Lecture 22: Coherent States

Σχετικά έγγραφα
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

The Heisenberg Uncertainty Principle

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Finite Field Problems: Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

derivation of the Laplacian from rectangular to spherical coordinates

Example Sheet 3 Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Bessel function for complex variable

The Simply Typed Lambda Calculus

Srednicki Chapter 55

Section 8.3 Trigonometric Equations

Homework 4.1 Solutions Math 5110/6830

2 Composition. Invertible Mappings

IIT JEE (2013) (Trigonomtery 1) Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Concrete Mathematics Exercises from 30 September 2016

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.


6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Every set of first-order formulas is equivalent to an independent set

Section 7.6 Double and Half Angle Formulas

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Variational Wavefunction for the Helium Atom

Inverse trigonometric functions & General Solution of Trigonometric Equations

Degenerate Perturbation Theory

Math221: HW# 1 solutions

C.S. 430 Assignment 6, Sample Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

On Generating Relations of Some Triple. Hypergeometric Functions

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Homework for 1/27 Due 2/5

Solutions to Exercise Sheet 5

Derivation of Optical-Bloch Equations

EE512: Error Control Coding

ST5224: Advanced Statistical Theory II

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Statistical Inference I Locally most powerful tests

Example of the Baum-Welch Algorithm

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Section 9.2 Polar Equations and Graphs

Matrices and Determinants

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

EE101: Resonance in RLC circuits

Other Test Constructions: Likelihood Ratio & Bayes Tests

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Strain gauge and rosettes

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Uniform Convergence of Fourier Series Michael Taylor

Tridiagonal matrices. Gérard MEURANT. October, 2008

CE 530 Molecular Simulation

α β

Areas and Lengths in Polar Coordinates

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Homework 3 Solutions

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

An Inventory of Continuous Distributions

Forced Pendulum Numerical approach

Lecture 2. Soundness and completeness of propositional logic

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Instruction Execution Times

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Ψηφιακή Επεξεργασία Εικόνας

Solutions: Homework 3

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

EN40: Dynamics and Vibrations

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Lecture 26: Circular domains

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Areas and Lengths in Polar Coordinates

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

[1] P Q. Fig. 3.1

LESSON 28 (ΜΑΘΗΜΑ ΕΙΚΟΣΙ ΟΚΤΩ) REF : 201/033/28. 2 December 2014

Solution Series 9. i=1 x i and i=1 x i.

Writing for A class. Describe yourself Topic 1: Write your name, your nationality, your hobby, your pet. Write where you live.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

The challenges of non-stable predicates

Calculating the propagation delay of coaxial cable

Approximation of distance between locations on earth given by latitude and longitude

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Μηχανική Μάθηση Hypothesis Testing

Space-Time Symmetries

Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your

Capacitors - Capacitance, Charge and Potential Difference

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Problem Set 3: Solutions

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Partial Trace and Partial Transpose

Transcript:

Leture : Coheret States Phy851 Fall 9

Summary memorize Properties of the QM SHO: A 1 A + 1 + 1 ψ (x) ψ (x) H P + m 1 X λ A + i P λ h H hω( +1/ ) [ π!λ] 1/ H x /λ 1 mω λ h ( A A ) P i ( A A ) X + H x λ ψ 1(x) hω A A + X A 1 X λ i λ h P 1 λ ( ) e λ ( ) A x λ 1 ψ (x) h mω! ψ (x) [ π λ] 1/ e x λ ψ 1 (x) π λ [ ] 1/ x λ e h ΔX λ +1/ ΔP +1/ λ x λ

What are the `most lassial states of the SHO? I HW6.4, we saw that for a miimum uertaity wavepaket with: Δx λ os The uertaities i positio ad mometum would remai ostat. The iterestig thig was that this was true idepedet of x ad p, the iitial expetatio values of X ad P. We kow that other tha the ase x ad p, the mea positio ad mometum osillate like a lassial partile This meas that for just the right iitial width, the wave-paket moves aroud like a lassial partile, but DOESN T SPREAD at all. λ os h Mω os

