Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις"

Transcript

1 Ασθενείς Αλληλεπιδράσεις έχουμε ήδη δει διάφορες αντιδράσεις που γίνονται μέσω των ασθενών αλληλεπιδράσεων π.χ. ασθενείς διασπάσεις αδρονίων K ππ Λ pπ n pe ν π e μ v + + μ ασθενείς διασπάσεις λεπτονίων αδρονικές ημι-λεπτονική λεπτονική μ e νν + + μ τ πν τ e λεπτονική ημι-λεπτονική 1

2 Ασθενείς Αλληλεπιδράσεις n p + e + ν e ν + p n + e + e 0 Λ p + π + + π μ + v μ μέσος χρόνος ζωής ~10 3 s ~10-10 s ~10-8 s σχόλιο Μεγάλος χρόνος ζωής λόγω της μικρής διαφοράς μάζας Τα νετρίνα έχουν μόνο ασθενείς αλληλεπιδράσεις S=1 οι ισχυρές αλληλεπιδράσεις απαγορεύονται Μόνο τα λεπτόνια είναι ελαφρύτερα από το π Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις Τυπικοί χρόνοι ζωής: Ισχυρές ~10-3 s H/M ~10-16 s Ασθενείς ~ s

3 Η Θεωρία του Fermi Η θεωρία των ασθενών αλληλεπιδράσεων που αναπτύχθηκε από τον Fermi το 1930 ήταν μια σημειακή αλληλεπίδραση G F Η σταθερά του Fermi που δίνει την ισχύ ζεύξης στην αλληλεπίδραση σύγχρονη αντίληψη G F m g w για μικρές w q τιμές του q G F g m 3

4 Ανταλλαγή W Μπορούμε να μην έχουμε μεταφορά spin από την αρχική στην τελική κατάσταση Μπορούμε να έχουμε μεταφορά spin από την αρχική στην τελική κατάσταση To W έχει ορμή αλλά δεν έχει στροφορμή V = διάνυσμα g V ή g A 1 GF gg mw To W έχει ορμή αλλά και στροφορμή Α = αξονικό διάνυσμα πειραματικά: g A =-g V αλληλεπίδραση V-A 4

5 ενεργός διατομή ενεργός διατομή ή ρυθμός διάσπασης ~ (πλάτος) ΨΨ* ή Ψ Η/Μ α ~ e πλάτος ~ α ~ e 4 ρυθμός διάσπασης ~ α ~ e Ασθενείς G ~ g F πλάτος ~ G ~ g F ρυθμός διάσπασης ~ G ~ g 4 F Στις ασθενείς το g είναι ισοδύναμο με το e στις Η/Μ 5

6 Ασθενείς αλληλεπιδράσεις ; Γνωρίζουμε ότι η μάζα του W είναι 80,4 GeV. Από τον ακριβή υπολογισμό έχουμε: G F = 8 g m w οπότε g=0,65 αν θεωρήσουμε ότι στις ασθενείς αλληλεπιδράσεις το g παίζει το ρόλο του e των Η/Μ μπορούμε να ορίσουμε: α w g 1 = 4π 9 παρατηρούμε ότι η ισχύς των ασθενών αλληλεπιδράσεων είναι 5 φορές της αντίστοιχης ισχύος των Η/Μ Οι ασθενείς αλληλεπιδράσεις δεν είναι ασθενείς λόγω του g αλλά λόγω της μεγάλης μάζας του W! 6

7 Τύποι ασθενών αλληλεπιδράσεων Οι ασθενείς αλληλεπιδράσεις κατηγοριοποιούνται ανάλογα με τη ζεύξη του W στα δύο άκρα Λεπτονικές : Το W έχει ζεύξη και στις δύο κορυφές με λεπτόνια μ e + ν + ν e μ Ημιλεπτονικές : Το W έχει ζεύξη στη μία κορυφή με λεπτόνια και στην άλλη με κουαρκ S=0 0 π μ v μ n p + e + ν + e 7

8 Τύποι ασθενών αλληλεπιδράσεων S=1 1 K + μ + + v μ 0 Λ p + e + ν e Αδρονικές : Το W έχει ζεύξη και στις δύο κορυφές με κουαρκ K + π + + π 0 0 Λ p + π 8

