Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models

Σχετικά έγγραφα
Supplementary Appendix

5.1 logistic regresssion Chris Parrish July 3, 2016


Math 6 SL Probability Distributions Practice Test Mark Scheme

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Supplementary figures

DuPont Suva 95 Refrigerant

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

DuPont Suva 95 Refrigerant

Approximation of distance between locations on earth given by latitude and longitude

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

The Simply Typed Lambda Calculus


Example of the Baum-Welch Algorithm

A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material

Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

5.4 The Poisson Distribution.

, -.

Instruction Execution Times

Summary of the model specified

ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ

Inverse trigonometric functions & General Solution of Trigonometric Equations

Supporting Information

Section 8.3 Trigonometric Equations

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

derivation of the Laplacian from rectangular to spherical coordinates

794 Appendix A:Tables

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Lifting Entry (continued)

Simon et al. Supplemental Data Page 1

Research on Economics and Management

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

UMI Number: All rights reserved

5.6 evaluating, checking, comparing Chris Parrish July 3, 2016

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

Θέμα διπλωματικής εργασίας: «Από το «φρενοκομείο» στη Λέρο και την Ψυχιατρική Μεταρρύθμιση: νομικό πλαίσιο και ηθικοκοινωνικές διαστάσεις»

Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans

Statistical Inference I Locally most powerful tests

2 4 5

6. MAXIMUM LIKELIHOOD ESTIMATION

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

MATHACHij = γ00 + u0j + rij

the total number of electrons passing through the lamp.

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

CORDIC Background (4A)

Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Εβδομαδιαίο Εκπαιδευτικό Πρόγραμμα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Άσκηση 10, σελ Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

ΠΕΡΙΛΗΨΗ. Λέξεις κλειδιά: Υγεία και συμπεριφορές υγείας, χρήση, ψυχότροπες ουσίες, κοινωνικό κεφάλαιο.

Matrices and Determinants

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Solutions to Exercise Sheet 5

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

EE512: Error Control Coding

Solution Series 9. i=1 x i and i=1 x i.

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

ΔΙΑΜΟΡΦΩΣΗ ΣΧΟΛΙΚΩΝ ΧΩΡΩΝ: ΒΑΖΟΥΜΕ ΤΟ ΠΡΑΣΙΝΟ ΣΤΗ ΖΩΗ ΜΑΣ!

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Αλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΗΟΝΗΧΝ ΝΖΧΝ «ΗΣΟΔΛΗΓΔ ΠΟΛΗΣΗΚΖ ΔΠΗΚΟΗΝΧΝΗΑ:ΜΔΛΔΣΖ ΚΑΣΑΚΔΤΖ ΔΡΓΑΛΔΗΟΤ ΑΞΗΟΛΟΓΖΖ» ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ ΔΤΑΓΓΔΛΗΑ ΣΔΓΟΤ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ :

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΙΣΑΓΩΓΗ. Ιωάννης ΜΠΑΛΑΦΑΣ 1. Λέξεις κλειδιά: προεντεταμένες γέφυρες, προφίλ, τένοντας, ομοιόμορφη διατομή

CORDIC Background (2A)

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Biodiesel quality and EN 14214:2012

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΣΔΟ) ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

«Συμπεριφορά μαθητών δευτεροβάθμιας εκπαίδευσης ως προς την κατανάλωση τροφίμων στο σχολείο»

Generalized additive models in R


ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΖΗΤΗΜΑΤΑ ΠΟΥ ΑΝΤΙΜΕΤΩΠΙΖΟΥΝ ΟΙ ΓΥΝΑΙΚΕΣ ΕΡΓΑΖΟΜΕΝΕΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΕΡΙΒΑΛΛΟΝ"

Example Sheet 3 Solutions

Transcript:

Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models Sy-Miin Chow Pennsylvania State University Katie Witkiewitz University of New Mexico Raoul Grasman University of Amsterdam Stephen A. Maisto Syracuse University This document features supplementary material from the Chow et al. s the paper entitled The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models. 0.1 Mplus Scripts for Fitting MSEM Model 5 TITLE: MSEM Model 5, cusp-inspired mixture model, unknown beta group DATA: FILE = thedat01.csv ; VARIABLE: NAMES = id alpha beta alphabeta y ybeta1 ybeta2 ybeta3 betacat; MISSING = ALL (-999); USEV = alpha ybeta1-ybeta3 y; classes = c0(2) c1(3); ANALYSIS: TYPE = MIXTURE; STARTS = 50 5;STSCALE=1.5; STITERATIONS = 100; MODEL: 1

