model in +1 Dimensions 1.5 1 0.5 0 0.5 4 3 1 0 y 1 3 4 4 3 1 x 0 1 3 4 Di usion coe 3 cient D

Exponential Growth 3-region Model in +1 Dimensions 33 U(x, y, t) = NX x +1 m=1 N y +1 X n=1 [ m 1 (t) m 1 (x)+ m (t) m (x)] [ n 1 (t) n 1 (y)+ n (t) n (y)] # [DU x ]:=D + U + x D U x =0, at x = w k, k =1, # # i(x i )= i (x + i ) i(x i )= i (x + x i w 1 x i w i = N x1 +1 i = N x1 + N x +1 i )

-d Screenshots 34 1 t= 4 0.9 0. 0.7 0.6 0.5 0.4 0.3 0. 0.1 0 4 3 1 0 1 3 4 3 1 0 1 3 4 4 3 1 0 1 3 4 0. 0.1 0.16 0.14 0.1 0.1 0.0 0.06 0.04 0.0

-d Screenshots 35 0.9 1 t= 4 4 0.9 0. 3 0. 0.7 0.7 0.6 0.5 0.4 1 0 0.6 0.5 0.3 0. 1 0.4 0.1 0 04 3 4 4 3 1 0 1 3 4 4 3 1 0 1 3 4 0.3 0.

-D Model Problem - Solution 36 (Loading movie.mpg)