9 Τύποι ασθενών αλληλεπιδράσεων Οι ασθενείς αλληλεπιδράσεις είναι συνδυασμοί όπως όπου: f = e, μ, τ, u, d, s, c, b, t ' f = νe, ν μ, ντ, d, u, u, s, c, b To W ± μπορεί να αλλάξει τη γεύση του φρμ φερμιονίου πχ u d, s u κλπ 9

10 Θεωρία Cabibbo Πειραματικά είχε βρεθεί ότι ο χρόνος ζωής για S=1 είναι ~0 φορές μεγαλύτερος από το χρόνο ζωής για S=0. Αυτό σημαίνει ότι οι αντιδράσεις S=1 έχουν ρυθμό ~0 φορές μικρότερο Το 1963 ο Cabibbo bbb πρότεινε ότι τα d και s κουαρκ που λαμβάνουν μέρος στις ασθενείς αλληλεπιδράσεις αναμειγνύονται και μάλιστα έχουν μια στροφή κατά μια γωνία ανάμειξης θ c = γωνία Cabibbo πχ το κουαρκ που αλληλεπιδρά με το u μέσω ασθενών αλληλεπιδράσεων δεν είναι μόνο το s ή μόνο το d αλλά ένας γραμμικός συνδυασμός των δύο d c =d cos θ c + s sin θ c 10

11 Ασθενή ζεύγη Για τις ασθενείς αλληλεπιδράσεις έχουμε τα ασθενή ζεύγη : e μ u u = ν e ν μ dc d cosθc + s sinθc Για τις ημιλεπτονικές S =0 διασπάσεις η σταθερά σύζευξης (έχουμε μόνο u και d κουαρκ) ) G F cos θ c Για τις ημιλεπτονικές S = 1 διασπάσεις η σταθερά σύζευξης (έχουμε μόνο u και s κουαρκ) G F sin θ c 11

12 γωνία Cabibbo Συγκρίνοντας τους ρυθμούς για διάφορες S=0 και S=1 διαδικασίες έχουμε διάσπαση αλλαγή γεύσης κουαρκ ρυθμός n p + e + ν d u G e F cos cos θ c π π + e + ν e u d G F cos θ c 0 K + + s u G F sin K π e ν e sin θ c μ e + ν + ν e μ - G F Αν συγκρίνουμε τους ρυθμούς βρίσκουμε θ c ~ 0,3 rad (~13 ο ) cos 0,3 = 0,95, sin 0,3 = 0,05 0,95/0,05 = 19 παράγοντας ~0 1

13 Ασθενή ουδέτερα ρεύματα στην δεκαετία του 60 αρχίσαμε να έχουμε τις πρώτες δέσμες (αντι-) νετρίνων από διασπάσεις π και Κ. Το 1973 στο CERN για πρώτη φορά παρατηρήθηκαν τα πρώτα γεγονότα που είχαν ασθενή ουδέτερα ρεύματα ν N ν X μ + μ + μ ν + N μ + X ασθενές ουδέτερο ασθενές φορτισμένο ρεύμα Ζ 0 ρεύμα W ± 13

14 Ασθενή ουδέτερα ρεύματα Όλες οι ασθενείς αλληλεπιδράσεις με ουδέτερα ρεύματα που έχουν παρατηρηθεί είναι S=0. εν αλλάζουν καθόλου την γεύση. Για την μέτρηση: + + K πνν 0 K π μ ν μ + + = = <

15 Ασθενή Ρεύματα n p + e + ν e στην αντίδραση το φορτισμένο ρεύμα είναι J = ud cosθ c d cos θ c + s sin θ c Για το ουδέτερο ρεύμα έχουμε συνεισφορές: + ( ) J = uu + dd cos θ + ss sin θ + sd + sd sinθ cosθ 0 c c c c S=0 S=1 15

16 Ο Μηχανισμός GIM To 1970 οι Glashow, Illiopoulos & Maiani (GIM) προτείνανε την ύπαρξη ενός νέου κουαρκ το c φτιάχνοντας έτσι ένα καινούριο ασθενές ζεύγος e μ u u = ν e ν μ dc d cosθc + s sinθc c c = s c s cosθc d sinθc Το c κουαρκ έχει διαφορετική ζεύξη με τα d και s απ ότι το u αλλά εξαρτάται πάντα από την γωνία θ c 16

17 Ο Μηχανισμός GIM ( ) J = uu + dd cos θ + ss sin θ + sd + sd sinθ cosθ 0 c c c c + επιπλέον S=0 S=1 + ( ) + cc + ss θ + dd θ sd + sd θ θ cos c sin c sin c cos c 0 S=0 S=1 J = uu + dd + ss + cc 17