!-------------------------------------------------- %OVERALL%!-------------------------------------------------- c1 on alpha@0; c1 on beta@0; ly by y@1; [y@0]; y@0; [c1#1@-10];! (lowbtoh); [c1#2@-10];! (lowbtol); c1#1 ON c0#1*15 (hibtoh); c1#2 ON c0#1*15 (hibtol); beta by ybeta1@1; beta by ybeta2*1 (l1); beta by ybeta3*1 (l2); [ybeta1-ybeta3@0];!-------------------------------------------------- Model c0:!-------------------------------------------------- %c0#1% [beta*2] (mbetah); beta*.5 (vb1); c1#1 ON alpha*3 (inita); c1#2 ON alpha*-3 (inita2); %c0#2% [beta*-2] (mbetal); beta*.5 (vb2); c1#1 ON alpha@0; c1#2 ON alpha@0;!-------------------------------------------------- Model c1:!-------------------------------------------------- %c1#1%!high beta, high DV ly on alpha*.5 (balpha1); [ly*2] (inth); ly*.1 (vqhighb); ly ON beta*.1 (bbeta2); %c1#2%!high beta, low DV ly on alpha*.5 (balpha1); 2

[ly*-2] (intl); ly*.1 (vqhighb); ly ON beta*-.1 (bbeta3); %c1#3%!low beta, med DV ly on alpha*.3 (balpha2); [ly*.01] (intm); ly*1 (vqlowb); ly ON beta@0;!-------------------------------------------------- MODEL CONSTRAINT:!-------------------------------------------------- New (lowbtoh lowbtol PHIBTOH PHIBTOL PHIBTOM PLOWBTOH PLOWBTOL PLOWBTOM); lowbtoh = -10; lowbtol = -10; PHIBTOH = exp(lowbtoh + hibtoh)/ (exp(lowbtoh + hibtoh) + exp(lowbtol +hibtol) + exp(0)); PHIBTOL = exp(lowbtol +hibtol)/ (exp(lowbtoh + hibtoh) + exp(lowbtol +hibtol) + exp(0)); PHIBTOM = exp(0)/ (exp(lowbtoh + hibtoh) + exp(lowbtol +hibtol) + exp(0)); PLOWBTOH = exp(lowbtoh)/ (exp(lowbtoh) + exp(lowbtol) + exp(0)); PLOWBTOL = exp(lowbtol)/ (exp(lowbtoh) + exp(lowbtol) + exp(0)); PLOWBTOM = exp(0)/ (exp(lowbtoh) + exp(lowbtol) + exp(0)); inth > intm; intm > intl;!-------------------------------------------------- OUTPUT: TECH1 TECH4 CINTERVAL; 3

SAVEDATA: RESULTS = 01outPar94.txt ; FILE = 01Cross94.class ; RECORDLENGTH IS 5000; SAVE = CPROBABILITIES; 0.2 Mplus Scripts for Fitting MSEM-RS Model 5 TITLE: T > 1 cusp-inspired mixture model, unknown beta group!#------------------------------------------------------------!# c1!#------------------------------------------------------------!# c0#1 #2!#-----------------------------------------------------------!# Hi Low!#High beta lowbtom + hibtoh*+inita*alpha 0!# Med Med!#Low beta lowbtom = [c1#1@10] 0!#-------!#Note: inita = c1#1 on alpha1 in c0#1!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@!#conditional transition log-odds!#-------------------------------------------------------!#c0 = 2 (Low beta): reference group!#--------------------------------------------------------!# c2!# --------------------------------------------------!# c1 Med Med!#-------------------------------------------------------!#Med MtoOth + lmtom (c2#1 ON c1#1@20) 0!#Med MtoOthM = [c2#1@-10] 0!#-------------------------------------------------------!#!#c0 = 1 (High beta)!#---------------------------------------------------------!# c2!# --------------------------------------------------!# c1 High Low!#---------------------------------------------------------!#High MtoOthM + lowtoh + lhtoh + lot11a*alpha 0!#Low MtoOthM + lowtoh + lot21a*alpha 0!#---------------------------------------------------------!#Note: lot11a e.g., = c2#1 ON alpha2 in c0#1.c1#1!#lot21a e.g., = c2#1 ON alpha2 in c0#1.c1#2 4

