ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. «Μεταπτυχιακή Εξειδίκευση Καθηγητών των Φυσικών Επιστημών» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. «Μεταπτυχιακή Εξειδίκευση Καθηγητών των Φυσικών Επιστημών» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ"

Transcript

1 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «Μεταπτυχιακή Εξειδίκευση Καθηγητών των Φυσικών Επιστημών» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Έννοιες και Μεθοδολογίες της σωματιδιακής φυσικής στην περιγραφή και κατανόηση της Συγκρότησης και εξέλιξης του Σύμπατος Μεταφορά των σύγχρονων επιστημονικών αντιλήψεων στην εκπαιδευτική διαδικασία ΟΝΟΜΑ ΦΟΙΤΗΤΗ ΜΑΝΟΥΣΕΛΗΣ ΕΥΑΓΓΕΛΟΣ ΟΝΟΜΑ ΕΠΙΒΛΕΠΟΝΤΑ ΚΑΘΗΓΗΤΗ ΤΖΑΜΑΡΙΑΣ ΣΠΥΡΟΣ ΠΑΤΡΑ OΚΤΩΒΡΙΟΣ 009

2 Περιεχόμενα Κεφάλαιο 1:Εισαγωγή στα στοιχειώδη σωμάτια 1.1 Γνωριμία με τα στοιχειώδη σωματίδια μέσα από την ιστορία της Φυσικής του 0ου αιώνα σελ Λεπτόνια, Αδρόνια σελ Κβαντικοί αριθμοί σελ Σπιν-ισοτοπικό σπιν σελ Ελικότητα σελ Quark σελ Χρώμα σελ Καθιερωμένο πρότυπο σελ Ο Φορέας της αλληλεπίδρασης-δυναμικό Yukawa σελ Συνάρτηση Lagrange -Διαγράμματα Feynman σελ Αλληλεπιδράσεις σελ 1 Κεφάλαιο : Συμμετρίες και νόμοι διατήρησης.1 Συμμετρίες και νόμοι διατήρησης σελ 6. Παραδείγματα συνεχών και διακριτών μετασχηματισμών σελ 7.3 Μετασχηματισμοί βαθμίδας σελ 8.4 Γενικευμένα αναλλοίωτα βαθμίδας και Ηλεκτρασθενή θεωρία σελ 30.5 Μηχανισμός Higgs και αυτόματο σπάσιμο της συμμετρίας σελ 30.6 Συζυγία φορτίου C -CP Συμμετρία - Θεώρημα CPT σελ 3.7 CP παραβίαση- Η περίπτωση των Καονίων σελ 34 Κεφάλαιο 3: Στοιχειώδη σωμάτια και κοσμολογία 3.1 Κοσμολογική αρχή σελ Το διαστελλόμενο σύμπαν νόμος του Hubble σελ Μικροκυματική ακτινοβολία σελ Ποσοστό του Ηe στο σύμπαν σελ Η μέτρηση της ηλικίας του σύμπαντος σελ Θεωρία της μεγάλης έκρηξης και ο ρόλος των στοιχειωδών Σωματιδίων σελ 41 Κεφάλαιο 4 Σκοτεινή ύλη 4.1 Ενδείξεις για την ύπαρξη σκοτεινής ύλης στους Γαλαξίες σελ Mη εξωτική ύλη (ΜΑCHO: Massive Compact Halo Objects σελ Εξωτική ύλη WiMPS (Weakly Interacting Massive Particles) σελ COBE (Cosmic Backround Explorer) (Ένα σύγχρονο πείραμα ανίχνευσης κοσμικής ακτινοβολίας και σκοτεινής ύλης. σελ WMAP (Wilkinson Microwave Anisotropy Probe) σελ Σκοτεινή ενέργεια σελ Η θεωρία της μεγάλης έκρηξης και τα στάδια της σελ 5 4.8Ανοιχτά προβλήματα για τη θεωρία της μεγάλης έκρηξης σελ Το πληθωριστικό σύμπαν σελ 57 1

3 Κεφάλαιο 5 Κοσμική Ακτινοβολία 5.1 Σύσταση κοσμικής ακτινοβολίας σελ 6 5. Προέλευση της κοσμικής ακτινοβολίας σελ Επιτάχυνση κοσμικής ακτινοβολίας σελ Δευτερεύουσα κοσμική ακτινοβολία σελ Ατμοσφαιρικά Νετρίνα και ταλαντώσεις τους σελ 67 Κεφάλαιο 6 Σωματιδιακή Φυσική Αστέρων 6.1 Γένεση αστεριών σελ 70 6 Παραγωγή ενέργειας στον ήλιο σελ Παραγωγή βαρύτερων στοιχείων σελ Ζωή και Κατάρρευση Αστέρων σελ 73 α) Το ενδιάμεσο στάδιο -Ερυθροί γίγαντες σελ 75 β) Τα Πτώματα I) Λευκοί νάνοι σελ 76 II) Αστέρες Νετρονίων σελ 77 ΙΙΙ) Εκρήξεις super nova σελ 78 ΙV)Μαύρες τρύπες σελ 78 Παράρτημα Ι - Συνάρτηση Lagrange σελ 80 Παράρτημα ΙΙ Παραδείγματα συνεχών μετασχηματισμών σελ 81 Παράρτημα ΙΙΙ Παραδείγματα διακριτών μετασχηματισμών (Ομοτιμία ) σελ 81 Παράρτημα ΙV -Αυθόρμητο σπάσιμο συμμετρίας σελ 8 Πίνακας μερικών Στοιχειωδών σωματιδίων σελ 84 Βιβλιογραφία σελ 85 Kυματικός και σωματιδιακός χαρακτήρας της ύλης Βιβλίο καθηγητών άλλων κλάδων θετικών επιστημών 1 Κυματικός ή σωματιδιακός χαρακτήρας του φωτός σελ 86 Υλικά κύματα σελ 87 3 Το πείραμα της διπλή σχισμής στη περίπτωση των ηλεκτρονίων σελ 88 4 To ίδιο το ηλεκτρόνιο είναι «συμβολή κυμάτων σελ 90 5Το πείραμα της διπλής σχισμής σελ 91 6 Η σχέση αβεβαιότητας σελ 93 Βιβλίο καθηγητή 1. Κυματικός χαρακτήρας του φωτός σελ 95 Συμβολή κυμάτων σελ 96 3 Πειράματα συμβολής ηλεκτρονίων σελ 97 4 Ο κυματικός χαρακτήρας ενός ηλεκτρονίου σελ 97 5 Η σχέση αβεβαιότητας σελ Μερικές εφαρμογές της σχέσης αβεβαιότητας σελ 10

4 Κεφάλαιο 1 ο Γνωριμία με τα στοιχειώδη σωματίδια 1.1 Γνωριμία με τα στοιχειώδη σωματίδια μέσα από την ιστορία της Φυσικής του 0ου αιώνα Η ιστορία της ανακάλυψης των στοιχειωδών σωματιδίων ξεκινάει τα τέλη του 19ου αιώνα με την τυχαία ανακάλυψη των ακτίνων Χ, το 1895 από τον Roentgen, όπου και ο ίδιος δεν ήξερε αν ήταν φως ή ηλεκτρομαγνητική ακτινοβολία Στη συνέχεια ο Becquerel ανακαλύπτει τις ακτινοβολίες β και α που αποκρυπτογραφούνται αργότερα (το 1900 και το 1908 αντίστοιχα, από τους Thomson και Rutherford αντίστοιχα ). Την εποχή εκείνη δεν είχε ακόμα διαμορφωθεί η αντίληψη περί κβάντωσης της ενέργειας του Plank και για αυτό και οι νέες ανακαλύψεις θεωρούνταν ακτινοβολίες ηλεκτρομαγνητικές. H ανακάλυψη του ηλεκτρονίου ωθεί τους φυσικούς στη διατύπωση μοντέλων για την δομή του ατόμου με κυρίαρχο εκείνο του Thomson που ερμήνευε την σταθερότητα και την ηλεκτρική ουδετερότητα του ατόμου. Γύρω στα 1900 οι άνθρωποι πίστευαν ότι τα άτομα αποτελούνταν από μια θετική σφαιρική κατανομή φορτίου όπου μέσα σ αυτή βρίσκονταν διάσπαρτα τα αρνητικά ηλεκτρόνια (σαν σταφίδες σε σταφιδόψωμο) ώστε το άτομο να συνολικά ηλεκτρικά ουδέτερο. Το 1909 οι Geiger και Marsden υπό την επίβλεψη του Rutherford, έλεγξαν αυτή την θεωρία με το πασίγνωστο πια πείραμα με το χρυσόχαρτο. Το πείραμα ήταν αρκετά απλό: μία δέσμη σωματιδίων άλφα προερχόμενα από μια ραδιενεργή πηγή έπεφταν πάνω σ' ένα λεπτό φύλλο από χρυσόχαρτο (ας σημειωθεί ότι τα σωματίδια άλφα έχουν πάρα πολύ μικρή μάζα σε σχέση με τα άτομα του χρυσού). Το χρυσόχαρτο περιβάλετε με μία οθόνη που ήταν καλυμμένη με θειούχο ψευδάργυρο έτσι ώστε τα σωματίδια άλφα που θα έπεφταν πάνω στην οθόνη να αφήνουν μικρές φωτεινές κηλίδες πάνω στον θειούχο ψευδάργυρο Το 1911 τα πειράματα των Geiger και Marsden υπό την επίβλεψη του Rutherford ανατρέπουν το μοντέλο του Thomson. Παρουσιάζονται μεγάλες γωνίες σκέδασης των σωματιδίων α όταν προσκρούουν πάνω στα άτομα του χρυσού. Έτσι το θετικό φορτίο αποδεικνύεται σημειακό και ονομάζεται πυρήνας και το αρνητικό, τα ηλεκτρόνια για να μην πέφτουν στον πυρήνα να περιφέρονται σε τροχιές γύρω από αυτόν σαν πλανητικό σύστημα. Βέβαια παρέμεινε ανερμήνευτη η σταθερότητα του ατόμου, αφού τα ηλεκτρόνια κινούμενα σε κυκλικές τροχιές, επιταχύνονται με την κεντρομόλο επιτάχυνση και σύμφωνα με την ηλεκτρομαγνητική θεωρία του Maxwell θα έπρεπε να 3

5 ακτινοβολούν και άρα να χάνουν συνεχώς ενέργεια, με τελική κατάληξη την κατάρρευση πάνω στον πυρήνα, μέσα σε ελάχιστο χρόνο. Παράλληλα δεν θα έπρεπε να παρατηρείται η εκπομπή ακτινοβολίας ορισμένης μόνο συχνότητας από τα άτομα αλλά μια συνεχόμενη περιοχή του ΗΜ φάσματος. Την μη παρατήρηση των παραπάνω αυτών φαινομένων εξήγησε ο Βοhr το 1913,εφαρμόζοντας την ιδέα της κβάντωσης της στροφορμής των δέσμιων ηλεκτρονίων του πυρήνα και καταλήγοντας στην κβάντωσης της ενέργειας του Plank. Τα ηλεκτρόνια έτσι εκπέμπουν μονοχρωματική ακτινοβολία μόνο κατά τη μετάπτωση τους από μια στάσιμη ενεργειακά κατάσταση σε μια άλλη, πράγμα που έδωσε την ερμηνεία για το διακριτό φάσμα των απλών ατόμων. Το 1919 έγιναν οι πρώτες πυρηνικές αντιδράσεις από τον Rutherford που έδωσαν την ανακάλυψη του πρωτονίου. Το 198 ο Dirac συνδυάζει την κβαντομηχανική με την ειδική θεωρία της σχετικότητας και προβλέπει θεωρητικά καταστάσεις ηλεκτρονίων με αρνητική ενέργεια και θεωρεί ότι σε κάθε σωμάτιο ύλης αντιστοιχεί ένα αντισωμάτιο με ίδια μάζα και σπιν αλλά αντίθετο φορτίο,τα οποία συμφωνήθηκε να, συμβολίζονται με μια παύλα πάνω από το όνομα του σωματιδίου. (π.χ. Το αντισωμάτιο του ηλεκτρονίου, που ονομάστηκε ποζιτρόνιο από τον C.D.Anderson που το ανακάλυψε, συμβολίζεται e + =e, το αντιπρωτόνιο p κ.λ. ) Το 1930 πειράματα των Bothe,Becker αρχικά αλλά και του Chadwick στη συνέχεια λύνει το πρόβλημα του γιατί ο λόγος του φορτίου προς τη μάζα κάθε διαφορετικού πυρήνα δεν ήταν ο ίδιος, με την ανακάλυψη του νετρονίου ως συστατικού μέρους του πυρήνα. Αν το νετρόνιο δεν υπήρχε και τα άτομα διάφεραν μόνο στον αριθμό των πρωτονίων τους τότε ο λόγος του φορτίου του πυρήνα οποιαδήποτε ατόμου nq p q p προς τη μάζα του θα ήταν σταθερός αφού = και ίσος με το λόγος στο nm m άτομο του υδρογόνου. Το 193 ο C.D.Anderson σε μελέτη κοσμικών ακτίνων ανακαλύπτει το προτεινόμενο θεωρητικά από τον Dirac ποζιτρόνιο. Το νετρόνιο αποδεικνύεται ασταθές που η διάσπαση του φαινόταν να μην μπορεί να ακολουθήσει τους νόμους διατήρησης της ορμής και της ενέργειας p p n p+ e +? 4