18 Ο Μηχανισμός GIM Είδαμε ότι το c κουαρκ ανακαλύφθηκε το 1974 Έχοντας ορίσει: Ψ = cc, D + = cd... c c = s c s cosθc d sinθc Από τον μηχανισμό GIM και τη θεωρία Cabibbo προβλέπουμε για τους ρυθμούς διασπάσεων c s ~cos θc c d ~sin θc Άρα τα μεσόνια με c κουαρκ παράγουν κυρίως καόνια όταν διασπώνται 18

19 Ο πίνακας CKM Θεωρώντας μόνο τα κουαρκ u, d, s, c το ασθενές φορτισμένο ρεύμα δίνεται από τη σχέση cosθc sinθc d J = ( u, c ) sinθc cosθ c s πίνακας περιστροφής συντεταγμένων Έχοντας τα u, d, s, c, b και t κουαρκ γίνεται V ud V us V ub d ( ) J = u, c, t Vcd Vcs Vcb s Vtd Vts V tb b V V ud cd V V us cs το V qq στο πλάτος Πίνακας Cabibbo Kobayashi Maskawa (CKM) 19

20 Οι τιμές του πίνακα CKM είναι: Ο πίνακας CKM 0,97 0, 0,004-0, 0,97 0,0404 0,004-0,04 0,99 Ο πίνακας είναι σχεδόν διαγώνιος + + J ud cs tb Άρα η προτιμούμενες διασπάσεις είναι t b c s u 0

21 Ομοτιμία Parity Ας θεωρήσουμε ένα διάνυσμα v. Από τον ορισμό της parity έχουμε P(v)=-v Ας δημιουργήσουμε ένα βαθμωτό μέγεθος από το v: s = v v P(s) = P(v v) = (-v) (-v) = v v = +s Ας πάρουμε τώρα το εξωτερικό γινόμενο δύο διανυσμάτων: a = v w P(a ) = P(v w) = (- v) (-w) = v w= +a Μπορούμε να πάρουμε ένα βαθμωτό μέγεθος από τα a και v: p = a w P(p) = P(a v) = (+a) (-v) = -a v = -p βαθμωτό (scalar) ψευδοβαθμωτό (pseudoscalar) διανυσματικό (vector) ψευδοδιανυσματικό (pseudovector, axial vector) P(s) = +s P(p) = -p P(v)=-v v P(a ) =+a 1

22 Παραβίαση της Parity στις Ασθενείς Αλληλεπιδράσεις Είδαμε ότι οι ασθενείς αλληλεπιδράσεις περιγράφονται από ένα διανυσματικό μέρος V (vector) και ένα αξονικό διανυσματικό μέρος Α (axial vector) οποιαδήποτε διαδικασία εξαρτάται από p s = p s (vector) (axial vector) θα πρέπει να παραβιάζει την parity p s = + p s Το στοιχείο πίνακα (Matrix element) στη θεωρία του Fermi είναι: M M M F V A M = M + M M M F V A V A Παραβίαση Parity

23 προτιμάται Η μετρούμενη κατανομή είναι: σ p I( e ) 1 E όπου σ το κανονικοποιημένο spin του πυρήνα. Παραβίαση της Parity Αυτή η ποσότητα παραβιάζει την Parity P (1 ) = σ p σ p σ p E E E spin και ορμή αντιπαράλληλα αντίθετη κατεύθυνση από το spin του πυρήνα ο καθρέφτης αλλάζει την κατεύθυνση κίνησης αλλά όχι το spin spin και ορμή παράλληλα κατεύθυνση ιδια με το spin του πυρήνα 3

24 Παραβίαση της Parity Από την αρχή διατήρησης της στροφορμής έπεται ότι το spin του ηλεκτρονίου πρέπει να είναι παράλληλο με το spin του πυρήνα οπότε στην έκφραση σ p I( e ) 1 E το σ εκφράζει και την κατεύθυνση του spin του ηλεκτρονίου οπότε μπορούμε να γράψουμε την έκφραση με τη μορφή I( e ) 1βcosθ Μετρώντας τα ηλεκτρόνια που πάνε προς τα πάνω (spin παράλληλο) και τα ηλεκτρόνια που πάνε προς τα κάτω (spin αντιπαράλληλο) βρίσκουμε την πόλωση (polarization) των ηλεκτρονίων πάνω κάτω I I P = =β πάνω κάτω I + I 4