DATA: FILE = thedatlong1.csv ; VARIABLE: NAMES = id alpha1 alpha2 alpha3 alpha4 alpha5 alpha6 betao ab1 ab2 ab3 ab4 ab5 ab6 y1 y2 y3 y4 y5 y6 ybeta1 ybeta2 ybeta3 betacat; MISSING = ALL (-999); USEV = y1-y6 alpha1-alpha6 ybeta1-ybeta3; classes = c0(2) c1(2) c2(2) c3(2) c4(2) c5(2) c6(2); ANALYSIS: TYPE = MIXTURE; STARTS = 80 5; STSCALE= 2;!STITERATIONS = 100; MODEL:!----------------------------------------- %OVERALL%!----------------------------------------- c1 on alpha1@0; c2 on alpha2@0; c3 on alpha3@0; c4 on alpha4@0; c5 on alpha5@0; c6 on alpha6@0; c1 on beta@0; c2 on beta@0; c3 on beta@0; c4 on beta@0; c5 on beta@0; c6 on beta@0; ly1 by y1@1; ly2 by y2@1; ly3 by y3@1; ly4 by y4@1; ly5 by y5@1; ly6 by y6@1; [y1-y6@0]; y1-y6@0; ly1 with ly2@0; ly1 with ly3@0; ly1 with ly4@0; ly1 with ly5@0; ly1 with ly6@0; 5

ly2 with ly3@0; ly2 with ly4@0; ly2 with ly5@0; ly2 with ly6@0; ly3 with ly4@0; ly3 with ly5@0; ly3 with ly6@0; ly4 with ly5@0; ly4 with ly6@0; ly5 with ly6@0; [c1#1@10];! (lowbtom); [c2#1@-10];!(mtoothm) [c3#1@-10];!(mtoothm) [c4#1@-10];!(mtoothm) [c5#1@-10];!(mtoothm) [c6#1@-10];!(mtoothm)! Notice that LO(low to high high beta) = (MtoOthM + lowtoh) c1#1 ON c0#1*-10 (hibtoh);!expecting to be around 10 LO(low to high high beta)!as P(lo to high high beta) when alpha = 0 should be close to.5. c2#1 ON c0#1*11 (lowtoh);!effect of c0#1 on [c2#1] c3#1 ON c0#1*11 (lowtoh); c4#1 ON c0#1*11 (lowtoh); c5#1 ON c0#1*11 (lowtoh); c6#1 ON c0#1*11 (lowtoh); beta by ybeta1@1; beta by ybeta2*1 (l1); beta by ybeta3*1 (l2); [ybeta1-ybeta3@0];!----------------------------------------- Model c0:!----------------------------------------- %c0#1% [beta*2] (mbetah); beta*.5 (vb1); ly1 on alpha1 (balpha1); 6

ly2 on alpha2 (balpha1); ly3 on alpha3 (balpha1); ly4 on alpha4 (balpha1); ly5 on alpha5 (balpha1); ly6 on alpha6 (balpha1); c1#1 on alpha1 (inita);! Notice that LO(high to high high beta) = (MtoOthM + lowtoh + lhtoh) c2#1 ON c1#1*.1 (lhtoh); c3#1 ON c2#1*.1 (lhtoh); c4#1 ON c3#1*.1 (lhtoh); c5#1 ON c4#1*.1 (lhtoh); c6#1 ON c5#1*.1 (lhtoh); %c0#2% [beta*-2] (mbetal); beta*.5 (vb2); ly1 on alpha1 (balpha2); ly2 on alpha2 (balpha2); ly3 on alpha3 (balpha2); ly4 on alpha4 (balpha2); ly5 on alpha5 (balpha2); ly6 on alpha6 (balpha2); c2#1 ON c1#1@20;! (lmtom); c3#1 ON c2#1@20;! (lmtom); c4#1 ON c3#1@20;! (lmtom); c5#1 ON c4#1@20;! (lmtom); c6#1 ON c5#1@20;! (lmtom); MODEL c0.c1:!specify model for P(Ct C_t-1, C1)!c0 = 1 (high beta); c0 = 2 (low beta) %c0#1.c1#1%!high DV [ly1*2] (inth); ly1*.1 (vqhighb); ly1 ON beta*.1 (bbeta2); c2#1 ON alpha2 (lot11a); %c0#1.c1#2%!low DV [ly1*2] (intl); ly1*.1 (vqhighb); ly1 ON beta*-.1 (bbeta3); c2#1 ON alpha2 (lot21a); 7