6 Aν υποθέσουμε ότι το νετρόνιο είναι ακίνητο και διασπάται σε πρωτόνιο και ηλεκτρόνιο τότε η αρχή διατήρησης του τετραδιανύσματος της ορμής δίνει: (Το τετραδιάνυσμα της ορμής περιλαμβάνει δύο όρους ένα χρονικό που αποτελεί την ενέργεια του σωματιδίου διαιρεμένη με την ταχύτητα του φωτός και ένα χωρικό που είναι το διάνυσμα της ορμής.οι συνολικές διαστάσεις του τετραδιανύσματος είναι τέσσερις, όπως προβλέπει η θεωρία Minkowski) E i i p r i Ee r pn = ( mnc,0), p p = (, p p ), pe = (, pe ) c c p m E i n Αν e p p c i p = = m p p i e e c p + m n i e n n = c p i p + p m E e n i n p p m c + m c m c = και E m m =938,73 ΜeV/c p n e i n p i p m = e c + m n c m n m p m =939,5656ΜeV/c m e =0,5109ΜeV/c τότε Ε p = 938,730MeV Ε e =1,95MeV Επειδή όμως θέλουμε και την ορμή να διατηρείται,θα πρέπει τα θυγατρικά προϊόντα να έχουν συνολική ορμή μηδέν δηλαδή: p r 4 4 = p r p = p E m c = E m c το οποίο δεν p e e p p ισχύει, που σημαίνει ότι ένα κομμάτι ορμής πηγαίνει και σε κάτι άλλο, επίσης βλέπουμε ότι Ε p + Ε e ~ m n c που σημαίνει ότι αν υπάρχει άλλο σωμάτιο θα έχει οριακά μηδενική μάζα p e n e p+ e + ν e c Το 1933 ο Pauli υπέθεσε ότι κατά τη διάσπαση εκπέμπεται ένα ακόμα σωμάτιο που δεν μπορεί να ανιχνευθεί. Το υποθετικό αυτό σωμάτιο έπρεπε να έχει πολύ μικρή η οριακά καθόλου μάζα και φορτίο και να έχει σπίν ½, και αυτό για να ισχύουν οι αρχές διατήρησης του φορτίου, και της ολικής στροφορμής. Το ονόμασε δε νετρίνο v e.την αναγκαιότητα ύπαρξης του αναγνώρισε και ο Fermi το 1934 προσπαθώντας να ανιχνεύσει τις ασθενείς αλληλεπιδράσεις. Σήμερα ξέρουμε ότι την παραπάνω εξίσωση συμπληρώνει όχι το νετρίνο του ηλεκτρονίου αλλά το αντινετρίνο : Μέχρι τα μέσα της δεκαετίας του 30 η μελέτη των θεμελιακών συστατικών της ύλης και των αλληλεπιδράσεων μεταξύ τους περιλάμβανε έξι σωματίδια το πρωτόνιο, το νετρόνιο το ηλεκτρόνιο με το ποζιτρόνιο, το νετρίνο και, το φωτόνιο, όλα πλην του φωτονίου ήταν φερμιόνια, δηλαδή σωματίδια που ακολουθούν ένα συγκεκριμένο είδος στατιστικής εκείνη του Ε.Fermi.Αντίθετα μποζόνια είναι εκείνα που ακολουθούν στατιστική Bose-Einstein.Παρατηρούσαν δε μια αριθμητική συμμετρία ανάμεσα σε αυτά που σήμερα ονομάζουμε λεπτόνια (νετρινο, ηλεκτρόνιο) και αδρόνια (νετρόνια και πρωτόνια). n νe p e Αλληλεπιδρούν Η/Μ και ισχυρά Αλληλεπιδρούν Η/Μ ασθενώς Η φαινομενική αντιστοιχία που υπήρχε στη σωματιδιακή φυσική, όσο αναφορά τα λεπτόνια και τα αδρόνια διαταράχθηκε από την προσπάθεια κατανόησης των αλληλεπιδράσεων που παρατηρούνται στη φύση. Για την ηλεκτρομαγνητική ήδη 5

7 υπήρχε η απάντηση από τoυς Einstein και Plank ότι φορέας τους ήταν το φωτόνιο που ήταν ήδη γνωστό σωμάτιο. Έμενε να απαντηθεί το ερώτημα για το ποιός ήταν ο φορέας της ισχυρής αλληλεπίδρασης Το 1935 ο Υukawa υπέθεσε για την ισχυρή αλληλεπίδραση μεταξύ πρωτονίων και νετρονίων ένα σωμάτιο μεσάζοντα που υπολόγισε τη μάζα του ανάμεσα σε 50MeV και 100MeV και επειδή η μάζα αυτή ήταν ανάμεσα στην μάζα του πρωτονίου και του ηλεκτρονίου το ονόμασε μεσόνιο. Ο υποθετικός αυτός φορέας θα έπρεπε να είναι μποζόνιο και να συναντάται σε τρεις καταστάσεις φορτίου θετικό αρνητικό και ουδέτερο. Αυτό γιατί η ισχυρή αλληλεπίδραση μεταξύ νουκλεονίων φαινόταν να είναι ανεξάρτητη του είδους τους (n-n),(p-n),(p-p) άρα θα πρέπει να συναντιέται σε τρείς καταστάσεις φορτίου. Σε πειράματα κοσμικών ακτίνων ένα χρόνο αργότερα ο Anderson και Neddermeyer ανακάλυψαν ένα σωμάτιο με μάζα 106MeV που όμως δεν αλληλεπιδρούσε ισχυρά παρά μόνο ηλεκτρομαγνητικά και ασθενώς. Στα σωματίδια αυτά δόθηκε το όνομα μιόνιο (μ +, μ - ). Tα μιόνια είχαν φορτίο, κατά απόλυτη τιμή, όσο και το φορτίο του ηλεκτρονίου και μάζα 07 περίπου φορές τη μάζα του ηλεκτρονίου το ένα ήταν αντισωματίδιο του άλλου, το σπίν τους ήταν ½. Το 1947 ήρθε η ανακάλυψη H ισχύς της αλληλεπίδρασης έχει να κάνει με των μεσονίων π +, π -,π 0,(αυτών που την ενέργεια που ανταλλάσσεται μεταξύ των την ύπαρξη υπέθεσε ο Yukawa),σε αλληλεπιδρώντων σωματιδίων, επειδή τώρα πειράματα κοσμικών ακτίνων και ισχύει η αρχή απροσδιοριστίας του παραρίχθηκαν το 1948 στο επιταχυντή h h Heisenberg Ε* t Ε που του Berkley όπου και έγινε η μέτρηση t της μάζας τους και του σπιν τους. Τα σημαίνει ότι η μεγάλη ενέργεια των ισχυρών σωματίδια π + και π - είχαν μάζες 73 αλληλεπιδράσεων δηλώνει μικρό χρόνο περίπου φορές μεγαλύτερη από τη αλληλεπίδρασης. Ο χρόνος για το μποζόνιο που ανταλλάσσεται στην αλληλεπίδραση μάζα του ηλεκτρονίου, το ένα είναι μικρότερος του χρόνου της αποτελούσε αντισωματίδιο του άλλου αλληλεπίδρασης και μπορεί να θεωρηθεί ενώ το π 0 αποτελούσε αντισωματίδιο ίσος μ αυτόν. Έτσι ερμηνεύεται ο μικρός του εαυτού του και είχε λίγο χρόνος ζωής των π μεσονίων. μικρότερη μάζα από τα προηγούμενα, περίπου 64 φορές τη μάζα του ηλεκτρονίου. Οι χρόνοι ζωής τους ήταν, 10-6 s για τα π ± και 0, s για το π 0.Η προσπάθεια κατανόησης της πυρηνικής δύναμης μεταξύ πρωτονίων και νετρονίων καθώς και η μελέτη κοσμικών ακτίνων αλλά και η κατασκευή μεγαλύτερων επιταχυντών έδωσε την δυνατότητα παρατήρησης και άλλων ασταθών σωματιδίων που ονομάστηκαν αδρόνια. Η ανακάλυψη νέων σωματιδίων, που πολλά είχαν ακέραιο ή ημιακέραιο σπίν έσπασε την αριθμητική συμμετρία λεπτονίων και αδρονίων δημιουργώντας ένα πραγματικό χάος στη φυσική των στοιχειωδών σωματιδίων. 6

8 Ανάμεσα στα καινούρια ασταθή αδρόνια που ανακαλύφτηκαν είναι τα ονομαζόμενα μεσόνια Κ όπου οι αντιδράσεις παραγωγής τους είναι τελείως διαφορετικές από τις O παρακάτω πίνακας σταχυολογεί τις ανακαλύψεις στοιχειωδών σωματιδίων μέχρι το 1964: Στοιχειώδη Σωματίδια που ανακαλύφθηκαν μεταξύ 1964 έως σήμερα: αντιδράσεις διάσπασης τους. Παράγονται στις συγκρούσεις πρωτονίου πρωτονίου είτε στις π- μεσονίου-πρωτονίου κατά συμμετέχουν συνέπεια στις ισχυρές αλληλεπιδράσεις, όμως η διάσπαση τους σε δύο μεσόνια π δείχνουν διάρκεια ζωής s τάξη μεγέθους που χαρακτηρίζει τις ασθενείς αλληλεπιδράσεις και όχι τις ισχυρές. H ερμηνεία της συμπεριφοράς τους,το ότι δηλαδή τα σωμάτια Κ, δεν διασπόνται με ισχυρή αλληλεπίδραση αλλά με ασθενή, έγινε από τους Gell-Mann Και Νishijima με την εισαγωγή ενός νέου κβαντικού αριθμού της παραδοξότητας ο οποίος διατηρείται στις ισχυρές αλλά όχι στις ασθενείς αλληλεπιδράσεις. Τα Καόνια έχουν μη μηδενική παραδοξότητα. Το γεγονός ότι διασπόνται σε π σωμάτια με μηδενική παραδοξότητα σημαίνει ότι διασπόνται με ασθενή αλληλεπίδραση. Το χάος που είχε επικρατήσει στη φυσική στοιχειωδών σωματιδίων, με την ανακάλυψη συνεχώς καινούριων σωματιδίων έμοιαζε με την περίπτωση της φασματοσκοπίας πριν την υπόθεση για το άτομο από τον Bohr.Τα αδρόνια θα έπρεπε να είναι καταστάσεις που δομούνται από στοιχειώδη σωματίδια που θα ήταν αφενός φερμιόνια και αφετέρου θα είχαν ημιακέραιο φορτίο. Ποιές όμως θα ήταν αυτές οι δομικές μονάδες; Οι Gell- Mann και Ζweig πρότειναν το 1964 την 7

9 πρώτη θεωρία για τις στοιχειώδεις αυτές δομικές φερμιονικές μονάδες που ονομάστηκαν quarks. Η θεωρία των quarks των Gell-Mann και Zweig μπόρεσε να περιγράψει τον τρόπο δόμησης όλων των γνωστών αδρονίων και τους κβαντικούς αριθμούς τους. Κατά την διάρκεια των τριάντα τελευταίων ετών, η παραπάνω θεωρία δόμησης των αδρονίων είναι ένα κομμάτι της θεωρίας που σήμερα είναι γνωστή σαν το Καθιερωμένο Πρότυπο των στοιχειωδών σωματιδίων και αλληλεπιδράσεων η οποία έχει σταδιακά αναπτυχθεί γινόμενη κοινά αποδεκτή μετά τις σύγχρονες πειραματικές αποδείξεις από τους καινούριους επιταχυντές σωματιδίων. Πριν προχωρήσουμε είναι απαραίτητο να δώσουμε κάποιες έννοιες οι οποίες είναι απαραίτητες για την περιγραφή των στοιχειωδών σωματιδίων. 1. Λεπτόνια- Αδρόνια Λεπτόνια Ελαφριά σωματίδια, που μέχρι σήμερα δεν υπάρχει καμία πειραματική ένδειξη ότι αποτελούνται από άλλα σωμάτια, και για αυτό θεωρούνται στοιχειώδη με σπίν ½, κατά συνέπεια Σύμβολο Μάζα (Mev) Φορτίο Σπιν φερμιόνια. Είναι e - 0,51-1 ½ συνολικά έξι και έξι ν e ~ ½ αντιλεπτόνια. Για μ 105,7-1 ½ κάθε είδος ηλεκτρικά ν μ ~ ½ φορτισμένων τ ½ λεπτονίων (τρία : ηλεκτρόνιο, μιόνιο, ν τ ~ ½ ταυ) αντιστοιχεί το νετρίνο του και ένας λεπτονικός αριθμός (ηλεκτρικός, μιονικός, λεπτονικός αριθμός ταυ). Κάθε λεπτονικός αριθμός διατηρείται ξεχωριστά στις αλληλεπιδράσεις τους. Τα λεπτόνια χωρίζονται σε τρεις λεπτονικές οικογένειες : το ηλεκτρόνιο με το νετρίνο του, το μιόνιο με το νετρίνο του και το ταυ με το νετρίνο του. Χρησιμοποιούμε τους όρους "ηλεκτρονικός αριθμός", "μιονικός αριθμός" και "αριθμός ταυ" για να αναφερθούμε στην λεπτονική οικογένεια ενός σωματιδίου. Τα ηλεκτρόνια με τα νετρίνο τους έχουν ηλεκτρονικό αριθμό +1, τα ποζιτρόνια με τα αντινετρίνο τους έχουν ηλεκτρονικό αριθμό -1, ενώ όλα τα άλλα σωματίδια έχουν ηλεκτρονικό αριθμό 0. Με ανάλογο τρόπο λειτουργούν ο μιονικός Οι φυσικοί παρατήρησαν ότι μερικές διασπάσεις λεπτονίων είναι δυνατές ενώ μερικές δεν είναι. Για να μπορέσουν να εξηγήσουν αυτό το γεγονός διαίρεσαν τα λεπτόνια σε τρείς λεπτονικές οικογένειες: το ηλεκτρόνιο με το νετρίνο του, το μιόνιο με το νετρίνο του και το ταυ με το νετρίνο του. Ο συνολικός αριθμός των μελών μιας οικογένειας πρέπει πάντα να παραμένει σταθερός σε μία διάσπαση αριθμός και ο αριθμός ταυ στις άλλες δύο λεπτονικές οικογένειες. Ένα βασικό πράγμα σχετικό με τα λεπτόνια είναι ότι ο ηλεκτρονικός αριθμός, ο μιονικός αριθμός και ο αριθμός ταυ διατηρούνται πάντα όταν βαρέα λεπτόνια διασπόνται σε λεπτόνια με μικρότερη μάζα. Τα βαρύτερα λεπτόνια, το μιόνιο και το ταυ, δεν τα βρίσκουμε ελεύθερα στη συνηθισμένη ύλη καθόλου. Αυτό γιατί όταν παράγονται διασπόνται πάρα πολύ γρήγορα, και μετατρέπονται σε ελαφρύτερα λεπτόνια. Μερικές φορές το ταυ διασπάται σε κουάρκ, αντικουάρκ και νετρίνο. Τα ηλεκτρόνια και οι τρείς τύποι νετρίνο δεν διασπόνται και αυτό τα κάνει τα είδη λεπτονίων 8