25 Παραβίαση της Parity Άρα βλέπουμε, πειραματικά, ότι τα ηλεκτρόνια που παράγονται από β-διάσπαση είναι πολωμένα και μάλιστα η πόλωση είναι -β. β Αυτό σημαίνει ότι οι ασθενείς αλληλεπιδράσεις έχουν εξάρτηση από το spin. Για το αντινετρίνο επειδή η μάζα του είναι μηδέν σημαίνει ότι το β=1 άρα είναι 100% πολωμένα. Αν κάνουμε το ίδιο πείραμα με παραγωγή ποζιτρονίων θα βρούμε ότι η πόλωση των ποζιτρονίων είναι +β και η πόλωση των νετρίνο είναι -1. Το νετρίνο πρέπει να έχει το spin του αντιπαράλληλο με την ορμή του ενώ το αντινετρίνο πρέπει να έχει το spin του παράλληλο. Οι ασθενείς αλληλεπιδράσεις αλληλεπιδρούν μόνο με left-handed handed σωματίδια και right-handed αντισωματίδια. 5

26 Παραβίαση της Parity Αν θυμηθούμε τον ορισμό της helicity οι ασθενείς αλληλεπιδράσεις λ αλληλεπιδρούν λ μόνο με σωματίδια με h=-1. Για σωματίδια με μηδενική μάζα, όπως είναι τα νετρίνα, σημαίνει ότι είναι ΠΑΝΤΟΤΕ left-handed, h=-1. Για σωματίδια που έχουν μάζα, όσο γρήγορα και αν κινούνται μπορούμε να βρούμε ένα σύστημα που κινείται γρηγορότερα από το σωματίδιο. Σ αυτό το σύστημα το spin δεν αλλάζει, αλλάζει όμως η φορά της κίνησης. Έτσι για τα ηλεκτρόνια, οι ασθενείς δυνάμεις αλληλεπιδρούν μόνο με left-handed ηλεκτρόνια. Αυτό δεν σημαίνει ότι right-handed ηλεκτρόνια δεν παράγονται σε ασθενείς αλληλεπιδράσεις λ μιας και πάντα μπορούμε να βρούμε ένα σύστημα που αλλάζει τα lefthanded ηλεκτρόνια σε right-handed. Γι αυτό το λόγο βρίσκουμε το β β στην πόλωση των ηλεκτρονίων. 6

27 ιάσπαση του πιονίου Ας εφαρμόσουμε αυτές τις ιδέες στην διάσπαση του πιονίου. Εφόσον έχουμε την παρουσία νετρίνου σημαίνει ότι η διάσπαση γίνεται μέσω ασθενών αλληλεπιδράσεων. π μ + ν μ π e ν e phase space + ( )( ) dp mπ + m mπ m p = de Από το phase space περιμένουμε: Γ(π eν) 3,45 Γ(π μν) Μετρήθηκε: Γ(π eν) =1, Γ(π μν) Στο σύστημα του πιονίου έχουμε: λάθος helicity! μ π - ν 4 m Η πιθανότητα να βρούμε το μιόνιο με λάθος helicity είναι 1-β μ =0.77 Η πιθανότητα να βρούμε το ηλεκτρόνιο με λάθος helicity είναι 1-ββ =, e 5 Γ( π eν ),58 10 = = Γ( π μν) 0,77 μ 4 π πάντα δεξιόστροφο 4 3, 45 1, 10!!! 7

28 Βαθιά ανελαστική σκέδαση νετρίνο Είδαμε ότι οι ασθενείς αλληλεπιδράσεις αντιδρούν μόνο με left-handed σωματίδια ( right-handed αντισωματίδια). Αυτή η ιδιότητα θα μπορούσε να χρησιμοποιηθεί για να μελετήσουμε τις διαφορές μεταξύ κουαρκ και αντικουαρκ μέσα στο νουκλεόνιο. Ας ξαναδούμε την αλληλεπίδραση φορτισμένου ρεύματος. Λόγω της διατήρησης του λεπτονικού αριθμού μπορούμε να έχουμε τις εξής αντιδράσεις: : Άρα τα νετρίνο αλληλεπιδρούν με αρνητικά φορτισμένα κουαρκ και αντικουαρκ. Τα κουαρκ πρέπει να είναι left-handed και τα αντικουαρκ righthanded. Σαν αποτέλσεμα αυτού θα έχουμε διαφορετικές γωνιακές κατανομές για αλληλεπιδράσεις με κουάρκ απ ότι με αντικουαρκ. 8