%c0#2.c1#1% [ly1*.01] (intm); ly1*1 (vqlowb); ly1 ON beta@0; %c0#2.c1#2% [ly1*.01] (intm); ly1*1 (vqlowb); ly1 ON beta@0; ---------- MODEL c0.c2:!specify model for P(Ct C_t-1, C1) ---------- %c0#1.c2#1% [ly2*2] (inth); ly2*.1 (vqhighb); ly2 ON beta*.1 (bbeta2);!ly2 ON ab2*.5 (bab2); c3#1 ON alpha3 (lot11a); %c0#1.c2#2% [ly2*2] (intl); ly2*.1 (vqhighb); ly2 ON beta*-.1 (bbeta3); c3#1 ON alpha3 (lot21a); %c0#2.c2#1% [ly2*.01] (intm); ly2*1 (vqlowb); ly2 ON beta@0; %c0#2.c2#2% [ly2*.01] (intm); ly2*1 (vqlowb); ly2 ON beta@0; MODEL c0.c3:!specify model for P(Ct C_t-1, C1)! c0 = 1 (high beta); c0 = 2 (low beta); %c0#1.c3#1% [ly3*2] (inth); ly3*.1 (vqhighb); 8

ly3 ON beta*.1 (bbeta2); c4#1 ON alpha4 (lot11a); %c0#1.c3#2% [ly3*2] (intl); ly3*.1 (vqhighb); ly3 ON beta*-.1 (bbeta3); c4#1 ON alpha4 (lot21a); %c0#2.c3#1% [ly3*.01] (intm); ly3*1 (vqlowb); ly3 ON beta@0; %c0#2.c3#2% [ly3*.01] (intm); ly3*1 (vqlowb); ly3 ON beta@0; MODEL c0.c4:!specify model for P(Ct C_t-1, C1)! c0 = 1 (high beta); c0 = 2 (low beta); %c0#1.c4#1% [ly4*2] (inth); ly4*.1 (vqhighb); ly4 ON beta*.1 (bbeta2); c5#1 ON alpha5 (lot11a); %c0#1.c4#2% [ly4*2] (intl); ly4*.1 (vqhighb); ly4 ON beta*-.1 (bbeta3); c5#1 ON alpha5 (lot21a); %c0#2.c4#1% [ly4*.01] (intm); ly4*1 (vqlowb); ly4 ON beta@0; %c0#2.c4#2% [ly4*.01] (intm); ly4*1 (vqlowb); ly4 ON beta@0; 9

MODEL c0.c5:!specify model for P(Ct C_t-1, C1)! c0 = 1 (high beta); c0 = 2 (low beta); %c0#1.c5#1% [ly5*2] (inth); ly5*.1 (vqhighb); ly5 ON beta*.1 (bbeta2); c6#1 ON alpha6 (lot11a); %c0#1.c5#2% [ly5*2] (intl); ly5*.1 (vqhighb); ly5 ON beta*-.1 (bbeta3); c6#1 ON alpha6 (lot21a); %c0#2.c5#1% [ly5*.01] (intm); ly5*1 (vqlowb); ly5 ON beta@0; %c0#2.c5#2% [ly5*.01] (intm); ly5*1 (vqlowb); ly5 ON beta@0; MODEL c0.c6:!specify model for P(Ct C_t-1, C1)! c0 = 1 (high beta); c0 = 2 (low beta); %c0#1.c6#1% [ly6*2] (inth); ly6*.1 (vqhighb); ly6 ON beta*.1 (bbeta2); %c0#1.c6#2% [ly6*2] (intl); ly6*.1 (vqhighb); ly6 ON beta*-.1 (bbeta3); %c0#2.c6#1% [ly6*.01] (intm); ly6*1 (vqlowb); 10

ly6 ON beta@0; %c0#2.c6#2% [ly6*.01] (intm); ly6*1 (vqlowb); ly6 ON beta@0; MODEL CONSTRAINT: New ( MtoOthM sda lowbtom lmtom hiloalp medalp hibeta lobeta inth0 intl0 intm0 hilovy medvy hibtoh0 lowtoh0 lhtoh0 inita_0 lot11a0 lot21a0 HiBp110 HiBp120 HiBp210 HiBp220 HiBp111 HiBp121 HiBp211 HiBp221 HiBp11 HiBp12 HiBp21 HiBp22 dalpha mbetah0 mbetal0 vb10 vb20 lambda1 lambda2); sda = 2.31; MtoOthM = -10; lowbtom = 10; lmtom = 20; hiloalp = balpha1; medalp = balpha2; hibeta = bbeta2; lobeta = bbeta3; inth0 = inth; intl0 = intl; intm0 = intm; hilovy = vqhighb; medvy = vqlowb; hibtoh0 = hibtoh; lowtoh0 = lowtoh; lhtoh0 = lhtoh; inita_0 = inita; lot11a0 = lot11a; lot21a0 = lot21a; mbetah0 = mbetah; 11