10 που συναντάμε πιο συχνά γύρω μας.. Τα νετρίνο είναι, όπως έχουμε ήδη πει, ένας τύπος λεπτονίων, τα οποία αλληλεπιδρούν μόνο μέσω ασθενούς αλληλεπίδρασης με την ύλη. Το γεγονός αυτό έχει σα συνέπεια η πιθανότητα αλληλεπίδρασης να είναι πολύ μικρή. Για παράδειγμα, τα νετρίνο διασχίζουν ολόκληρη την γη χωρίς να αλληλεπιδράσουν ούτε με ένα άτομο. Μόνο αν έχουν ενέργεια πάνω από 500 ΤeV τότε αλληλεπιδρούν με μεγάλους στόχους όπως η γη. Τα νετρίνο παράγονται μία ποικιλία αλληλεπιδράσεων, και ιδιαίτερα από διασπάσεις σωματιδίων. Στην πραγματικότητα, μέσω προσεκτικής μελέτης ραδιενεργών διασπάσεων έκαναν οι φυσικοί την υπόθεση της ύπαρξης των νετρίνων. Επειδή τα νετρίνο παρήχθησαν σε μεγάλες ποσότητες νωρίς στην εξέλιξη του σύμπαντος και επειδή σπάνια αλληλεπιδρούν με την ύλη, τα κάνει να υπάρχουν πολλά στο σύμπαν. Παρά τη μικρή τους μάζα (η οποία ακόμα και σήμερα δεν έχει ακριβώς μετρηθεί) λόγω του τεράστιου αριθμού ύπαρξής τους συνεισφέρουν στην ολική μάζα του σύμπαντος και επηρεάζουν την διαστολή του.. Αδρόνια Σύνθετα σωματίδια που αλληλεπιδρούν ισχυρά, ηλεκτρομαγνητικά και ασθενώς. Υποδιαιρούνται σε μεσόνια και βαρυόνια. Τα μεσόνια έχουν σπίν 0 ή 1 (μποζόνια) ενώ τα βαρυόνια ημιακέραιο (φερμιόνια). Τα βαρυόνια υπακούουν στην αρχή διατήρησης του βαρυονικού αριθμού σε κάθε αλληλεπίδραση. Κάθε βαρυόνιο έχει βαρυονικό αριθμό +1 και κάθε αντιβαρυόνιο -1. Σύμφωνα με τα παραπάνω το σχήμα για την διάκριση των στοιχειωδών σωματιδίων θα είναι : Σωματίδια ύλης Αδρόνια Βαρυόνια (Φερμιόνια, qqq ) Μεσόνια (Μποζόνια, q q ) Λεπτόνια (Φερμιόνια) Τα βαρυόνια αποτελούνται από τρία quarks ενώ τα μεσόνια από ζεύγη quark και αντι quark.ο συνδυασμός τριών quarks δίνει βαρυονικό αριθμό 1,και φορτίο πολλαπλάσιο του φορτίου του ηλεκτρονίου, όπως επίσης ημιακέραιη τιμή του σπιν άρα φερμιόνια. Ένας συνδυασμός quark αντίquark δίνει βαρυονικό αριθμό μηδέν, φορτίο πολλαπλάσιο του e και σπιν μηδενικό άρα μποζόνια. 9

11 1.3 Kβαντικοί αριθμοί Στη φυσική στοιχειωδών σωματιδίων έχουμε μια σειρά από προσθετικούς κβαντικούς αριθμούς όπως το ηλεκτρικό φορτίο σε ακέραιες μονάδες, τον βαρυονικό αριθμό την παραδοξότητα, και την μαγεία. Τα δε αντισωματίδια αυτών φέρουν τον αντίθετο προσήμου προσθετικό κβαντικό αριθμό. Όλα τα στοιχειώδη σωματίδια που έχουν ηλεκτρικό φορτίο (Q) έχει βρεθεί ότι αυτό είναι ακέραιο πολλαπλάσιο του φορτίου του ηλεκτρονίου, διατηρείται δε σε όλα τα είδη των αλληλεπιδράσεων. Το βαρυονικό αριθμό Β=1 τον φέρουν μόνο αδρόνια. Τα υπόλοιπα σωμάτια δηλαδή τα μεσόνια και τα λεπτόνια φέρουν βαρυονικό αριθμό Β=0.Ο βαρυονικός αριθμός διατηρείται σε όλες τις αλληλεπιδράσεις, στη δε διατήρηση του οφείλεται η σταθερότητα του πρωτονίου. Πράγματι επειδή δεν υπάρχει μικρότερο σε μάζα βαρυόνιο από το πρωτόνιο η διάσπαση του θα παραβίαζε τη διατήρηση του βαρυονικού αριθμού. Παρ όλα αυτά σε θεωρητικά σενάρια ενοποίησης όλων των αλληλεπιδράσεων προβλέπεται ότι η διατήρηση του βαρυονικού αριθμού παραβιάζεται αλλά με πολλή μικρή πιθανότητα. Η παραδοξότητα (S) την φέρουν ορισμένα αδρόνια. H ονομασία οφείλεται στο παράξενο γεγονός ότι ορισμένα σωματίδια που παράγονταν στις ισχυρές αλληλεπιδράσεις παρουσίαζαν μεγάλους χρόνους ζωής και παράγονταν ανά ζεύγη που σήμαινε ότι υπήρχε ένας διατηρήσιμος κβαντικός αριθμός που αλληλοαναιρείται ανά ζεύγος. Διατηρείται δε στις ισχυρές αλληλεπιδράσεις και δεν διατηρείται στις ασθενείς. Σήμερα ο κβαντικός αριθμός της παραδοξότητας, αποδίδεται στο παράδοξο (strange-s) quark.δηλαδή αδρόνια που περιέχουν s quark φέρουν αυτό τον κβαντικό αριθμό. Άλλος προσθετικός αριθμός που διατηρείται στις ισχυρές αλληλεπιδράσεις και δεν διατηρείται στις ασθενείς είναι η μαγεία που τη φέρουν μερικά αδρόνια. Όπως και η παραδοξότητα αποδίδεται σε ένα τύπο quarks τα charm-c quarks. Έχει βρεθεί ότι το φορτίο συνδέεται με τους υπόλοιπους προσθετικούς αριθμούς με ( B + S + C τη σχέση: Q = I 3 + ) σχέση η οποία ονομάζεται σχέση Gell-Mann και Nishijima.Η Παραδοξότητα και η γοητεία είναι κβαντικοί αριθμοί, που συναντώνται σε μερικά quarks, όπως θα δούμε παρακάτω, ενώ η Ι 3 είναι συνιστώσα του ισοσπίν που περιγράφεται στη επόμενη ενότητα 10

12 1.4 Σπίν -Ισοτοπικό σπιν -Ελικότητα Σπίν -Ισοτοπικό σπιν Στο ηλεκτρόνιο όπως είναι γνωστό περιγράφουμε τις ιδιότητες του με τους κβαντικούς αριθμούς ένας εκ των οποίων είναι το spin που αποτελεί ένα καθαρά κβαντικό μέγεθος χωρίς να έχει κλασικό ανάλογο. Επειδή ο τελεστής που περιγράφει αυτό το μέγεθος ακολουθεί τις ιδιότητες της άλγεβρας που ακολουθεί και ο τελεστής της τροχιακής στροφορμής συνήθως αναφερόμαστε σε εσωτερική στροφορμή του ηλεκτρονίου ή ιδιοπεριστροφή του ηλεκτρονίου χωρίς αυτό να είναι σωστό ακριβώς γιατί το ηλεκτρόνιο δεν είναι ένα κλασικό σωματίδιο με συγκεκριμένη έκταση στο χώρο και συγκεκριμένο γεωμετρικό σχήμα. Η προβολή του spin πάνω σε ορισμένο άξονα παίρνει δύο ιδιοτιμές m s =±1/.Με τις ιδιοτιμές αυτές στην ουσία διακρίνουμε δύο καταστάσεις ιδιοπεριστροφής του ηλεκτρονίου γύρω από ένα γνωστό άξονα που μπορεί να βρεθεί ένα ηλεκτρόνιο. m s =-1/ m s =1/ Σε αντιστοιχία με το σπιν του ηλεκτρονίου το 193 ο Ηeisenberg πρότεινε να θεωρούμε το νετρόνιο και το πρωτόνιο ως διαφορετικές καταστάσεις φορτίου του ίδιου σωματίου, του νουκλεονίου. Αν θεωρήσουμε Ι το ισοσπίν του νουκλεονίου με ιδιοτιμή ½ τότε η συνιστώσα γύρω από το άξονα των z Θα έχει τιμή Ι z =±1/.Αν δώσουμε τιμή Ι Z +1/ στο πρωτόνιο και Ι Z -1/ στο νετρόνιο τότε θα έχουμε τις εκφράσεις των φορτίων σαν q p =Q/e =1/+I z και q n =Q/e = I z -1/. Έτσι οι δύο διαφορετικές καταστάσεις φορτίων των νουκλεονίων εμφανίζονται, σ αυτήν την φαινομενολογική, εικόνα σαν δυο διαφορετικές καταστάσεις στην προβολή πάνω σε άξονα πόλωσης ενός ανυσματικού μεγέθους του ισοσπίν. Ι z =-1/ Ι z =1/ To πρωτόνιο και το νετρόνιο αποτελούν ιδιοτιμές Νετρόνιο Πρωτόνιο του ισοσπίν Οι ισχυρές αλληλεπιδράσεις δεν κάνουν διάκριση πρωτονίου νετρονίου γιατί δεν εξαρτώνται από την z συνιστώσα του σπιν, Ι z αλλά από το Ι, με τον τρόπο αυτό το νετρόνιο και το πρωτόνιο αποτελούν δύο διαφορετικές καταστάσεις ενός αδρονίου. Η μέθοδος αυτή μπορεί να γενικευθεί και για παραπάνω πολλαπλότητες σωματιδίων Κατά αναλογία με τον κβαντικό αριθμό του spin ένα σωμάτιο με σπιν 1 έχει τρεις καταστάσεις πόλωσης S Z =±1,0.Ο αριθμός των καταστάσεων που περιγράφεται είναι S+1 έτσι π.χ. στο ισοσπίν, για πολλαπλότητα τριών σωματιδίων 3 = I + 1 I = 1 άρα και οι τιμές της προβολής θα είναι οι Ι z =±1,0.Με τον τρόπο αυτό περιγράφονται τα σωματίδια Σ +,Σ -,Σ 0. Οι πολλαπλότητες αυτές θεωρούνται ότι είναι διαφορετικές καταστάσεις ηλεκτρικού φορτίου του ίδιου αδρονίου. Επειδή στις ισχυρές αλληλεπιδράσεις το ισοσπίν 11

13 αποτελεί διατηρήσιμο μέγεθος, καθώς και το ότι οι ηλεκτρομαγνητικές διατηρούν την I 3 συνιστώσα αλλά και η δυνατότητα γενίκευσης για περισσότερες πολλαπλότητες κάνει το μέγεθος αυτό να είναι πολύ χρήσιμο στην φυσική στοιχειωδών σωματιδίων. 1.5 Ελικότητα Αν στις ισχυρές αλληλεπιδράσεις σημαντικό ρόλο παίζει το ισοσπίν στις ασθενείς παίζει ρόλο η ελικότητα ενός σωματιδίου. Οι ηλεκτρομαγνητικές αλληλεπιδράσεις δρουν ανάμεσα σε σωμάτια που έχουν φορτίο, η ισχυρή αλληλεπίδραση δρα ανάμεσα σε σωματίδια που έχουν χρώμα, λόγω του κβαντικού αριθμού του χρώματος που θα εξηγήσουμε στην παρακάτω ενότητα, ενώ η βαρυτική αλληλεπίδραση ανάμεσα σε σωμάτια, που μεταφέρουν ενέργεια και ορμή Μένει να δούμε μεταξύ τι είδους σωματιδίων δρα η ασθενής αλληλεπίδραση. Τα quarks και τα λεπτόνια που παίρνουν μέρος στις ασθενείς αλληλεπιδράσεις χαρακτηρίζονται από την ελικότητα τους. Τα στοιχειώδη σωμάτια με μάζα χαρακτηρίζονται σε σωμάτια δεξιόστροφα και αριστερόστροφα ανάλογα αν ο προσανατολισμό του σπιν τους είναι παράλληλος η αντιπαράλληλος με την διεύθυνση κίνησης τους. διεύθυνση κίνησης διεύθυνση κίνησης δεξιόστροφη ελικότητα αριστερόστροφη ελικότητα Τα στοιχειώδη σωμάτια που συμμετέχουν στις ασθενείς αλληλεπιδράσεις είναι μόνο τα αριστερόστροφα ως προς την ελικότητα σωματίδια ή τα δεξιόστροφα αντισωμάτιδια τους. Η διάκριση σε αριστερόστροφα και δεξιόστροφα σωματίδια των ασθενών αλληλεπιδράσεων μας δηλώνει ότι οι αλληλεπιδράσεις αυτές παραβιάζουν τη συμμετρία αναστροφής του χώρου. 1.6 Quark Murray Gell-Mann Τα αδρόνια δεν είναι στοιχειώδη σωματίδια αλλά αποτελούνται από συνδυασμούς των quarks. Τα quarks έχουν φορτίο που είναι κλάσμα του φορτίου του ηλεκτρονίου και ημιακέραιο σπίν, είναι δηλαδή φερμιόνια. Για κάθε βαρυόνιο έχουμε συνδυασμούς τριών quark ενώ για κάθε μεσόνιο συνδυασμό ενός quark και ενός αντί quark.επίσης τα quarks, έχουν κλασματικές τιμές του βαρυονικού αριθμού. Ο αριθμός των quark τα οποία 1