29 σκέδαση νετρίνο Για παράδειγμα ας δούμε τη σκέδαση νετρίνο σε παρα πολύ μεγάλη ενέργεια ώστε όλα τα σωματίδια α να έχουν β~1 που σημαίνει ότι όλα τα σωματίδια είναι πολωμένα. Σ αυτές τις συνθήκες ας δούμε τι γίνεται στην περίπτωση που παρατηρούμε οπισθοσκέδαση (θ=180 ο ). Η στροφορμή διατηρείται (όπως και σε όλες τις άλλες γωνίες σκέδασης) άρα η γωνιακή κατανομή είναι ισοτροπική Η στροφορμή ΕΝ διατηρείται άρα δεν μπορούμε να έχουμε οπισθοσκέδαση. Η γωνιακή κατανομή είναι (1+cosθ) Μ αυτό τον τρόπο μπορούμε να ξεχωρίσουμε τα κουαρκ από τα αντικουαρκ και μάλιστα αν χρησιμοποιήσουμε και δέσμες από αντινετρίνο μπορούμε να ξεχωρίσουμε τα u από τα d. 9

30 Μια πρώτη ματία στη δομή του πρωτονίου 30

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 10η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Σωμάτια & Αντισωμάτια Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 16/12/2011 Πετρίδου Χαρά Στοιχειώδη Σωμάτια

Διαβάστε περισσότερα

β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας

Διαβάστε περισσότερα

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια Περιεχόµενα Διαγράµµατα Feynman Δυνητικά σωµάτια Οι τρείς αλληλεπιδράσεις Ηλεκτροµαγνητισµός Ισχυρή Ασθενής Περίληψη Κ. Παπανικόλας, Ε. Στυλιάρης, Π. Σφήκας

Διαβάστε περισσότερα

1 ΣΤΟΙΧΕΙΑ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑΣ Στοιχειώδη σωµατίδια 1) Τι ονοµάζουµε στοιχειώδη σωµατίδια και τι στοιχειώδη σωµάτια; Η συνήθης ύλη, ήταν γνωστό µέχρι το 1932 ότι αποτελείται

Διαβάστε περισσότερα

www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html

www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html Σύγχρονη Φυσική Στοιχειώδη Σωµατίδια Σωµατίδια Επιταχυντές Ανιχνευτές Αλληλεπιδράσεις Συµµετρίες Νόµοι ιατήρησης Καθιερωµένο Πρότυπο www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html Σύγχρονη Φυσική: Στοιχειώδη

Διαβάστε περισσότερα

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά Πυρηνικές Δυνάμεις Διάλεξη 4η Πετρίδου Χαρά Η Ύλη στο βιβλίο: Cottingham & Greenwood 2 Κεφάλαιο 5: Ιδιότητες των Πυρήνων 5.5: Μαγνητική Διπολική Ροπή του Πυρήνα 5.7: Ηλεκτρική Τετραπολική του Πυρήνα 5.1:

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Μονάδες Energy [E] ev, kev, MeV, GeV, TeV, PeV, 10 0, 10 3, 10 6, 10 9, 10 12, 10 15 1eV = 1.6 10 19 J ev είναι πιο χρήσιμη στη φυσική

Διαβάστε περισσότερα

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15 Διάλεξη 14: Μεσόνια και αντισωματίδια Μεσόνια Όπως αναφέρθηκε προηγουμένως (διάλεξη 13) η έννοια των στοιχειωδών σωματίων άλλαξε πολλές φορές μέχρι σήμερα. Μέχρι το 1934 ο κόσμος των στοιχειωδών σωματιδίων

Διαβάστε περισσότερα

Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος

Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος Παράδοξα σωματίδια Μετά την ανακάλυψη του μεσονίου που είχε προβλέψει ο Yukawa, την ανακάλυψη των αντισωματιδίων του Dirac και την κοπιώδη αλλά αποτελεσματική

Διαβάστε περισσότερα

s (spin) -s s αξονικό διάνυσμα r p

s (spin) -s s αξονικό διάνυσμα r p Συμμετρία αναστροφής του χρόνου Τ Με την αναστροφή του χρόνου Τ έχουμε t -t, p p, J J. Γι αυτό το λόγο ο Τ δεν έχει ιδιοτιμές δοτμές όπως οι C και P. Παρόλα αυτά σε συνδυασμό με την P, PT σημαίνει ότι