mbetal0 = mbetal; vb10 = vb1; vb20 = vb2; lambda1 = l1; lambda2 = l2;!high beta high alpha days HiBp111 = exp(mtoothm + lowtoh + lhtoh + lot11a*sda) /(exp(mtoothm + lowtoh + lhtoh + lot11a*sda) + exp(0)); HiBp121 = exp(0)/ (exp(mtoothm + lowtoh + lhtoh + lot11a*sda) + exp(0)); HiBp211 = exp(mtoothm + lowtoh + lot21a*sda) /(exp(mtoothm + lowtoh + lot21a*sda) + exp(0)); HiBp221 = exp(0)/(exp(mtoothm + lowtoh + lot21a*sda) + exp(0));!high beta low alpha days HiBp110 = exp(mtoothm + lowtoh + lhtoh + lot11a*(-1*sda)) /(exp(mtoothm + lowtoh + lhtoh + lot11a*(-1*sda)) + exp(0)); HiBp120 = exp(0)/ (exp(mtoothm + lowtoh + lhtoh + lot11a*(-1*sda)) + exp(0)); HiBp210 = exp(mtoothm + lowtoh + lot21a*(-1*sda)) /(exp(mtoothm + lowtoh + lot21a*(-1*sda)) + exp(0)); HiBp220 = exp(0)/(exp(mtoothm + lowtoh + lot21a*(-1*sda)) + exp(0));!high beta average alpha days HiBp11 = exp(mtoothm + lowtoh + lhtoh) /(exp(mtoothm + lowtoh + lhtoh) + exp(0)); HiBp12 = exp(0)/ (exp(mtoothm + lowtoh + lhtoh) + exp(0)); HiBp21 = exp(mtoothm + lowtoh) /(exp(mtoothm + lowtoh) + exp(0)); HiBp22 = exp(0)/(exp(mtoothm + lowtoh) + exp(0)); inth > intm; intm > intl; balpha2 = balpha1 + dalpha; 12

!-------------------------------------------------- OUTPUT: TECH1 TECH4 CINTERVAL; SAVEDATA: RESULTS = 01outPar3.txt ; FILE = 01LTA3.class ; RECORDLENGTH IS 5000; SAVE = CPROBABILITIES; 13

0.3 Tables of Simulation Results The tables included here show the summary statistics of the parameter estimates from all remaining MSEM and MSEM-RS models considered but not presented in Chow et al. s the paper entitled The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models. Table 1: Summary Statistics of Parameter Estimates for MSEM Model 2 with T = 1 and n = 500 across 500 Monte Carlo Replications. Mean ˆθ SD 2.5 %tile 97.5%tile aŝe τ high 1.10 0.07 0.97 1.23 0.07 b α,high&low 0.12 0.01 0.09 0.14 0.01 b β,high 0.19 0.01 0.17 0.21 0.01 ψ high&low 0.11 0.01 0.09 0.14 0.01 τ low -1.10 0.07-1.25-0.97 0.07 b β,low -0.19 0.01-0.21-0.17 0.01 τ med 0.01 0.12-0.21 0.25 0.11 b α,med 0.18 0.07 0.02 0.27 0.05 ψ med 0.18 0.06 0.05 0.30 0.05 a 10, logit intercept for R high β -0.00 0.09-0.17 0.16 0.09 b 111,, LO(high β high) 2.52 2.52 0.17 7.12 1.51 b 121,, LO(high β low) 2.37 2.10 0.08 6.54 1.36 a 11, logit intercept for LO(low β high) -1.59 2.49-5.70 0.31 1.32 a 21, logit intercept for LO(low β low) -1.43 2.09-5.56 0.58 1.17 b 111,α, α LO(high β high) 1.70 1.18 0.48 4.36 0.67 b 121,α, α LO(high β low) -1.74 1.53-3.91-0.47 0.68 b 211,α, α LO(low β high) 0.89 0.84 0.17 3.15 0.53 b 221,α, α LO(low β low) -0.88 0.73-2.79-0.19 0.48 Pr(high β high) 0.41 0.10 0.20 0.60 0.10 Pr(high β low) 0.41 0.10 0.22 0.59 0.10 Pr(high β med) 0.18 0.08 0.03 0.36 0.08 Pr(low β high) 0.18 0.11 0.00 0.42 0.10 Pr(low β low) 0.19 0.12 0.00 0.45 0.10 Pr(low β med) 0.63 0.17 0.26 0.91 0.14 a The class and transition probabilities were computed using Equations 8, 9 and 12 with α i set to 0. Proportion(cases free of SE estimation problems for logit parameters in Model 2) =.94 14