14 απαιτούνται για να περιγράψουν τα φαινόμενα που έχουν παρατηρηθεί μέχρι σήμερα είναι έξι. Στην αρχική θεωρία των quark το 1964 από τους Gell-Mann και Zweig το πλήθος τους θεωρήθηκε το τρία με τα ονόματα up(u),down(d),strange(s-παράδοξο)).to 1974 oι Glashow, Ηλιόπουλος και Μaiani υπέθεσαν και ένα τέταρτο quark το charm(c-γοητευτικό),με ένα νέο κβαντικό αριθμό αυτό της γοητείας, για να αντιστοιχηθούν σε αριθμό με τον μέχρι τότε γνωστό αριθμό των λεπτονίων. Η πρόβλεψη επαληθεύτηκε με την ανακάλυψη του σωματίου J/Ψ που είναι κατάσταση cc αλλά και άλλων μεσονίων που περιέχουν το γοητευτικό quark. Το 1975 ένα νέο λεπτόνιο έγινε γνωστό, το τ και υποθέσανε ότι θα έπρεπε να υπάρχει και το αντίστοιχο νετρίνο του (ανακαλύφθηκε το 000).Για λόγους συμμετρίας με τον αριθμό των λεπτονίων οι φυσικοί περίμεναν να υπάρχει μια δυάδα ακόμα quarks Που πράγματι ανακαλύφθηκαν και έτσι ο αριθμός των quark ανέβηκε στα έξι με την προσθήκη των bottom(b) και top(p). Τα quarks όπως είπαμε είναι φερμιόνια, κατά συνέπεια θα ισχύει η απαγορευτική αρχή του Pauli έτσι από την αρχική ακόμα υπόθεση των quark για να ξεπεραστεί το ασυμβίβαστο της ύπαρξης καταστάσεων ίδιου σπιν στη συγκρότηση των βαρυονίων υποτέθηκε ότι τα quarks βρίσκονται σε τρεις διαφορετικές καταστάσεις που ονομάζονται χρώματα (μπλε, κόκκινο, πράσινο), ώστε η κυματοσυνάρτηση του συστήματος να είναι αντισυμμετρική. Τέτοιο παράδειγμα αντισυμετρικοτητας θα δούμε παρακάτω. Η ιδιότητα αυτή είναι η αιτία της ονομασίας της θεωρίας των ισχυρών αλληλεπιδράσεων σαν κβαντική χρωμοδυναμική (QCD).Ένα αλλόκοτο πράγμα για τα αδρόνια είναι ότι ένα πολύ πολύ μικρό μέρος της μάζας του αδρονίου οφείλεται στα κουάρκ που περιέχει. Για παράδειγμα, το πρωτόνιο (uud) έχει μεγαλύτερη μάζα από το άθροισμα των μαζών των κουάρκ που περιέχει: Το υπόλοιπο είναι η ενέργεια σύνδεσης που απαιτείται για να συγκροτηθεί ένα βαρυόνιο. Σύμφωνα με τα παραπάνω η δομή μερικών αδρονίων θα είναι: Πρωτόνιο p Νετρόνιο n Πιόνιο π + Kαόνιο Κ + e 3 d e u u 3 e 3 e 3 d e d u 3 e 3 e u 3 e d 3 e u 3 e 3 s Πίνακας quarks και ιδιοτήτων τους 13

15 Σύμβολο Q/e spin Βαρυονικός αριθμός Β Παραδοξότητα S Γοητεία C Ομορφιά B Αλήθεια T u d s c 1 b t Στη θεωρία αυτή σημαντικό ρόλο παίζουν οι συμμετρίες οι οποίες φαίνονται με τα λεγόμενα πλαγιογώνια διαγράμματα : n p S=0 uud uud S=0 Σ - Λ 0 Σ 0 Σ + S=-1 dds uds uds uus S=-1 Ξ - Ξ 0 S=- dss uss S=- q=-e q=0 q=+e q=-e q=0 q=+e Τα παραπάνω βαρυόνια έχουν σπιν ½ συγκροτούνται δε από τρία ίδια quarks με σπιν ½.Αντίστοιχα διαγράμματα έχουμε και για τα μεσόνια. Οι συμμετρίες αυτές ονομάζονται οκταπλή οδός,που είναι γνωστή και ως SU(3), και ήταν η αιτία να βρεθεί πειραματικά το προβλεπόμενο βαρυόνιο Ω - αφού η θέση του ήταν κενή στη διάταξη αυτή πράγμα που αποτέλεσε θεαματική επιτυχία της θεωρίας του Gell- Mann.Η ταξινόμηση όμως αυτή θυμίζει την ταξινόμηση των χημικών στοιχείων στο Περιοδικό Πίνακα με βάση τον Ατομικό αριθμό, γι αυτό και η θεωρία αυτή λέγεται γεωμετρική. Και όπως ο Mendeleyev πρόβλεψε πολλά στοιχεία, άγνωστα την εποχή εκείνη που βρίσκονταν όμως σε ορισμένες θέσεις στο περιοδικό σύστημα., έτσι και στο οκταπλό αυτό σχήμα υπήρχαν σωματίδια άγνωστα την εποχή εκείνη, με γνωστούς όμως κβαντικούς αριθμούς, που αργότερα ανακαλύφθηκαν επιβεβαιώνοντας το μοντέλο του Οκταπλού Δρόμου. Έτσι όταν προτάθηκε αυτή η σχηματική ταξινόμηση, υπήρχε ένα άγνωστο σωματίδιο σε μία θέση με σπιν 3/, φορτίο -1, παραξενιά (παραδοξότητα) -3 και μάζα ηρεμίας MeV. Το άγνωστο, μέχρι τότε, σωματίδιο ονομάστηκε Ω-, και ανακαλύφθηκε στον επιταχυντή του Brookhaven, αργότερα, το 1964, από τον τότε Γενικό Διευθυντή του, Νίκο Σαμίου. Με όμοιο τρόπο ο Περιοδικός Πίνακας οδήγησε στο συμπέρασμα ότι τα άτομα έχουν δομή, έτσι και οι οικογένειες που προκύπτουν από 14

16 την Ομάδα SU(3) οδηγούν στο συμπέρασμα ότι τα στοιχειώδη σωμάτια (μεσόνια, βαρυόνια) πρέπει να έχουν δομή. Η συμμετρία SU(3) ήταν που οδήγησε τον Gell- Mann το 1964, στην εισαγωγή της ιδέας των quarks (από μια φράση του Ιρλανδού James Joyce, "Three quarks for Mr. Mark") για να δώσει την έννοια των πιο στοιχειωδών σωματιδίων, των έσχατων δομικών λίθων για τα αδρόνια. Παράλληλα επειδή η φύση των ισχυρών αλληλεπιδράσεων ανάμεσα στα νουκλεόνια, από το 1930, ήταν άγνωστη, έπρεπε τα νουκλεόνια να έχουν δομή ώστε η ισχυρή αλληλεπίδραση να αναπτύσσεται όχι στα νουκλεόνια αλλά στα συστατικά τους. υ π ε ρ φ ο ρ τ ι ο S=+1 K 0 K + S=+1 d s S=0 π - η 0 π 0 π + S=0 u d dd 0 η s s S=-1 Κ - K 0 S=-1 u r s Ισοσπίν u s u u u d q=-e q=-0 q=+e q=-e q=-0 q=+e d s 15

17 1.7 Χρώμα Τα Quark, συγκρατούνται μέσα στα αδρόνια με ισχυρές δυνάμεις οι οποίες ασκούνται μεταξύ σωματιδίων που φέρουν ένα κβαντικό αριθμό που ονομάστηκε χρώμα και παίζει το ρόλο του φορτίου των ισχυρών δυνάμεων, όπως το ηλεκτρικό φορτίο u R,G,B c R,G,B t R,G,B είναι απαραίτητο για τις Η/Μ δυνάμεις. Υπάρχουν Quark τρία βασικά χρώματα, (μπλε, κόκκινο, d R,G,B s R,G,B b R,G,B πράσινο).με την πρόσθεση δε των τριών χρωμάτων προκύπτει το ουδέτερο χρώμα. Κάθε χρώμα έχει και το συμπληρωματικό του. πχ Το μπλε έχει συμπληρωματικό το αντί-μπλε, το πράσινο το αντί- πράσινο κλ. Tο Δ ++ (uuu) έχει δομή: (u r u g u b +u r u b u g +u g u b u r + u b u g u r + u g u r u b + u b u r u g )/ 6 Κάθε όρος είναι γινόμενο τριών κυματοσυναρτήσεων των αντίστοιχων quarks.κάθε ένας όρος είναι συμμετρικός ως προς τη γεύση και αντισυμμετρικός ως προς το χρώμα. Το μεσόνιο π ο διασπάται σε δύο φωτόνια. O χρόνος ζωής του μετρήθηκε σε 0,83*10-16 s.oι θεωρητικοί υπολογισμοί που έγιναν με το πρότυπο των quark πριν την εισαγωγή του χρώματος προέβλεπε χρόνο ζωής 7,5 *10-16 s.μετά την εισαγωγή του φορτίου χρώματος ο χρόνος ζωής εξαρτάται και από τον αριθμό των χρωμάτων που συμμετέχουν, όσα περισσότερα χρώματα συμμετέχουν τόσο πιο γρήγορα ο χρόνος ζωής ελαττώνεται. Αν τα χρώματα είναι τρία τότε θα έχουμε μείωση κατά ένα παράγοντα 3 =9 στο π ο μεσόνιο άρα: 7,5 *10-16 s/9=0,83*10-16 s πράγμα που επιβεβαιώνεται από το πείραμα. Επειδή τα αδρόνια δεν έχουν χρώμα τα τρία Quark, που τα απαρτίζουν έχουν διαφορετικό χρώμα, γιατί όπως ειπώθηκε το άθροισμα των τριών χρωμάτων δίδει το ουδέτερο χρώμα, στα δε μεσόνια το αντίquark έχει το συμπληρωματικό χρώμα του Quark που συνοδεύει, όπως φαίνεται στις εικόνες παραπάνω. Τα σωματίδια που έχουν φορτίο χρώματος δεν μπορούν να βρεθούν απομονωμένα. Γι' αυτό το λόγο, τα κουάρκ που έχουν φορτίο χρώματος είναι περιορισμένα σε ομάδες (τα αδρόνια) με άλλα κουάρκ έτσι ώστε να συγκροτούν ένα χρωματικά ουδέτερο σωματίδιο. Η πειραματική απόδειξη για την ύπαρξη του κβαντικού αριθμού του χρώματος στα quarks στηρίζεται σε μερικές φυσικές παρατηρήσεις όπως είναι η δομή αδρονίου Δ ++ (uuu),ο ρυθμός παραγωγής αδρονίων κατά την εξαΰλωση ζεύγους ee +, o χρόνος ζωής του π ο. Τα quark είναι φερμιόνια άρα κυματοσυνάρτηση που τα περιγράφει πρέπει να είναι αντισυμμετρική. Για το Δ ++ όμως, χωρίς την εισαγωγή του χρώματος θα έχω περιγραφή από κυματοσυνάρτηση που θα είναι γινόμενο τριών συμμετρικών κυματοσυναρτήσεων Ψ=(χώρος)(σπιν)(γεύση).To κομμάτι της κυματοσυνάρτησης που αναφέρεται στις χωρικές συντεταγμένες είναι συμμετρική συνάρτηση, ο όρος του σπιν που εξαρτάται από τα σπιν των τριών quark είναι συμμετρικός στην αμοιβαία μετάθεση δύο οποιονδήποτε quark όπως και ό όρος γεύση. έτσι η κυματοσυνάρτηση χωρίς την προσθήκη ενός καινούριου όρου φαίνεται να είναι συμμετρική συνάρτηση στην αμοιβαία μετάθεση δύο οποιονδήποτε quark πράγμα 16

18 που οδηγεί στην παραβίαση της απαγορευτικής αρχής του Pauli που απαιτεί τα φερμιόνια να περιγράφονται από αντισυμμετρική κυμματοσυνάρτηση.κατά συνέπεια ή έπρεπε να εισαχθεί ένας όρος αντισυμετρικός που περιέγραφε το χρώμα ή έπρεπε να εγκαταλειφτεί το μοντέλο των quark. Έτσι προτάθηκε η περιγραφή : Ψ=(χώρος)(σπιν)(γεύση)(χρώμα) που εισάγει το χρώμα. 1.8 Καθιερωμένο πρότυπο Προκειμένου να περιγραφούν οι αλληλεπιδράσεις και η δομή των σωματιδίων έχει διαμορφωθεί σήμερα στη φυσική το λεγόμενο καθιερωμένο πρότυπο όπου έχουμε τρεις κατηγορίες σωματιδίων, το οποίο περιγράφει την συγκρότηση των αδρονίων από στοιχειώδη quarks και τις αλληλεπιδράσεις μεταξύ των σωματιδίων Τα στοιχειώδη σωματίδια κατηγοριοποιούνται ως : α) Τα έξι λεπτόνια που δεν δέχονται ισχυρές αλληλεπιδράσεις β)τα έξι quarks από τα οποία δομούνται όλα τα αδρόνια και αλληλεπιδρούν με ισχυρές, ηλεκτρομαγνητικές και ασθενείς δυνάμεις γ) Τα σωματίδια που αποτελούν τους φορείς των αλληλεπιδράσεων και είναι μποζόνια (φωτόνιο, γλουόνιο, μποζόνια W ± και Ζ 0 ). Από τα σωματίδια φορείς των αλληλεπιδράσεων τα W ± και Ζ 0 είναι τα μοναδικά με τεράστια μάζα 81GeV/c και 91GeV/c αντίστοιχα. Πειράματα έχουν επαληθεύσει τις προβλέψεις του καθιερωμένου προτύπου με μια απίστευτη ακρίβεια και όλα τα σωματίδια, η ύπαρξη των οποίων έχει προβλεφθεί από αυτή την θεωρία έχουν βρεθεί. Αλλά δεν εξηγεί τα πάντα. Για παράδειγμα, η δύναμη της βαρύτητας δεν συμπεριλαμβάνεται στο Καθιερωμένο πρότυπο Ο πίνακας που ακολουθεί ταξινομεί τα σωματίδια που είναι φορείς αλληλεπίδρασης: Σωματίδιο φορέας Αλληλεπίδραση Ισχύς Εμβέλεια Όνομα Μάζα ηρεμίας Φορτίο Σπιν Ισχυρή 1 ~1fm γλοιόνιο Ηλεκτρομαγνητικ Άπειρη φωτόνιο ή Ασθενής 9 10 ~0,001fm W ±, Ζ 0 81, 91 GeV/c ±e,0 1 Βαρυτική Άπειρη γκραβιτόνιο 0 0? 17