Coheret States Coheret states, or as they are sometimes alled Glauber Coheret States are the eigestates of the aihilatio operator A Here a be ay omplex umber i.e. there is a differet oheret state for every possible hoie of (Roy Glauber, Nobel Prize for Quatum Optis Theory 5) These states are ot really ay more oheret the other pure states, they do maitai their oheree i the presee of dissipatio somewhat more effiietly 1 I QM the term oheree is over-used ad ofte abused, so do ot thik that it always has a preise meaig Glauber Coheret States are very importat: They are the most lassial states of the harmoi osillator They desribe the quatum state of a laser Replae the umber of quata with the umber of photos i the laser mode They desribe superfluids ad super-odutors

Series Solutio Let us expad the oheret state oto eergy eigestates (i.e. umber states) Plug ito eigevalue equatio: Hit from left with m : A A 1 1 m 1 m m m m m + + 1 1

m+ 1 m m + 1 Cotiued m m1 m Start from:! () The ostat N() will be used at the ed for ormalizatio Try a few iteratios: 1 1 1! () 1 3 3 4 4 So learly by idutio we have: 1! () 3 3 1! () 4 4 3 1! ()!! ()

Normalizatio Costat!! () So we have:! ()! For ormalizatio we require: 1 m! () m! () m!!! m Whih gives us:! () e! () e e!

Orthogoality Let us ompute the ier-produt of two oheret states: β e e + β m + β m β m!! ( β)! m e + β + β Note that: e β e ( β ) β ( ) e ( + β +a β +β ) β So oheret states are NOT orthogoal Does this otradit our earlier results regardig the orthogoality of eigestates?

Expetatio Values of Positio Operator Lets look at the shape of the oheret state wavepaket Let ψ X ( x ) dx x ψ ( x) xψ ( x) Better to avoid these itegrals, istead lets try usig A ad A : ( ) X λ A + A Reall the defiitio of : A A X λ ( A + A ) λ ( + ) λ ( + ) X λre{ }

Expetatio Value of Mometum Operator We a follow the same proedure for the mometum: P i P h iλ h λ A A ( ) ( A A ) h ( iλ ) h λ Im { } X λre{ } Not surprisigly, this gives: 1 1 λ X + i P λ h

Variae i Positio Now let us ompute the spread i x: X ( ) λ A + A λ ( A + AA + A A + A A ) Put all of the A s o the right ad the A s o the left: This is alled Normal Orderig λ ( A + A A +1+ A A ) λ ( + +1+ ) X λ ( + ) λ (( ) +1) + X λ X + ΔX X λ X Exatly the same variae as the groud state

Mometum Variae Similarly, we have: P h λ A A Normal orderig gives: ( ) h λ ( AA AA A A + A A ) P h λ ( AA A A 1+ A A ) h λ ( AA A A 1+ A A ) h λ h λ P ( + 1) (( ) 1) h iλ ( ) P P + h λ ΔP P h P λ

Miimum Uertaity States Let us hek what Heiseberg Uertaity Relatio says about oheret states: ΔX X λ X ΔP P h P λ ΔXΔP λ h λ ΔXΔP h So we see that all oheret states (meaig o matter what omplex value takes o) are Miimum Uertaity States This is oe of the reasos we say they are most lassial

Time Evolutio We a easily determie the time evolutio of the oheret states, sie we have already expaded oto the Eergy Eigestates: Let ψ ( t ) Thus we have: ψ () e! ψ ( t) e e! iω( + 1/ ) t Let e iωt / iω t e e iωt / e ( t) e e! ( e iω t ) iω t! ψ ( t) ( t) By this we mea it remais i a oheret state, but the value of the parameter hages i time

Why most lassial? What we have leared: Coheret states remai oheret states as time evolves, but the parameter hages i time as ( t) e iω t This meas they remai a miimum uertaity state at all time The mometum ad positio variaes are the same as the Eergy eigestate Reall that: X P λre{ } h λ Im { } So we a see that: 1 x λ + i p λ h x p ( t) ( t) X ( t) P ( t) We already kow that <X> ad <P> behave as lassial partile i the Harmoi Osillator, for ay iitial state. p x( t) x os( ωt) + si( ωt) p( t) p os( ωt) ωx ω si( ω ) t

Colusios The Coheret State wavefutio looks exatly like groud state, but shifted i mometum ad positio. It the moves as a lassial partile, while keepig its shape fixed. Note: the oheret state is also alled a Displaed Groud State