Table 2: Summary Statistics of Parameter Estimates for MSEM Model 2 with T = 1 and n = 200 across 500 Monte Carlo Replications. Mean ˆθ SD 2.5 %tile 97.5%tile aŝe τ high 1.10 0.10 0.90 1.29 0.09 b α,high&low 0.11 0.02 0.07 0.16 0.02 b β,high 0.19 0.02 0.17 0.23 0.01 ψ high&low 0.11 0.02 0.07 0.15 0.02 τ low -1.10 0.11-1.32-0.92 0.09 b β,low -0.19 0.02-0.23-0.16 0.02 τ med 0.01 0.30-0.63 0.95 0.13 b α,med 0.18 0.14-0.06 0.39 0.05 ψ med 0.13 0.08 0.00 0.30 0.05 a 10, logit intercept for R high β 0.01 0.14-0.30 0.26 0.14 b 111,, LO(high β high) 3.31 6.92-3.55 26.31 2.59 b 121,, LO(high β low) 3.17 7.01-3.36 24.60 2.48 a 11, logit intercept for LO(low β high) -1.17 5.42-12.82 5.74 2.13 a 21, logit intercept for LO(low β low) -1.13 5.39-12.05 4.97 2.02 b 111,α, α LO(high β high) 1.95 2.28-0.39 6.28 0.95 b 121,α, α LO(high β low) -2.29 2.57-9.23-0.04 0.93 b 211,α, α LO(low β high) 1.11 1.75-0.41 5.53 0.85 b 221,α, α LO(low β low) -1.01 1.59-5.57 0.36 0.68 Pr(high β high) a 0.42 0.17 0.12 0.80 0.14 Pr(high β low) 0.40 0.17 0.03 0.74 0.14 Pr(high β med) 0.18 0.13 0.00 0.48 0.10 Pr(low β high) 0.23 0.18 0.00 0.69 0.13 Pr(low β low) 0.24 0.18 0.00 0.65 0.13 Pr(low β med) 0.52 0.26 0.00 0.95 0.17 a The class and transition probabilities were computed using Equations 8, 9 and 12 with α i set to 0. Proportion(cases free of SE estimation problems for logit parameters in Model 2) =.54 15

Table 3: Summary Statistics of Parameter Estimates for MSEM Model 6 with T = 1 and n = 200 across 500 Monte Carlo Replications. True θ Mean ˆθ SD 2.5 %tile 97.5%tile aŝe λ β,1 1.20 1.20 0.01 1.17 1.23 0.01 λ β,2 0.90 0.90 0.01 0.88 0.92 0.01 ψɛ,β 2 1 0.09 0.09 0.01 0.07 0.12 0.01 ψɛ,β 2 2 0.09 0.09 0.02 0.06 0.13 0.02 ψɛ,β 2 3 0.09 0.09 0.01 0.07 0.11 0.01 µ β,high 2.50 2.50 0.07 2.36 2.64 0.07 ψ β,high 0.49 0.47 0.07 0.33 0.63 0.07 µ β,low -2.50-2.50 0.08-2.64-2.36 0.07 ψ β,low 0.49 0.49 0.07 0.37 0.63 0.07 τ high 1.05 0.15 0.69 1.32 0.09 b α,high&low 0.12 0.02 0.08 0.17 0.02 b β,high 0.20 0.05 0.12 0.30 0.02 ψ high&low 0.11 0.02 0.08 0.16 0.02 τ low -1.01 0.17-1.29-0.62 0.09 b β,low -0.21 0.06-0.38-0.13 0.02 τ med 0.02 0.41-0.77 0.88 0.13 b α,med 0.17 0.14-0.15 0.39 0.04 ψ med 0.12 0.08 0.00 0.28 0.04 a 10, logit intercept for R high β 0.00 0.00 0.01-0.01 0.02 0.14 b 111,, LO(high β high) 2.66 6.97-8.94 25.84 5.32 b 121,, LO(high β low) 2.91 7.41-8.82 25.46 2.70 a 11, logit intercept for LO(low β high) -1.23 5.64-15.58 8.32 4.91 a 21, logit intercept for LO(low β low) -1.38 6.57-23.28 9.17 2.40 b 111,α, α LO(high β high) 2.10 2.36-0.00 7.18 0.97 b 121,α, α LO(high β low) -1.95 1.89-5.48-0.03 0.90 b 211,α, α LO(low β high) 1.10 2.02-2.45 6.85 1.39 b 221,α, α LO(low β low) -0.70 2.47-4.27 2.47 0.83 Pr(high β high) a 0.38 0.17 0.07 0.71 0.15 Pr(high β low) 0.41 0.17 0.08 0.74 0.15 Pr(high β med) 0.20 0.14 0.00 0.53 0.11 Pr(low β high) 0.23 0.18 0.00 0.61 0.13 Pr(low β low) 0.30 0.24 0.00 0.81 0.13 Pr(low β med) 0.46 0.30 0.00 0.96 0.16 a The class and transition probabilities were computed using Equations 8, 9 and 12 with α i set to 0. Proportion(cases free of SE estimation problems for logit parameters in Model 2) =.38 16