19 Τα ηλεκτρικά και μαγνητικά φαινόμενα περιγράφονται από την ηλεκτρομαγνητική δύναμη. Το σωματίδιο ανταλλαγής της ηλεκτρομαγνητικής αλληλεπίδρασης είναι το φωτόνιο. Το φωτόνιο, που επίσης είναι γνωστό σαν σωματίδιο του φωτός, έχει μηδενική μάζα. Η εμβέλεια του είναι άπειρη αλλά η ισχύς της δύναμης μειώνεται καθώς η απόσταση από την πηγή αυξάνεται. Την ηλεκτρομαγνητική αλληλεπίδραση τη συναντάμε πολύ συχνά στην καθημερινή μας ζωή. Για παράδειγμα, η σύσπαση των μυών ή η ευθυγράμμιση της βελόνας μιας πυξίδας με τη διεύθυνση του Β-Ν οφείλεται στην ηλεκτρομαγνητική δύναμη. Η αλληλεπίδραση μεταξύ κουάρκ είναι γνωστή σαν ισχυρή δύναμη ή δύναμη του "χρώματος". Το ανταλλασσόμενο σωμάτιο είναι το γκλουόνιο που έχει και αυτό "χρώμα". Η εμβέλεια της δύναμης είναι περιορισμένη παρότι το γκλουόνιο δεν έχει μάζα. Επιπλέον το "χρώμα" των κουάρκ αλλάζει μέσω της ανταλλαγής γκλουονίων. Η ιδιότητα των γκλουονίων να μετατρέπονται σε ζεύγη κουάρκ και αντικουάρκ, κάνει το πρωτόνιο να είναι γεμάτο από μια ολόκληρη "θάλασσα" από κουάρκ, αντικουάρκ και γκλουόνια. Η ασθενής δύναμη αλληλεπιδρά με την ανταλλαγή τριών σωματιδίων με πολύ μεγάλη μάζα. Τα σωματίδια αυτά είναι τα W +, W - και Z 0. Μέσω της ανταλλαγής αυτών των σωματιδίων είναι δυνατές αντιδράσεις διαφόρων ειδών κατά τις οποίες δεν αλλάζει μόνο το ηλεκτρικό φορτίο αλλά και το είδος των σωματιδίων που λαμβάνουν μέρος. Στα πλαίσια του Καθιερωμένου Προτύπου, η ασθενής και η ηλεκτρομαγνητική αλληλεπίδραση ενοποιούνται σε μία θεωρία που είναι γνωστή ως ηλεκτρασθενής δύναμη. H διάσπαση β σύμφωνα με το καθιερωμένο πρότυπο: u u d d πρωτόνιο d u νετρόνιο W - v e e Ένα down quark μετασχηματίζεται σε up δίνοντας ταυτόχρονα ένα ηλεκτρόνιο και ένα αντινετρίνο του ηλεκτρονίου 18

20 1.9 Ο φορέας της αλληλεπίδρασης - Δυναμικό Yukawa Hideki Yukawa To 1935 o Yukawa προσπάθησε να περιγράψει το δυναμικό αλληλεπίδρασης μεταξύ πρωτονίου και νετρονίου. Στην προσπάθεια του αυτή έφτασε στο συμπέρασμα ότι η εμβέλεια της δύναμης εξαρτάται από τη μάζα, m του κβάντου h h αλληλεπίδρασης : t * E h t R = t * c mc mc Aν έχουμε σωματίδια χωρίς μάζα τότε η εμβέλεια είναι άπειρη. Αφετηριακό του σημείο υπήρξε η σχετικιστική εξίσωση 4 ενέργειας ορμής: E = p c + m c όπου αντικαθιστώντας την ενέργεια και την ορμή με τους αντίστοιχους τελεστές : E = ih / t και p = ih παράγεται η εξίσωση κύματος Klein Gordon 1 ψ m c = ψ ψ από την οποία αν θεωρήσω m=0 και μηδενικό σπίν τότε c t h παράγεται η εξίσωση ενός ηλεκτρομαγνητικού κύματος. m c 1 ψ m c g r / R ψ ( r) = ψ ( r) r = ( r) ( r) = e ψ ψ για r>0 με h r r r h 4πr R = h.από την παραπάνω κυματοσυνάρτηση με αντιστοίχιση αυτής με το mc ηλεκτρικό δυναμικό του ηλεκτρομαγνητικού πεδίου προκύπτει το περίφημο δυναμικό g r / R Yukawa V ( r) = e.h σταθερά g είναι η σταθερά ολοκλήρωσης και ταυτίζεται r με την ισχύ της δύναμης, αφού αν συγκριθεί με την λύση του ηλεκτρομαγνητισμού Q U ( r) = 0 U ( r) = παρατηρώ ότι το g παίζει ρόλο αντίστοιχο του 4πr σημειακού φορτίου στον ηλεκτρομαγνητισμό και μετρά το ισχυρό πυρηνικό φορτίο. Ταυτόχρονα η εμβέλεια του δυναμικού Yukawa 15 R = h mc = 10 m mc 150MeV προβλέπει ένα σωμάτιο αλληλεπίδρασης της παραπάνω περίπου μάζας και με μηδενικό σπίν. Η προσπάθεια αυτή είναι η πρώτη σχετικά επιτυχής ιστορικά που δόθηκε για την ερμηνεία των ισχυρών πυρηνικών δυνάμεων. Μια παραλλαγή για την έκφραση του δυναμικού μπορούμε να πάρουμε σαν φαινόμενο σήραγγας ενός σωματιδίου μιγαδικής ορμής μεταξύ δύο φραγμών δυναμικού που σχηματίζουν το πρωτόνιο και το νετρόνιο. Κατά την αλληλεπίδραση Νετρονίου και Πρωτονίου αναταλάσεται ένα μεσόνιο π + p + n+ π + Επειδή το Νετρόνιο και το πρωτόνιο έχουν σχεδόν ίσες μάζες τότε η ολική ενέργεια του πιονίου θα είναι σχεδόν μηδενική. Στην πραγματικότητα θα είναι μικρής αρνητικής τιμής 4 κατά συνέπεια 0 p c + m c και άρα η ορμή θα είναι μιγαδική και οριακά ίση με p=imc. Χρησιμοποιώντας τον τύπο του πλάτους σε ένα ελεύθερο σωμάτιο στο 19

21 φαινόμενο σήραγγας θα έχω: p π + n e mcr h r που είναι η έκφραση για το δυναμικό Yukawa. p π n Με το δυναμικό αυτό μπορούμε να υπολογίσουμε το πλάτος της σκέδασης ενός σωματιδίου το οποίο θα προκύπτει από το μετασχηματισμό Fourier αυτού του v v rr iqr gg0 δυναμικού: f ( q) = g U ( r) e dv = r με q r είναι η μεταβολή της ορμής. 4 q m c / h Κατά συνέπεια αν m=c=1 και η μεταβολή της τετραορμής θα είναι: q =ΔΕ - q r και επειδή ΔΕ=0 τότε q =- q r gg0 άρα f ( q) = m q που αποτελεί τη βασική σχέση αλληλεπίδρασης με ανταλλαγή μποζονίων. Για παράδειγμα στη σκέδαση δύο φορτισμένων σωματιδίων έχουμε m=0 και η διαφορική διατομή dσ 1 4 dq q που είναι και σχέση της σκέδασης Rutherford Συνάρτηση Lagrange και Τα Διαγράμματα Feynman Στην κλασσική μηχανική η κίνηση ενός μηχανικού συστήματος περιγράφεται από τη συνάρτηση L = Σ( T U) που είναι η διαφορά κινητικής και δυναμικής ενέργειας i του συστήματος. Από την συνάρτηση αυτή προκύπτουν οι εξισώσεις κίνησης d L L = 0 του συστήματος που δεν είναι άλλες από dt q& i q i τις εξισώσεις του Νεύτωνα (βλέπε παράρτημα) με p i, q i τις γενικευμένες συζυγείς μεταβλητές θέσεων και ορμών, που dqi L συνδέονται με τις σχέσεις : q& i = pi = dt q& i Τα διαγράμματα Feynman που θα δούμε παρακάτω σχεδιάζονται βάση των κανόνων αλληλεπίδρασης της Lagrangian.Τα διαγράμματα αυτά απεικονίζουν τις Richard P. Feynman αλληλεπιδράσεις των στοιχειωδών σωματιδίων. Προτάθηκαν από τον Feynman για την QED (κβαντική ηλεκτροδυναμική, θεωρία που συνδυάζει την κβαντική μηχανική με την ηλεκτροδυναμική ) και επεκτάθηκε η χρήση τους και 0

22 στις υπόλοιπες αλληλεπιδράσεις. Στην ουσία τα διαγράμματα Feynman αναπαριστούν τον διαταρακτικό όρο της χαμηλτονιανής που δίνει και την αλληλεπίδραση μεταξύ δύο σωματιδίων. Οι κανόνες αναπαράστασης είναι οι εξής: Στα διαγράμματα αυτά η εξέλιξη ενός φαινομένου αναπαρίσταται σε άξονες χρόνου χώρου όπου φαίνονται οι τροχιές των σωματιδίων πριν και μετά την αλληλεπίδραση αλλά και με τεθλασμένες γραμμές αναπαρίστανται τα δυνητικά σωμάτια (μποζονικός διαδότης) κατά τη διάρκεια της αλληλεπίδρασης.oι συμπαγείς γραμμές αναπαριστούν φερμιόνια που ξεκινούν και καταλήγουν σε κόμβους.στους κόμβους η αρχή διατήρησης της ενέργειας και της ορμής δίνει για 4 το δυνητικό σωμάτιο ενέργεια που παραβιάζει τη σχέση E = p c + m c αυτό όμως δεν έρχεται σε αντίθεση με την σχέση απροσδιοριστίας αφού ο χρόνος των δυνητικών μποζονίων είναι απειροελάχιστος και έτσι η ενέργεια γίνεται πάρα πολύ μεγάλη σύμφωνα με τη σχέση Ε* t h Έτσι μια σκέδαση δύο φορτισμένων σωματιδίων θα έχει την εικονική αναπαράσταση: s t e + e + δυνητικό φωτόνιο e + e + Υπάρχουν όπως προαναφέραμε τέσσαρες θεμελιώδης αλληλεπιδράσεις μεταξύ των σωματιδίων και όλες οι δυνάμεις μπορούν να αποδοθούν σ' αυτές τις τέσσερις αλληλεπιδράσεις 1.1 Αλληλεπιδράσεις α) Ηλεκτρομαγνητικές: Είναι οι αλληλεπιδράσεις μεταξύ φορτισμένων σωματιδίων που κλασικά περιγράφονται από τις εξισώσεις Maxwell ενώ κβαντικά περιγράφονται από τη θεωρία της κβαντικής ηλεκτροδυναμικής QED που προτάθηκε από τους Feynman, Tomonaga, Schwinger. Η σταθερά σύζευξης που προσδιορίζει την ισχύ της αλληλεπίδρασης μεταξύ φορτισμένων σωματιδίων καθορίζεται από την ενέργεια αλληλεπίδρασης που ονομάζεται σταθερά λεπτής υφής. Για ενέργεια αλληλεπίδρασης ίση με αυτή του ιονισμού του ατόμου αυτή έχει την 1

23 e 1 τιμή a =.Είναι μια αδιάστατη ποσότητα που μετράει την ένταση της 4πhc 137 ζεύξης. Ισούται δε περίπου με το λόγο της ηλεκτροστατικού δυναμικού απώθησης δύο e σε απόσταση ίση με το ισοδύναμο μήκος Compton προς την ενέργεια που e h mec e 1 αντιστοιχεί στην μάζα ηρεμίας του e ορίζει αυτή την τιμή a = mec hc 137 Ο κάθε κόμβος του διαγράμματος Feynman συνεισφέρει ένα παράγοντα α που είναι το τετράγωνο του πλάτους πιθανότητας όπου a είναι το μέτρο της έντασης της Η/Μ αλληλεπίδρασης. Στην κατηγορία αυτών των δυνάμεων οφείλονται φαινόμενα όπως φωτοηλεκτρικό φαινόμενο, δίδυμη γέννηση, σκέδαση Rutherford κ. λ. Σε όλες τις περιπτώσεις αυτές η ενεργός διατομές των φαινομένων είναι ανάλογες κάποιας δύναμης της σταθεράς λεπτής υφής. Για παράδειγμα η διατομή σκέδασης του φωτοηλεκτρικού φαινομένου είναι ανάλογη του α, η σκέδαση δύο φορτισμένων σωματιδίων έχει διατομή σκέδασης ανάλογη του α, η δίδυμη γένεση στο πεδίο ενός πυρήνα ανάλογη του α 3 κ. λ. hf e - e - hf e - Ze α)φωτοηλεκτρικό φαινόμενο β) Σκέδαση Rutherford γ)δίδυμη γέννηση dq a dq a 3 dq a e + e - q r q b q b q r Περιγραφή μιας αντίδρασης μεταξύ quark β)ισχυρές : Οι ισχυρές αλληλεπιδράσεις πραγματοποιούνται μεταξύ των quarks και των γλουονίων, δηλαδή όταν έχουμε μετατροπή ισχυρού φορτίου που ονομάζεται χρώμα. Η τιμή σύζευξης των ισχυρών δυνάμεων που πραγματοποιείται με την ανταλλαγή του αντίστοιχου μποζόνιου, γλουονίου, θα έχει g s την τιμή: as = 1 για 4πhc χαμηλές ενέργειες.στην κβαντική χρωμοδυναμική,qcd, υπάρχουν έξι τύποι ισχυρού