Διαβάστε περισσότερα

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Hideki Yukawa and the Nuclear Force Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής πυρηνική δύναμη Η πυρηνική δύναμη (ή αλληλεπίδραση νουκλεονίουνουκλεονίου, ή NN forces,

Διαβάστε περισσότερα

Ανάλυση δεδοµένων του πειράµατος DELPHI Μέτρηση των ποσοστών διάσπασης του µποζονίου Ζ

Ανάλυση δεδοµένων του πειράµατος DELPHI Μέτρηση των ποσοστών διάσπασης του µποζονίου Ζ ΕΡΓΑΣΤΗΡΙΟ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ II Χ. Πετρίδου,. Σαµψωνίδης Ανάλυση δεδοµένων του πειράµατος DELPHI Μέτρηση των ποσοστών διάσπασης του µποζονίου Ζ http://wyp.physics.auth.gr/physics.htm Σκοπός O σκοπός της

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΣΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΟΥ ΜΑΓΝΗΤΙΚΟΥ ΣΥΝΤΟΝΙΣΜΟΥ ΜΑΓΝΗΤΙΚΗ ΡΟΠΗ ΠΑΡΑΜΑΓΝΗΤΙΚΩΝ ΚΑΙ ΔΙΑΜΑΓΝΗΤΙΚΩΝ ΑΕΡΙΩΝ ΠΡΟΛΟΓΟΣ

ΟΛΟΚΛΗΡΩΣΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΟΥ ΜΑΓΝΗΤΙΚΟΥ ΣΥΝΤΟΝΙΣΜΟΥ ΜΑΓΝΗΤΙΚΗ ΡΟΠΗ ΠΑΡΑΜΑΓΝΗΤΙΚΩΝ ΚΑΙ ΔΙΑΜΑΓΝΗΤΙΚΩΝ ΑΕΡΙΩΝ ΠΡΟΛΟΓΟΣ ΟΛΟΚΛΗΡΩΣΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΟΥ ΜΑΓΝΗΤΙΚΟΥ ΣΥΝΤΟΝΙΣΜΟΥ ΜΑΓΝΗΤΙΚΗ ΡΟΠΗ ΠΑΡΑΜΑΓΝΗΤΙΚΩΝ ΚΑΙ ΔΙΑΜΑΓΝΗΤΙΚΩΝ ΑΕΡΙΩΝ Του Αλέκου Χαραλαμπόπουλου ΠΡΟΛΟΓΟΣ Όταν ένα φορτισμένο σωμάτιο με spin L, βρεθεί μέσα σε ομογενές

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A Ένα ισότοπο, το οποίο συµβολίζουµε µε Z X, έχει ατοµικό αριθµό Ζ και µαζικό αριθµό Α. Ο πυρήνας του ισοτόπου

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής REF: Σ. Δεδούσης, Μ.Ζαμάνη, Δ.Σαμψωνίδης Σημειώσεις Πυρηνικής Φυσικής Πυρηνικά μοντέλα Βασικός σκοπός της Πυρηνικής Φυσικής είναι η περιγραφή των

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005 ΑΤΜΟΦ Απαντησεις στις ερωτησεις της εξετασης της 4 ης Ιουνιου 005. Ερωτηση που αφορα στις ασκησεις του εργαστηριου. Α) Με βάση τη σχέση που συνδέει τις αποστάσεις α και b με την εστιακή απόσταση του σφαιρικού

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΗ 5ου εξαμήνου. 10 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη) Κ. Κορδάς, ακ. έτος 2013-14

ΠΥΡΗΝΙΚΗ 5ου εξαμήνου. 10 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη) Κ. Κορδάς, ακ. έτος 2013-14 ΠΥΡΗΝΙΚΗ 5ου εξαμήνου 10 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη) Κ. Κορδάς, ακ. έτος 2013-14 1. Ο αριθμός των πυρήνων που έχω σ' ένα δείγμα μειώνεται εκθετικά με το πέρασμα του χρόνου,

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014 ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 214 Ασκηση συνολικό φορτίο λεκτρικό φορτίο Q είναι κατανεμημένο σε σφαιρικό όγκο ακτίνας R με πυκνότητα ορτίου ανάλογη του

Διαβάστε περισσότερα

Με διεθνή σύμβαση το 1961, καθιερώθηκε ότι 1 amu (atomic mass unit) είναι το 1/12 της μάζας του ουδέτερου ατόμου του άνθρακα 12 C, επομένως:

Με διεθνή σύμβαση το 1961, καθιερώθηκε ότι 1 amu (atomic mass unit) είναι το 1/12 της μάζας του ουδέτερου ατόμου του άνθρακα 12 C, επομένως: ΚΕΦΑΛΑΙΟ : ΑΤΟΜΙΚΟΣ ΠΥΡΗΝΑΣ-ΙΔΙΟΤΗΤΕΣ Ο πυρήνας του ατόμου αποτελείται από πρωτόνια και νετρόνια, τα νουκλεόνια που είναι φερμιόνια με σπιν ½, όπως και τα λεπτόνια. Η μάζα του νετρονίου είναι 0.14% μεγαλύτερη

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ 1. O επιταχυντής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι (Υποχρεωτικό ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος, Επίκουρος Καθηγητής ΣΗΜΕΙΩΣΕΙΣ # 5 : ΤΟ ΗΛΕΚΤΡΙΚΟ ΔΙΠΟΛΟ Ορισμός : Με τον όρο «ηλεκτρικό

Διαβάστε περισσότερα

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

Σχετικά µε τα ατοµικά σωµατίδια πρέπει να γνωρίζουµε ότι: και αρνητικού φορτίου q e. που εκπέµπονται από τους ατοµικούς πυρήνες λέγονται σωµατίδια β.

Σχετικά µε τα ατοµικά σωµατίδια πρέπει να γνωρίζουµε ότι: και αρνητικού φορτίου q e. που εκπέµπονται από τους ατοµικούς πυρήνες λέγονται σωµατίδια β. Ηλεκτρόνιο - σωµατίδιο β Πρωτόνιο m p 840 m e Νετρόνιο m p m n Ποζιτρόνιο Σχετικά µε τα ατοµικά σωµατίδια πρέπει να γνωρίζουµε ότι: Το ηλεκτρόνιο είναι σωµατίδιο µάζας m e και αρνητικού ορτίου q e =-,6

Διαβάστε περισσότερα

Το Φως Είναι Εγκάρσιο Κύμα!

Το Φως Είναι Εγκάρσιο Κύμα! ΓΙΩΡΓΟΣ ΑΣΗΜΕΛΛΗΣ Μαθήματα Οπτικής 3. Πόλωση Το Φως Είναι Εγκάρσιο Κύμα! Αυτό που βλέπουμε με τα μάτια μας ή ανιχνεύουμε με αισθητήρες είναι το αποτέλεσμα που προκύπτει όταν φως με συγκεκριμένο χρώμα -είδος,

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10 ΚΕΦΑΛΑΙΟ 10 ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 1 ΕΞΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ (ΕΠΑΝΑΛΗΨΗ) Μέτρο εξωτερικού γινομένου 2 C A B C ABsin διανυσμάτων A και B Ιδιότητες εξωτερικού γινομένου A B B A εν είναι αντιμεταθετικό.

Διαβάστε περισσότερα

ΤΟ ΠΕΙΡΑΜΑ ΤΟΥ CERN. Επιστημονική ομάδα ΒΑΣΙΛΗΣ ΣΙΔΕΡΗΣ &ΝΙΚΟΣ ΚΑΛΑΦΑΤΗΣ. 3ο Λύκειο Γαλατσίου 2011-2012

ΤΟ ΠΕΙΡΑΜΑ ΤΟΥ CERN. Επιστημονική ομάδα ΒΑΣΙΛΗΣ ΣΙΔΕΡΗΣ &ΝΙΚΟΣ ΚΑΛΑΦΑΤΗΣ. 3ο Λύκειο Γαλατσίου 2011-2012 ΤΟ ΠΕΙΡΑΜΑ ΤΟΥ CERN Επιστημονική ομάδα ΒΑΣΙΛΗΣ ΣΙΔΕΡΗΣ &ΝΙΚΟΣ ΚΑΛΑΦΑΤΗΣ 3ο Λύκειο Γαλατσίου 2011-2012 Υπεύθυνοι καθηγητές Μαραγκουδάκης Επαμεινώνδας και Φαράκου Γεωργία ΤΟ ΠΑΝΗΓΥΡΙ ΤΗΣ ΦΥΣΙΚΗΣ ΤΩΝ ΣΩΜΑΤΙΔΙΩΝ