Table 4: Summary Statistics of Parameter Estimates for MSEM-RS Model 1 with T = 6 and n = 500 across 500 Monte Carlo Replications. τ high 0.59 0.06 0.48 0.71 0.06 b α,high&low 0.24 0.00 0.23 0.25 0.01 b β,high 0.27 0.02 0.22 0.31 0.02 ψ high&low 0.18 0.01 0.17 0.20 0.01 τ low -0.59 0.06-0.71-0.46 0.06 b β,low -0.27 0.02-0.32-0.22 0.02 τ med -0.00 0.01-0.03 0.03 0.01 b α,med 0.24 0.00 0.23 0.25 0.01 ψ med 0.26 0.01 0.24 0.28 0.01 b 111,, LO(high β high) -10.01 0.31-10.66-9.39 0.30 a 1,1t,, LO(low high high β) 10.00 0.20 9.61 10.39 0.19 b 1,11t,, LO(high high high β) 0.00 0.27-0.57 0.55 0.27 b 111,α, α LO(high β high) 2.66 0.53 1.94 3.93 0.47 b 1,11t,α, α LO(high high high β) 2.57 0.32 2.06 3.32 0.29 b 1,21t,α, α LO(low high high β) 2.57 0.32 2.08 3.25 0.29 Pr(high high high β, low α) a 0.00 0.00 0.00 0.01 0.00 Pr(high low high β, low α) 1.00 0.00 0.99 1.00 0.00 Pr(low high high β, low α) 0.00 0.00 0.00 0.01 0.00 Pr(low low high β, low α) 1.00 0.00 0.99 1.00 0.00 Pr(high high high β, high α) 1.00 0.00 0.99 1.00 0.00 Pr(high low high β, high α) 0.00 0.00 0.00 0.01 0.00 Pr(low high high β, high α) 1.00 0.00 0.99 1.00 0.00 Pr(low low high β, high α) 0.00 0.00 0.00 0.01 0.00 Pr(high high high β, avg α) 0.50 0.05 0.41 0.59 0.05 Pr(high low high β, avg α) 0.50 0.05 0.41 0.59 0.05 Pr(low high high β, avg α) 0.50 0.05 0.40 0.60 0.05 Pr(low low high β, avg α) 0.50 0.05 0.40 0.60 0.05 a The transition probabilities were computed using Equations 13 and 14. Avg α = value of α was set to 0; high α = value of α was set to 1 SD above the mean of 0; low α = value of α was set to 1 SD below the mean of 0. Proportion(cases free of SE estimation problems for logit parameters in Model 2) = 1.00 17

Table 5: Summary Statistics of Parameter Estimates for MSEM-RS Model 1 with T = 6 and n = 200 across 500 Monte Carlo Replications. τ high 0.59 0.10 0.38 0.80 0.04 b α,high&low 0.24 0.01 0.23 0.26 0.00 b β,high 0.27 0.04 0.19 0.34 0.01 ψ high&low 0.18 0.01 0.16 0.21 0.01 τ low -0.59 0.11-0.79-0.39 0.03 b β,low -0.27 0.04-0.34-0.19 0.00 τ med 0.00 0.02-0.04 0.04 0.02 b α,med 0.24 0.01 0.23 0.26 0.00 ψ med 0.26 0.01 0.24 0.29 0.02 b 111,, LO(high β high) -10.04 0.58-11.34-8.88 0.52 a 1,1t,, LO(low high high β) 10.01 0.30 9.43 10.55 0.30 b 1,11t,, LO(high high high β) 0.01 0.43-0.91 0.82 0.43 b 111,α, α LO(high β high) 2.94 1.23 1.61 6.12 0.79 b 1,11t,α, α LO(high high high β) 2.62 0.51 1.88 3.75 0.46 b 1,21t,α, α LO(low high high β) 2.62 0.52 1.87 3.95 0.46 Pr(high high high β, low α) 0.00 0.00 0.00 0.01 0.00 Pr(high low high β, low α) 1.00 0.00 0.99 1.00 0.00 Pr(low high high β, low α) 0.00 0.00 0.00 0.01 0.00 Pr(low low high β, low α) 1.00 0.00 0.99 1.00 0.00 Pr(high high high β, high α) 1.00 0.00 0.99 1.00 0.00 Pr(high low high β, high α) 0.00 0.00 0.00 0.01 0.00 Pr(low high high β, high α) 1.00 0.00 0.99 1.00 0.00 Pr(low low high β, high α) 0.00 0.00 0.00 0.01 0.00 Pr(high high high β, avg α) 0.50 0.07 0.35 0.64 0.07 Pr(high low high β, avg α) 0.50 0.07 0.36 0.65 0.07 Pr(low high high β, avg α) 0.50 0.07 0.36 0.63 0.07 Pr(low low high β, avg α) 0.50 0.07 0.37 0.64 0.07 a The transition probabilities were computed using Equations 13 and 14. Avg α = value of α was set to 0; high α = value of α was set to 1 SD above the mean of 0; low α = value of α was set to 1 SD below the mean of 0. Proportion(cases free of SE estimation problems for logit parameters in Model 2) =.93 18