24 φορτίου που καλείται χρώμα. Κάθε quark έχει τρεις παραλλαγές χρώματος και κάθε αντίquark τα αντίστοιχα αντιχρώματα.. Τα γλουόνια σε αντίθεση με τα φωτόνια μεταφέρουν χρώμα που σημαίνει ότι σε μια ισχυρή αλληλεπίδραση υπάρχει η πιθανότητα αλλαγής χρώματος αλλά και ότι τα γλουόνια θα αλληλεπιδρούν μεταξύ τους. Έτσι μια αλληλεπίδραση μεταξύ ενός quark κόκκινου και μπλε με ανταλλαγή γλουονίου το οποίο όπως είπαμε μεταφέρει χρώμα αναπαρίσταται όπως το σχήμα. Το δυναμικό στις αλληλεπιδράσεις αυτές 4 a είναι του τύπου V = s + kr.παρατηρούμε ότι 3 r q q q q για μικρές αποστάσεις μοιάζουν με τις ηλεκτρομαγνητικές για μεγάλες όμως αποστάσεις κυριαρχεί ο γραμμικός όρος έτσι ώστε κάθε q q προσπάθεια φυγής του quark από διπλανό quark στα αδρόνια έχει σαν αποτέλεσμα την αύξηση της δυναμικής ενέργειας. Για αρκετά μεγάλες αποστάσεις,όταν η δυναμική ενέργεια γίνει μεγαλύτερη της ισοδύναμης ενέργειας μάζας ενός ζεύγους quarks ( m q c m + m = m μετατρέπεται σε δύο νέα q με q q qq quark σύμφωνα με το σχήμα και αυτό γιατί κάθε τέτοια προσπάθεια απομάκρυνσης ενεργειακά είναι λιγότερο συμφέρουσα από το να δημιουργηθεί ένα καινούριο ζεύγος quark αντίquark. Με άλλα λόγια Όταν ένα κουάρκ που βρίσκεται μέσα σ' ένα αδρόνιο απομακρύνεται από τα γειτονικά του κουάρκ, τότε το πεδίο της δύναμης του φορτίου χρώματος "τεντώνεται" μεταξύ του κουάρκ και των γειτονικών του κουάρκ Κατά την διάρκεια αυτού του συμβάντος όλο και περισσότερη ενέργεια προστίθεται στο πεδίο της δύναμης του φορτίου χρώματος. Κάποια στιγμή είναι πιο εύκολο από άποψη ενέργειας το πεδίο της δύναμης του φορτίου χρώματος να "σπάσει" δημιουργώντας ένα νέο ζεύγος κουάρκ αντικουάρκ Μ' αυτό τον τρόπο η ενέργεια διατηρείται επειδή η ενέργεια του πεδίου της δύναμης του φορτίου χρώματος μετατρέπεται στη μάζα του νέου ζεύγους των κουάρκ και το πεδίο της δύναμης του φορτίου χρώματος μπορεί να "χαλαρώσει" και να επιστρέψει στην μη τεντωμένη κατάσταση. Έτσι τα κουάρκ δεν μπορούν να βρεθούν απομονωμένα επειδή η δύναμη του φορτίου χρώματος αυξάνεται καθώς απομακρύνονται. Θα μπορούσαμε να παρομοιάσουμε τον πυρήνα σαν ένα ελατήριο μαζεμένο που προσομοιάζει την ηλεκτρική απώθηση και που κρατείται μαζεμένο με την βοήθεια ενός μεγάλου σχοινιού που προσομοιάζει την ισχυρή δύναμη. Αν και 3

25 υπάρχει πολύ ενέργεια αποθηκευμένη στο ελατήριο δεν μπορεί να ελευθερωθεί γιατί το σχοινί είναι πολύ ισχυρό. Αντίθετα σε μικρές αποστάσεις τα quarks αλληλεπιδρούν με δυνάμεις που αναπαρίστανται από τον όρο που είναι ανάλογος του 1/r.Αξίζει να σημειωθεί ότι άλλα κβαντικά φαινόμενα που συνήθως αναφέρονται ως πόλωση του κενού συμβάλουν στη μείωση της ισχύος της ισχυρής δύναμης σε μικρές αποστάσεις.με άλλα λόγια η σταθερά ισχύος α s είναι φθίνουσα συνάρτηση της απόστασης r από το quark, ώστε σε πολύ μικρές αποστάσεις τα quarks να συμπεριφέρονται ως ελεύθερα σωματίδια το φαινόμενο αυτό λέγεται ασυμπτωτική ελευθερία των quarks. γ)ασθενείς : Είναι αλληλεπιδράσεις στις οποίες μετέχουν τόσο τα quark όσο και τα λεπτόνια. Οι φορείς τους είναι τα λεγόμενα μποζόνια βαθμίδας : W ± Z o τα οποία έχουν σημαντική μάζα και για αυτό η ακτίνα δράσης της ασθενούς δύναμης είναι πολύ gg0 μικρή. Στη σχέση f ( q) = του πλάτους m q σκέδασης από την εξίσωση Yukawa αντικαθιστώντας με ένα παράγοντα g w και για g w q << M θα έχω G f = M W Σε διάγραμμα Feynman η αντίδραση της β Ο Ντέιβιντ Τζόναθαν Γκρος (γεννημένος στις 19 Φεβρουαρίου 1941 στην Ουάσινγκτον) είναι ένας Αμερικανός φυσικός στοιχειωδών σωματιδίων και θεωρητικός των χορδών. Μαζί με τους Φρανκ Γουίλζεκ και Ντέιβιντ Πόλιτζερ, πήρε το Βραβείο Νόμπελ Φυσικής το 004, για την ανακάλυψη της ασυμπτωτικής ελευθερίας. ου λέει πως όσο πιο κοντά είναι τα κουάρκ μεταξύ τους, τόσο πιο μικρή είναι η ισχυρή αλληλεπίδραση ανάμεσά τους. Όταν τα κουάρκ είναι εξαιρετικά κοντά, σχεδόν στο ίδιο σημείο, η πυρηνική δύναμη είναι τόσο ασθενής μεταξύ τους, ώστε συμπεριφέρονται σχεδόν σαν ελεύθερα σωματίδια. Η ασυμπτωτική ελευθερία, που ανακαλύφθηκε ανεξάρτητα από τον Ντέιβιντ Πόλιτζερ, στάθηκε πολύ σημαντική για την ανάπτυξη της κβαντικής χρωμοδυναμικής διάσπασης n p+ e + ve όπου οι δυνάμεις είναι οι ασθενείς θα έχουμε την αναπαράσταση p e - n W - v e Στο ανωτέρω παράδειγμα ένα νετρόνιο μαζί με ένα εισερχόμενο αντι-νετρίνο, μπορούν να μετατραπούν σε ένα πρωτόνιο, ένα ηλεκτρόνιο, ανταλλάσσοντας ένα μποζόνιο W --. Το μποζόνιο αυτό είναι ο φορέας της ηλεκτρασθενούς αλληλεπιδράσεως. Αλλά η ίδια αλληλεπίδραση, μπορεί να δοθεί διαφορετικά. Στην δεξιά εικόνα βλέπουμε ότι ένα νετρόνιο μετατρέπεται σε ένα πρωτόνιο, ανταλλάσσοντας ένα μποζόνιο W. Απλώς αντικαταστάθηκε το εισερχόμενο νετρίνο μ' ένα εξερχόμενο αντινετρίνο. Με την 4

26 ίδια λογική, στις αλληλεπιδράσεις ηλεκτρονίου και ποζιτρονίου, που είδαμε παραπάνω, ένα εισερχόμενο ηλεκτρόνιο μπορεί να αντικατασταθεί μ' ένα εξερχόμενο ποζιτρόνιο. Το σωματίδιο W --,προέκυψε από την αρχή της αβεβαιότητας. Το W "δανείστηκε" ενέργεια ΔΕ κι έτσι σχηματίσθηκε με βάση την αρχή ισοδυναμίας μάζας-ενέργειας. Μετά όμως από χρόνο Δt, που εμφανίζεται το W --, απορροφάται εκ νέου. Ο χρόνος αυτός Δt είναι πολύ μικρός και δίνεται όπως είπαμε και πριν από την αρχή της απροσδιοριστίας του Heisenberg ΔΕ.Δt=h/π. δ)bαρυτικές : Είναι δυνάμεις άπειρης εμβέλειας όπως οι ηλεκτρομαγνητικές που περιγράφουν την αλληλεπίδραση δύο σημειακών μαζών. π.χ. η δύναμη μεταξύ δύο πρωτονίων θα είναι GM.Συγκρίνοντας με τη r σταθερά λεπτής υφής e 1 a = το λόγο 4πhc 137 Στο διπλανό σχήμα φαίνονται οι φορείς των αλληλεπιδράσεων και GM 40 τα σωματίδια που αλληλεπιδρούν. Αποδεικνύεται ότι ο χρόνος 10 που δείχνει ότι ζωής ενός σωματιδίου επηρεάζεται από το είδος της 4πhc αλληλεπίδρασης που έχει την ευθύνη της διάσπασης του. Τα είναι δυνάμεις πολύ σωμάτια που διασπώνται κάτω από την επίδραση της ισχυρής ασθενείς σε σχέση με τις αλληλεπίδρασης έχουν χρόνο ζωής 10-3 sec της ηλεκτρομαγνητικές και Ηλεκτρομαγνητικής sec και της ασθενούς sec ισχυρές πυρηνικές. Έτσι για τις κλίμακες μάζας που χρησιμοποιεί η σωματιδιακή φυσική οι βαρυτικές δυνάμεις είναι αμελητέες. Για υποθετικές μάζες ίσες με μάζα του Plank : hc 19 GeV M pl = = 1.*10 η τάξη G c τους γίνεται σημαντική, περίπου ίδια με των ηλεκτροασθενών.μέχρι σήμερα δεν έχει γίνει εφιχτή μια πλήρης θεωρία κβαντικής βαρύτητας και έτσι βρίσκεται έξω από το καθιερωμένο πρότυπο. 5

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 10η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Σωμάτια & Αντισωμάτια Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 16/12/2011 Πετρίδου Χαρά Στοιχειώδη Σωμάτια

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 2η Πετρίδου Χαρά Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 10-Jan-11 Πετρίδου Χαρά Στοιχειώδη Σωµάτια

Διαβάστε περισσότερα

1 ΣΤΟΙΧΕΙΑ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑΣ Στοιχειώδη σωµατίδια 1) Τι ονοµάζουµε στοιχειώδη σωµατίδια και τι στοιχειώδη σωµάτια; Η συνήθης ύλη, ήταν γνωστό µέχρι το 1932 ότι αποτελείται

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 3η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 3η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 3η Πετρίδου Χαρά Τα Λεπτόνια 2 Δεν έχουν Ισχυρές Αλληλεπιδράσεις Spin 1/2 Παρατηρούνται ως ελεύθερα σωματίδια Είναι σημειακά (r < 10-17 cm) H δομή των οικογενειών... Γιατί

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 11η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική 2 Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις

Διαβάστε περισσότερα

www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html

www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html Σύγχρονη Φυσική Στοιχειώδη Σωµατίδια Σωµατίδια Επιταχυντές Ανιχνευτές Αλληλεπιδράσεις Συµµετρίες Νόµοι ιατήρησης Καθιερωµένο Πρότυπο www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html Σύγχρονη Φυσική: Στοιχειώδη

Διαβάστε περισσότερα

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15 Διάλεξη 14: Μεσόνια και αντισωματίδια Μεσόνια Όπως αναφέρθηκε προηγουμένως (διάλεξη 13) η έννοια των στοιχειωδών σωματίων άλλαξε πολλές φορές μέχρι σήμερα. Μέχρι το 1934 ο κόσμος των στοιχειωδών σωματιδίων

Διαβάστε περισσότερα

Φερμιόνια & Μποζόνια

Φερμιόνια & Μποζόνια Φερμιόνια & Μποζόνια Φερμιόνια Στατιστική Fermi-Dirac spin ημιακέραιο 1 3 5,, 2 2 2 Μποζόνια Στατιστική Bose-Einstein 0,1, 2 spin ακέραιο δύο ταυτόσημα φερμιόνια, 1 & 2 δύο ταυτόσημα μποζόνια, 1 & 2 έχουν

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω

Διαβάστε περισσότερα

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια Περιεχόµενα Διαγράµµατα Feynman Δυνητικά σωµάτια Οι τρείς αλληλεπιδράσεις Ηλεκτροµαγνητισµός Ισχυρή Ασθενής Περίληψη Κ. Παπανικόλας, Ε. Στυλιάρης, Π. Σφήκας

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (16-12- 2014) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Αλληλεπιδράσεις και Πεδία στη Σωματιδιακή Φυσική 2 Κλασική

Διαβάστε περισσότερα

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 10/05/16

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 10/05/16 Διάλεξη 20: Διαγράμματα Feynman Ισχυρές αλληλεπιδράσεις Όπως στην περίπτωση των η/μ αλληλεπιδράσεων έτσι και στην περίπτωση των ισχυρών αλληλεπιδράσεων υπάρχει η αντίστοιχη αναπαράσταση μέσω των διαγραμμάτων

Διαβάστε περισσότερα

Φυσική Στοιχειωδών Σωματιδίων Ε: Από τί αποτελείται η ύλη σε θεμελειώδες επίπεδο;

Φυσική Στοιχειωδών Σωματιδίων Ε: Από τί αποτελείται η ύλη σε θεμελειώδες επίπεδο; Εκεί, κάτω στον μικρόκοσμο... Από τί αποτελείται ο κόσμος και τί τον κρατάει ενωμένο; Αθανάσιος Δέδες Τμήμα Φυσικής, Τομέας Θεωρητικής Φυσικής, Πανεπιστήμιο Ιωαννίνων 5 Οκτωβρίου 2015 Φυσική Στοιχειωδών

Διαβάστε περισσότερα

Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος

Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος Παράδοξα σωματίδια Μετά την ανακάλυψη του μεσονίου που είχε προβλέψει ο Yukawa, την ανακάλυψη των αντισωματιδίων του Dirac και την κοπιώδη αλλά αποτελεσματική

Διαβάστε περισσότερα

ΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ

ΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ ΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ ΚΕΝΤΡΙΚΗ ΙΔΕΑ ΤΗΣ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Όλα στη φύση αποτελούνται από στοιχειώδη σωματίδια τα οποία είναι φερμιόνια

Διαβάστε περισσότερα

Διάλεξη 17: Το μοντέλο των κουάρκ

Διάλεξη 17: Το μοντέλο των κουάρκ Διάλεξη 17: Το μοντέλο των κουάρκ Από την επιτυχία της αναπαράστασης των σωματιδίων σε οκταπλέτες ή δεκαπλέτες προκύπτει ένα πολύ εύλογο ερώτημα. Τι συμβαίνει και οι ιδιότητες των σωματιδίων που έχουν

Διαβάστε περισσότερα

Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα

Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα Θεωρία Yukawa Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα έφτασε στο συμπέρασμα ότι η εμβέλεια της δύναμης εξαρτάται από τη μάζα, m, του κβάντου. t /mc R c t /mc Η εξίσωση Klein-Gordon

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 ΔΥΟ Μεγάλες, απλές κατηγοριοποιήσεις σωματίων, Ι. Φερμιόνια Μποζόνια Στατιστική Συμπεριφορά Νόμοι διατήρησης. Τα φερμιόνια δεν «καταστρέφονται»

Διαβάστε περισσότερα

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Hideki Yukawa and the Nuclear Force Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής πυρηνική δύναμη Η πυρηνική δύναμη (ή αλληλεπίδραση νουκλεονίουνουκλεονίου, ή NN forces,

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ PhD Τηλ: 1 69 97 985, wwwdlaggr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ: 1 69 97 985, E-mail: dlag@ottgr, wwwdlaggr Ε ΟΥΑΡ ΟΣ ΛΑΓΑΝΑΣ, PhD KENTΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Τηλ: 1 69

Διαβάστε περισσότερα

Διάλεξη 18: Καθιερωμένο πρότυπο (1978-?)

Διάλεξη 18: Καθιερωμένο πρότυπο (1978-?) Διάλεξη 18: Καθιερωμένο πρότυπο (1978-?) Φορείς αλληλεπίδρασεων Αλληλεπίδραση Ισχύς Εμβέλεια Φορέας Ισχυρή 1 ~fm g-γλουόνιο Η/Μ 10-2 1/r 2 γ-φωτόνιο Ασθενής 10-9 ~fm W ±,Z μποζόνια Βαρυτική 10-38 1/r 2

Διαβάστε περισσότερα

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Κβαντική µηχανική Τύχη ή αναγκαιότητα Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Ηφυσικήστόγύρισµα του αιώνα «Όλοι οι θεµελιώδεις νόµοι και δεδοµένα της φυσικής επιστήµης έχουν ήδη ανακαλυφθεί και

Διαβάστε περισσότερα

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης Χημεία Γ Λυκείου Θετικής Κατεύθυνσης Κεφάλαιο 1 Ηλεκτρονιακή δομή των ατόμων 1 Εισαγωγή Δομή του ατόμου Δημόκριτος Αριστοτέλης Dalton Thomson 400 π.χ. 350π.χ. 1808 1897 Απειροελάχιστα τεμάχια ύλης (τα

Διαβάστε περισσότερα

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 18/04/16

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 18/04/16 Διάλεξη 13: Στοιχειώδη σωμάτια Φυσική στοιχειωδών σωματίων Η φυσική στοιχειωδών σωματιδίων είναι ο τομέας της φυσικής ο οποίος προσπαθεί να απαντήσει στο βασικότατο ερώτημα: Ποια είναι τα στοιχειώδη δομικά

Διαβάστε περισσότερα

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια

Διαβάστε περισσότερα

Μάθημα 7 Διαγράμματα Feynman

Μάθημα 7 Διαγράμματα Feynman Στοιχειώδη Σωμάτια (M.Sc Υπολογιστικής Φυσικής) Μάθημα 7 Διαγράμματα Feynman Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη M.Sc. Υπολ. Φυσ., AΠΘ, 2 Δεκεμβρίου 2013 Κουάρκ και Λεπτόνια

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Τα άτομα ως στοιχειώδη σωματίδια Φυσική των στοιχειωδών

Διαβάστε περισσότερα

Νουκλεόνια και ισχυρή αλληλεπίδραση

Νουκλεόνια και ισχυρή αλληλεπίδραση Νουκλεόνια και ισχυρή αλληλεπίδραση Πρωτόνια και νετρόνια. Το πρότυπο των κουάρκ για τα νουκλεόνια. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Κουάρκ: τα δομικά στοιχεία των αδρονίων ΑΣΚΗΣΗ Διασπάσεις σωματιδίων

Διαβάστε περισσότερα

ΤΟ ΠΕΙΡΑΜΑ ΤΟΥ CERN. Επιστημονική ομάδα ΒΑΣΙΛΗΣ ΣΙΔΕΡΗΣ &ΝΙΚΟΣ ΚΑΛΑΦΑΤΗΣ. 3ο Λύκειο Γαλατσίου 2011-2012

ΤΟ ΠΕΙΡΑΜΑ ΤΟΥ CERN. Επιστημονική ομάδα ΒΑΣΙΛΗΣ ΣΙΔΕΡΗΣ &ΝΙΚΟΣ ΚΑΛΑΦΑΤΗΣ. 3ο Λύκειο Γαλατσίου 2011-2012 ΤΟ ΠΕΙΡΑΜΑ ΤΟΥ CERN Επιστημονική ομάδα ΒΑΣΙΛΗΣ ΣΙΔΕΡΗΣ &ΝΙΚΟΣ ΚΑΛΑΦΑΤΗΣ 3ο Λύκειο Γαλατσίου 2011-2012 Υπεύθυνοι καθηγητές Μαραγκουδάκης Επαμεινώνδας και Φαράκου Γεωργία ΤΟ ΠΑΝΗΓΥΡΙ ΤΗΣ ΦΥΣΙΚΗΣ ΤΩΝ ΣΩΜΑΤΙΔΙΩΝ

Διαβάστε περισσότερα

Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις

Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις Ασθενείς Αλληλεπιδράσεις έχουμε ήδη δει διάφορες αντιδράσεις που γίνονται μέσω των ασθενών αλληλεπιδράσεων π.χ. ασθενείς διασπάσεις αδρονίων + + 0 K ππ Λ pπ n pe ν π e μ v + + μ ασθενείς διασπάσεις λεπτονίων

Διαβάστε περισσότερα

Σωματιδιακή Φυσική: Από το Ηλεκτρόνιο μέχρι το Higgs και το Μεγάλο Αδρονικό Επιταχυντή (LHC) στο CERN

Σωματιδιακή Φυσική: Από το Ηλεκτρόνιο μέχρι το Higgs και το Μεγάλο Αδρονικό Επιταχυντή (LHC) στο CERN Σωματιδιακή Φυσική: Από το Ηλεκτρόνιο μέχρι το Higgs και το Μεγάλο Αδρονικό Επιταχυντή (LHC) στο CERN Κωνσταντίνος Φουντάς Καθηγητής Παν/μίου Ιωαννίνων Ευάγγελος Γαζής Καθηγητής Εθνικού Μετσοβίου Πολυτεχνείου

Διαβάστε περισσότερα

Γενικές αρχές ακτινοφυσικής Π. ΓΚΡΙΤΖΑΛΗΣ

Γενικές αρχές ακτινοφυσικής Π. ΓΚΡΙΤΖΑΛΗΣ Γενικές αρχές ακτινοφυσικής Π. ΓΚΡΙΤΖΑΛΗΣ Μέρος πρώτο ΣΚΟΠΟΣ ΜΑΘΗΜΑΤΟΣ Να εξηγηθούν βασικές έννοιες της φυσικής, που θα βοηθήσουν τον φοιτητή να μάθει: Τι είναι οι ακτίνες Χ Πως παράγονται Ποιες είναι

Διαβάστε περισσότερα

Κοσμολογία & Αστροσωματιδική Φυσική Μάγδα Λώλα CERN, 28/9/2010

Κοσμολογία & Αστροσωματιδική Φυσική Μάγδα Λώλα CERN, 28/9/2010 Κοσμολογία & Αστροσωματιδική Φυσική Μάγδα Λώλα CERN, 28/9/2010 Η φυσική υψηλών ενεργειών µελετά το µικρόκοσµο, αλλά συνδέεται άµεσα µε το µακρόκοσµο Κοσµολογία - Μελέτη της δηµιουργίας και εξέλιξης του

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Μονάδες Energy [E] ev, kev, MeV, GeV, TeV, PeV, 10 0, 10 3, 10 6, 10 9, 10 12, 10 15 1eV = 1.6 10 19 J ev είναι πιο χρήσιμη στη φυσική

Διαβάστε περισσότερα

Εισαγωγή στη φυσική στοιχειωδών σωματιδίων

Εισαγωγή στη φυσική στοιχειωδών σωματιδίων Εργαστήριο Εισαγωγή στη φυσική στοιχειωδών σωματιδίων Hypatia : http://hypatia.phys.uoa.gr/ To Hypatia αποτελεί μέρος του ATLAS ASEC, ένα καινοτόμο εκπαιδευτικό πρόγραμμα στη Φυσική των Στοιχειωδών Σωματιδίων.

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων

Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων 1) Ποιες από τις πιο κάτω αντιδράσεις επιτρέπονται και ποιες όχι βάσει των αρχών διατήρησης που ισχύουν για τις ασθενείς αλληλεπιδράσεις ν μ + p μ + +n ν e +

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα

Διαβάστε περισσότερα

n proton = 10N A 18cm 3 (2) cm 2 3 m (3) (β) Η χρονική απόσταση δύο τέτοιων γεγονότων θα είναι 3m msec (4)

n proton = 10N A 18cm 3 (2) cm 2 3 m (3) (β) Η χρονική απόσταση δύο τέτοιων γεγονότων θα είναι 3m msec (4) ΛΥΣΕΙΣ ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ 8 Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Η θεωρία των μαγνητικών μονοπόλων προβλέπει οτι αυτά αντιδρούν με πρωτόνια και δίνουν M + p M + e + + π 0 (1) με ενεργό διατομή σ 0.01 barn. Το

Διαβάστε περισσότερα

ΔΟΜΗ ΤΗΣ ΥΛΗΣ ΚΕΦΑΛΑΙΟ 1

ΔΟΜΗ ΤΗΣ ΥΛΗΣ ΚΕΦΑΛΑΙΟ 1 ΔΟΜΗ ΤΗΣ ΥΛΗΣ ΚΕΦΑΛΑΙΟ 1 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Διαίρεση ύλης με διατήρηση της χημικής ιδιοσύστασης της : μόρια. Τεμαχισμός μορίων καταστροφή της χημικής ιδιοσυγκρασίας : άτομα. Χημικές ενώσεις : συνδυασμός

Διαβάστε περισσότερα

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ 2-1 Ένας φύλακας του ατομικού ρολογιού καισίου στο Γραφείο Μέτρων και Σταθμών της Ουάσιγκτον. 2-2 Άτομα στην επιφάνεια μιας μύτης βελόνας όπως φαίνονται μεηλεκτρονικόμικροσκό 2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ

Διαβάστε περισσότερα

Φυσική ΙΙ (Ηλεκτρομαγνητισμός Οπτική)

Φυσική ΙΙ (Ηλεκτρομαγνητισμός Οπτική) Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Φυσική ΙΙ (Ηλεκτρομαγνητισμός Οπτική) Διάλεξη 1 η Ιωάννα Ζεργιώτη Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

s (spin) -s s αξονικό διάνυσμα r p

s (spin) -s s αξονικό διάνυσμα r p Συμμετρία αναστροφής του χρόνου Τ Με την αναστροφή του χρόνου Τ έχουμε t -t, p p, J J. Γι αυτό το λόγο ο Τ δεν έχει ιδιοτιμές δοτμές όπως οι C και P. Παρόλα αυτά σε συνδυασμό με την P, PT σημαίνει ότι

Διαβάστε περισσότερα

Ακτίνες επιτρεπόμενων τροχιών (2.6)

Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας το r με r n, έχουμε: Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας n=1, βρίσκουμε την τροχιά με τη μικρότερη ακτίνα n: Αντικαθιστώντας την τελευταία εξίσωση στη 2.6, παίρνουμε: Αν

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ Συζευγμένα ηλεκτρικά και μαγνητικά πεδία τα οποία κινούνται με την ταχύτητα του φωτός και παρουσιάζουν τυπική κυματική συμπεριφορά Αν τα φορτία ταλαντώνονται περιοδικά οι διαταραχές

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΓΩΝΙΣΜΑ Α

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΓΩΝΙΣΜΑ Α ΘΕΜΑ ο ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΓΩΝΙΣΜΑ Α Α Ποιο φαινόμενο ονομάζεται διασκεδασμός του φωτός; Πώς εξαρτάται ο δείκτης διάθλασης ενός οπτικού μέσου από το μήκος κύματος; Β Στις παρακάτω ερωτήσεις πολλαπλής

Διαβάστε περισσότερα

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά Πυρηνικές Δυνάμεις Διάλεξη 4η Πετρίδου Χαρά Η Ύλη στο βιβλίο: Cottingham & Greenwood 2 Κεφάλαιο 5: Ιδιότητες των Πυρήνων 5.5: Μαγνητική Διπολική Ροπή του Πυρήνα 5.7: Ηλεκτρική Τετραπολική του Πυρήνα 5.1:

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

Ομοτιμία Parity Parity

Ομοτιμία Parity Parity Ομοτιμία Parity Ο μετασχηματισμός της Parity, αντιστρέφει κάθε χωρική συντεταγμένη. P(t,x) (t,-x), ή Pψ(r) ψ(-r) που αντιστοιχεί σε ανάκλαση και μετά στροφή 18 ο. αν επαναλάβουμε την διαδικασία προφανώς

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A Ένα ισότοπο, το οποίο συµβολίζουµε µε Z X, έχει ατοµικό αριθµό Ζ και µαζικό αριθµό Α. Ο πυρήνας του ισοτόπου

Διαβάστε περισσότερα

ΜΕΡΟΣ ΠΡΩΤΟ ΤΡΕΙΣ ΒΑΣΙΚΕΣ ΙΔΕΕΣ KAI ΕΝΑ ΝΟΗΤΙΚΟ ΕΡΓΑΛΕΙΟ

ΜΕΡΟΣ ΠΡΩΤΟ ΤΡΕΙΣ ΒΑΣΙΚΕΣ ΙΔΕΕΣ KAI ΕΝΑ ΝΟΗΤΙΚΟ ΕΡΓΑΛΕΙΟ ΜΕΡΟΣ ΠΡΩΤΟ ΤΡΕΙΣ ΒΑΣΙΚΕΣ ΙΔΕΕΣ KAI ΕΝΑ ΝΟΗΤΙΚΟ ΕΡΓΑΛΕΙΟ 10 11 ΚΕΦΑΛΑΙΟ 1 Η ΑΤΟΜΙΚΗ ΙΔΕΑ: O θρίαμβος του Δημόκριτου Εάν, σ ένα παγκόσμιο κατακλυσμό, όλη η επιστημονική γνώση επρόκειτο να καταστραφεί εκτός

Διαβάστε περισσότερα

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το ατοµικό πρότυπο του Bohr καθώς και τα µειονεκτήµατά του. Να υπολογίζει την ενέργεια που εκπέµπεται ή απορροφάται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή φράση η οποία συμπληρώνει σωστά την ημιτελή

Διαβάστε περισσότερα

Μ.Ζαµάνη

Μ.Ζαµάνη Μ.Ζαµάνη 1-10-2010 1 ΥΛΗ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ 2 ΛΙΓΗ ΙΣΤΟΡΙΑ 1807 J. Dalton στην Αγγλία ανακάλυψε τον νόµο των αναλογιών και πρότεινε την ατοµική θεωρία: Ηλεκτρόλυση-Χηµεία-καθοδικές ακτίνες. 1811 Α. Avogadro

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΙΑΛΕΞΗ 4: Ο ΑΤΟΜΙΚΟΣ ΠΥΡΗΝΑΣ. ιδάσκων Ευθύµιος Τάγαρης Φυσικός, ρ Περιβαλλοντικών Επιστηµών. ρ Ευθύµιος Α. Τάγαρης