Table 6: Summary Statistics of Parameter Estimates for MSEM-RS Model 5 with T = 6 and n = 200 across 500 Monte Carlo Replications. True θ Mean ˆθ SD 2.5 %tile 97.5%tile aŝe λ β,1 1.20 1.20 0.01 1.17 1.22 0.01 λ β,2 0.90 0.90 0.01 0.88 0.92 0.01 ψɛ,β 2 1 0.09 0.09 0.01 0.07 0.12 0.01 ψɛ,β 2 2 0.09 0.09 0.02 0.06 0.12 0.02 ψɛ,β 2 3 0.09 0.09 0.01 0.07 0.11 0.01 µ β,high 2.50 2.50 0.07 2.35 2.64 0.07 ψ β,high 0.49 0.49 0.09 0.34 0.66 0.08 µ β,low -2.50-2.50 0.07-2.64-2.35 0.07 ψ β,low 0.49 0.48 0.07 0.36 0.62 0.07 τ high 0.54 0.20 0.00 0.78 0.14 b α,high&low 0.25 0.01 0.23 0.26 0.03 b β,high 0.28 0.09 0.20 0.49 0.04 ψ high&low 0.18 0.01 0.16 0.21 0.02 τ low -0.50 0.24-0.79 0.00 0.12 b β,low -0.29 0.10-0.49-0.19 0.04 τ med -0.00 0.02-0.05 0.04 0.02 b α,med 0.25 0.01 0.23 0.26 0.03 ψ med 0.26 0.01 0.23 0.29 0.02 a 10, logit intercept for R high β 0.00 0.00 0.01-0.00 0.02 0.14 b 111,, LO(high β high) -9.99 0.95-11.56-8.72 0.58 a 1,1t,, LO(low high high β) 10.01 0.33 9.37 10.63 0.31 b 11t,, LO(high high high β) -0.01 0.45-0.84 0.82 0.45 b 111,α, α LO(high β high) 3.18 2.14 1.60 7.37 0.95 b 11t,α, α LO(high high) 2.64 0.61 1.93 3.81 0.50 b 21t,α, α LO(low high) 2.69 0.65 1.88 4.00 0.50 Pr(high high high β, low α) a 0.01 0.06 0.00 0.01 0.00 Pr(high low high β, low α) 0.99 0.06 0.99 1.00 0.00 Pr(low high high β, low α) 0.01 0.06 0.00 0.01 0.00 Pr(low low high β, low α) 0.99 0.06 0.99 1.00 0.00 Pr(high high high β, high α) 0.99 0.06 0.99 1.00 0.00 Pr(high low high β, high α) 0.01 0.06 0.00 0.01 0.00 Pr(low high high β, high α) 0.99 0.06 0.99 1.00 0.00 Pr(low low high β, high α) 0.01 0.06 0.00 0.01 0.00 Pr(high high high β, avg α) 0.50 0.08 0.35 0.63 0.08 Pr(high low high β, avg α) 0.50 0.08 0.37 0.65 0.08 Pr(low high high β, avg α) 0.50 0.08 0.35 0.65 0.08 Pr(low low high β, avg α) 0.50 0.08 0.35 0.65 0.08 a The transition probabilities were computed using Equations 13 and 14. Avg α = value of α was set to 0; high α = value of α was set to 1 SD above the mean of 0; low α = value of α was set to 1 SD below the mean of 0. Proportion(cases free of SE estimation problems for logit parameters in Model 2) =.99 19