ΦΥΣΙΚΗ ΙΑΛΕΞΗ 4: Ο ΑΤΟΜΙΚΟΣ ΠΥΡΗΝΑΣ. ιδάσκων Ευθύµιος Τάγαρης Φυσικός, ρ Περιβαλλοντικών Επιστηµών. ρ Ευθύµιος Α. Τάγαρης ΦΥΣΙΚΗ ΙΑΛΕΞΗ 4: Ο ΑΤΟΜΙΚΟΣ ΠΥΡΗΝΑΣ ιδάσκων Ευθύµιος Τάγαρης Φυσικός, ρ Περιβαλλοντικών Επιστηµών Σταθερότητα πυρήνων Αριθµός πρωτονίων και νετρονίων Αριθµός νετρονίων (Ν) 20 Σταθεροί πυρήνες Ν=Ζ 20 Αριθµός

Διαβάστε περισσότερα

Διάλεξη 22: Παραβίαση της κατοπτρικής συμμετρίας στις ασθενείς αλληλεπιδράσεις

Διάλεξη 22: Παραβίαση της κατοπτρικής συμμετρίας στις ασθενείς αλληλεπιδράσεις Διάλεξη 22: Παραβίαση της κατοπτρικής συμμετρίας στις ασθενείς αλληλεπιδράσεις Το 1956 ο Lee και ο Yang σε μια εργασία τους θέτουν το ερώτημα αν η πάριτη δηλαδή η κατοπτρική συμμετρία παραβιάζεται ή όχι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΑΤΟΜΙΚΑ ΦΑΙΝΟΜΕΝΑ. 1 η Ατομική θεωρία 2.1. ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ. 2 η Ατομική θεωρία (Thomson)

ΚΕΦΑΛΑΙΟ 2 Ο ΑΤΟΜΙΚΑ ΦΑΙΝΟΜΕΝΑ. 1 η Ατομική θεωρία 2.1. ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ. 2 η Ατομική θεωρία (Thomson) 1 ΚΕΦΑΛΑΙΟ 2 Ο ΑΤΟΜΙΚΑ ΦΑΙΝΟΜΕΝΑ 2.1. ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ 2 η Ατομική θεωρία (Thomson) Tο άτομο αποτελείται από μία σφαίρα ομοιόμορφα κατανεμημένου θετικού φορτίου μέσα στην

Διαβάστε περισσότερα

Το μποζόνιο Higgs (Σωματίδιο του Θεού) και ο ρόλος του Μεγάλου Αδρονικού Επιταχυντή στην Ανακάλυψη του Ομάδα Μαθητών:

Το μποζόνιο Higgs (Σωματίδιο του Θεού) και ο ρόλος του Μεγάλου Αδρονικού Επιταχυντή στην Ανακάλυψη του Ομάδα Μαθητών: 1 Το μποζόνιο Higgs (Σωματίδιο του Θεού) και ο ρόλος του Μεγάλου Αδρονικού Επιταχυντή στην Ανακάλυψη του Ομάδα Μαθητών: Ιωάννου Παναγιώτης, Λεωνίδου Άντρεα, Βαφέα Ραφαέλα, Παναρέτου Κατερίνα Συντονιστής

Διαβάστε περισσότερα

Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΑΤΟΜΟΥ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΑΤΟΜΟΥ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΑΤΟΜΟΥ ΤΟΥ ΥΔΡΟΓΟΝΟΥ ΑΣΚΗΣΗ 1 Άτομα αερίου υδρογόνου που βρίσκονται στη θεμελιώδη κατάσταση (n = 1), διεγείρονται με κρούση από δέσμη ηλεκτρονίων που έχουν επιταχυνθεί από διαφορά δυναμικού

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΛΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΛΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΛΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και

Διαβάστε περισσότερα

Προλογοσ. Σε κάθε κεφάλαιο περιέχονται: Θεωρία με μορφή ερωτήσεων, ώστε ο μαθητής να επικεντρώνεται στο συγκεκριμένο

Προλογοσ. Σε κάθε κεφάλαιο περιέχονται: Θεωρία με μορφή ερωτήσεων, ώστε ο μαθητής να επικεντρώνεται στο συγκεκριμένο Προλογοσ Στο βιβλίο αυτό παρουσιάζονται με αναλυτικό τρόπο οι δύο τελευταίες ενότητες («Το φως» και «Ατομικά φαινόμενα») της διδακτέας ύλης της Φυσικής γενικής παιδείας της B Λυκείου. Σε κάθε κεφάλαιο

Διαβάστε περισσότερα

Το Ισοτοπικό σπιν. και εγαρµογές του στην Πυρηνική Φυσική και τη Φυσική Στοιχειωδών Σωµατιδίων. Κώστας Κορδάς. LHEP, University of Bern

Το Ισοτοπικό σπιν. και εγαρµογές του στην Πυρηνική Φυσική και τη Φυσική Στοιχειωδών Σωµατιδίων. Κώστας Κορδάς. LHEP, University of Bern Το Ισοτοπικό σπιν και εγαρµογές του στην Πυρηνική Φυσική και τη Φυσική Στοιχειωδών Σωµατιδίων Κώστας Κορδάς LHEP, University of Bern ιάλεξη υπό τύπο διδασκαλίας σε προπτυχιακούς φοιτητές Αριστοτέλειο Πανεπιστήµιο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή φράση, η οποία

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 6 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Στις ερωτήσεις 1- να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα, που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα µε την

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΘΕΜΑ A ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Παρασκευή, 0 Μαΐου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ Στις ερωτήσεις Α -Α να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6β β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις)

Διαβάστε περισσότερα

Διάλεξη 5: Αποδιέγερσεις α και β

Διάλεξη 5: Αποδιέγερσεις α και β Σύγχρονη Φυσική - 206: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 05/04/6 Διάλεξη 5: Αποδιέγερσεις α και β Αποδιέγερση α Όπως ειπώθηκε και προηγουμένως κατά την αποδιέγερση α ένας πυρήνας μεταπίπτει

Διαβάστε περισσότερα

β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 01 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α3 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία

Διαβάστε περισσότερα

Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή

Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή Πυρηνική Σταθερότητα Ο πυρήνας αποτελείται από πρωτόνια και νετρόνια τα οποία βρίσκονται συγκεντρωμένα σε έναν πάρα πολύ μικρό χώρο. Εύκολα καταλαβαίνουμε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμ ιο Θεσσαλονίκης Στοιχειώδη

Διαβάστε περισσότερα

Niels Bohr ( ) ΘΕΜΑ Α

Niels Bohr ( ) ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Niels Bohr (885-962) ΘΕΜΑ Α Στις ερωτήσεις Α -Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα το γράμμα που

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.. Το έτος 2005 ορίστηκε ως έτος Φυσικής

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δ. Σαμψωνίδης Κ. Κορδάς 21 Ιανουαρίου 2011 2 Κουάρκ Κουάρκ και Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθμός (Β) Αντίστοιος

Διαβάστε περισσότερα

Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s.

Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s. Κεφάλαιο 1 Το Φως Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s. Το φως διαδίδεται στο κενό με ταχύτητα περίπου 3x10 8 m/s. 3 Η ταχύτητα του φωτός μικραίνει, όταν το φως

Διαβάστε περισσότερα

Κάτω. Πάνω. Όνομα: Πάνω Επώνυμο: Κουάρκ. Επώνυμο: Κουάρκ. Του αρέσουν:z, W+, W-, γλουόνια, φωτόνια. W-, γλουόνια, φωτόνια. Παιχνίδι με κάρτες: Σνάπ

Κάτω. Πάνω. Όνομα: Πάνω Επώνυμο: Κουάρκ. Επώνυμο: Κουάρκ. Του αρέσουν:z, W+, W-, γλουόνια, φωτόνια. W-, γλουόνια, φωτόνια. Παιχνίδι με κάρτες: Σνάπ Πάνω Κάτω Όνομα: Πάνω Χαρούμενες Z, Οικογένειες Όνομα: W-, gluon, Κάτω photon Του αρέσουν:z, Μάζα: πολύ ελαφρύ Φορτίο: +2/3 Μάζα: πολύ ελαφρύ Φορτίο: -1/3 Ένα από τα βασικά συστατικά των πρωτονίων και

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Φυσικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Φυσικών της Ώθησης ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Ομάδα Φυσικών της Ώθησης 1 Τετάρτη, 20 Μα ου 2015 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα

Διαβάστε περισσότερα

Κατερίνα Αρώνη Δεκέμβριος 2012

Κατερίνα Αρώνη Δεκέμβριος 2012 Κατερίνα Αρώνη Δεκέμβριος 2012 Η αναζήτηση Από τα αρχαία χρόνια ο άνθρωπος προσπαθούσε να ανακαλύψει τα δομικά συστατικά της ύλης. Ο Αριστοτέλης πίστευε ότι 4 βασικά στοιχεία συνθέτουν τον κόσμο γύρω μας:

Διαβάστε περισσότερα

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p University of Ioannina Deartment of Materials Science & Engineering Comutational Materials Science τική Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π1, 7146, elidorik@cc.uoi.gr cmsl.materials.uoi.gr/elidorik

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση. 1. Σύμφωνα με την ηλεκτρομαγνητική

Διαβάστε περισσότερα

εκποµπής (σαν δακτυλικό αποτύπωµα)

εκποµπής (σαν δακτυλικό αποτύπωµα) Το πρότυπο του Bοhr για το άτοµο του υδρογόνου (α) (β) (γ) (α): Συνεχές φάσµα λευκού φωτός (β): Γραµµικό φάσµα εκποµπής αερίου (γ): Φάσµα απορρόφησης αερίου Κάθε αέριο έχει το δικό του φάσµα εκποµπής (σαν

Διαβάστε περισσότερα

Διάλεξη 4: Ραδιενέργεια

Διάλεξη 4: Ραδιενέργεια Σύγχρονη Φυσική - 216: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 4/4/16 Διάλεξη 4: Ραδιενέργεια Βασικοί τρόποι αποδιέγερσης Όπως γνωρίζουμε στην φύση υπάρχουν σταθερές πυρηνικές καταστάσεις αλλά

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 23 MAΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 23 MAΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ MAΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε

Διαβάστε περισσότερα

«Ταξίδι» στην Φυσική Στοιχειωδών Σωματιδίων. Κύκλοι Μαθημάτων Σύγχρονης Φυσικής Πρασιανάκης Γιώργος Καραδημητρίου Μιχάλης

«Ταξίδι» στην Φυσική Στοιχειωδών Σωματιδίων. Κύκλοι Μαθημάτων Σύγχρονης Φυσικής Πρασιανάκης Γιώργος Καραδημητρίου Μιχάλης «Ταξίδι» στην Φυσική Στοιχειωδών Σωματιδίων Κύκλοι Μαθημάτων Σύγχρονης Φυσικής Πρασιανάκης Γιώργος Καραδημητρίου Μιχάλης Δυνάμεις του 10! Ένα ταξίδι από το μικρό στο μεγάλο και πάλι πίσω! Καλό ταξίδι!

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 25 ΜΑΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 23 MAΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 23 MAΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 3 MAΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1-Α3 να

Διαβάστε περισσότερα

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες) Q3-1 Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Σε αυτό το πρόβλημα θα ασχοληθείτε με τη Φυσική

Διαβάστε περισσότερα

3. Ο Rutherford κατά το βοµβαρδισµό λεπτού φύλλου χρυσού µε σωµάτια α παρατήρησε ότι: α. κανένα σωµάτιο α δεν εκτρέπεται από την πορεία του

3. Ο Rutherford κατά το βοµβαρδισµό λεπτού φύλλου χρυσού µε σωµάτια α παρατήρησε ότι: α. κανένα σωµάτιο α δεν εκτρέπεται από την πορεία του ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 31 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ. Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ

ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ. Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ Ένα επαναλαμβανόμενο περιοδικά φαινόμενο, έχει μία συχνότητα επανάληψης μέσα στο χρόνο και μία περίοδο. Επειδή κάθε

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Στις παρακάτω ερωτήσεις 1-4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Στις παρακάτω ερωτήσεις 1-4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση. Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Στις παρακάτω ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο λαµπτήρας φθορισµού:

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 01 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει σωστά την ηµιτελή

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται

Διαβάστε περισσότερα

Προλογοσ. Σε κάθε κεφάλαιο περιέχονται: Θεωρία με μορφή ερωτήσεων, ώστε ο μαθητής να επικεντρώνεται στο συγκεκριμένο

Προλογοσ. Σε κάθε κεφάλαιο περιέχονται: Θεωρία με μορφή ερωτήσεων, ώστε ο μαθητής να επικεντρώνεται στο συγκεκριμένο Προλογοσ Στο βιβλίο αυτό παρουσιάζονται με αναλυτικό τρόπο οι δύο τελευταίες ενότητες («Το φως» και «Ατομικά φαινόμενα») της διδακτέας ύλης της Φυσικής γενικής παιδείας της B Λυκείου. Σε κάθε κεφάλαιο

Διαβάστε περισσότερα

ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ

ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ Μάθηµα 1 ο, 30 Σεπτεµβρίου 2008 (9:00-11:00). ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ Ακτινοβολία µέλανος σώµατος (1900) Plank: έδωσε εξήγηση του φάσµατος (κβαντική ερµηνεία*) ΠΑΡΑ ΟΧΗ Το φως δεν είναι µόνο κύµα. Είναι

Διαβάστε περισσότερα

Κβαντικές Καταστάσεις

Κβαντικές Καταστάσεις Κβαντικές Καταστάσεις Δομή Διάλεξης Σύντομη ιστορική ανασκόπηση Ανασκόπηση Πιθανότητας Το Πλάτος Πιθανότητας Πείραμα διπλής οπής Κβαντικές καταστάσεις (ket) Ο δυίκός χώρος (bra) Σύνοψη Κβαντική Φυσική

Διαβάστε περισσότερα

ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ ΠΕΙΡΑΙΑΣ ΤΗΛ , ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. Φως

ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ ΠΕΙΡΑΙΑΣ ΤΗΛ , ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. Φως ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Κεφάλαιο 1 ο Φως Ο μαθητής που έχει μελετήσει το κεφάλαιο του φωτός πρέπει: Να γνωρίζει πως εξελίχθηκε ιστορικά η έννοια του φωτός και ποια είναι η σημερινή

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ Θέµα 1 ο 1. Σύµφωνα µε το πρότυπο του Bohr για το άτοµο του υδρογόνου: α) το ηλεκτρόνιο εκπέµπει

Διαβάστε περισσότερα