Διαβάστε περισσότερα

Κεφάλαιο 11 Στροφορµή

Κεφάλαιο 11 Στροφορµή Κεφάλαιο 11 Στροφορµή Περιεχόµενα Κεφαλαίου 11 Στροφορµή Περιστροφή Αντικειµένων πέριξ σταθερού άξονα Το Εξωτερικό γινόµενο-η ροπή ως διάνυσµα Στροφορµή Σωµατιδίου Στροφορµή και Ροπή για Σύστηµα Σωµατιδίων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. «Μεταπτυχιακή Εξειδίκευση Καθηγητών των Φυσικών Επιστημών» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. «Μεταπτυχιακή Εξειδίκευση Καθηγητών των Φυσικών Επιστημών» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «Μεταπτυχιακή Εξειδίκευση Καθηγητών των Φυσικών Επιστημών» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Έννοιες και Μεθοδολογίες της σωματιδιακής

Διαβάστε περισσότερα

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά?

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? (Μη-μαγνητικά, μη-αγώγιμα, διαφανή στερεά ή υγρά με πυκνή, σχετικά κανονική διάταξη δομικών λίθων). Γραμμικά πολωμένο κύμα προσπίπτει σε ηλεκτρόνιο

Διαβάστε περισσότερα

Το Καθιερωμένο Πρότυπο των Βασικών Αλληλεπιδράσεων και η Κοσμική Ακτινοβολία

Το Καθιερωμένο Πρότυπο των Βασικών Αλληλεπιδράσεων και η Κοσμική Ακτινοβολία 1 Το Καθιερωμένο Πρότυπο των Βασικών Αλληλεπιδράσεων και η Κοσμική Ακτινοβολία Εισαγωγή Στο παρόν Κεφάλαιο συνοψίζονται οι αρχές που διέπουν τον κόσμο των στοιχειωδών σωματιδίων στο πλαίσιο του Καθιερωμένου

Διαβάστε περισσότερα

Ανακλώμενο ηλεκτρόνιο KE = E γ - E γ = E mc 2

Ανακλώμενο ηλεκτρόνιο KE = E γ - E γ = E mc 2 Σκέδαση Compton Το φαινόμενο Compton περιγράφει τη σκέδαση ενός φωτονίου από ένα ελεύθερο ατομικό ηλεκτρόνιο: γ + γ +. To φωτόνιο δεν εξαφανίζεται μετά τη σκέδαση αλλά αλλάζει κατεύθυνση και ενέργεια.

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Στόχος : Να εξηγήσουμε την επίδραση του δυναμικού του κρυστάλλου στις Ε- Ειδικώτερα: Το δυναμικό του κρυστάλλου 1. εισάγονται χάσματα στα σημεία όπου τέμνονται

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ Θεωρητικη αναλυση μεταλλα Έχουν κοινές φυσικές ιδιότητες που αποδεικνύεται πως είναι αλληλένδετες μεταξύ τους: Υψηλή φυσική αντοχή Υψηλή πυκνότητα Υψηλή ηλεκτρική και θερμική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 (περίοδος Σεπτεμβρίου 2013-14)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 (περίοδος Σεπτεμβρίου 2013-14) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 περίοδος Σεπτεμβρίου 2013-14 Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου

Διαβάστε περισσότερα

Σύζευξη σπιν-σπιν J = 0 J 0

Σύζευξη σπιν-σπιν J = 0 J 0 Σύζευξη σπιν-σπιν Ας υποθέσουµε ότι έχουµε δύο πυρήνες Α και Χ, οι οποίοι είτε συνδέονται απ ευθείας µε έναν δεσµό είτε η σύνδεσή γίνεται µε περισσότερους δεσµούς. A X J = 0 J 0 Α Χ Α Χ Το σπάσιµο των

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

Μελέτη Συναρτήσεων ϐ και Ενοποίηση στο Καθιερωµένο Πρότυπο και στο Ελάχιστο Υπερσυµµετρικό Καθιερωµένο Πρότυπο των Στοιχειωδών Σωµατιδίων

Μελέτη Συναρτήσεων ϐ και Ενοποίηση στο Καθιερωµένο Πρότυπο και στο Ελάχιστο Υπερσυµµετρικό Καθιερωµένο Πρότυπο των Στοιχειωδών Σωµατιδίων Μελέτη Συναρτήσεων ϐ και Ενοποίηση στο Καθιερωµένο Πρότυπο και στο Ελάχιστο Υπερσυµµετρικό Καθιερωµένο Πρότυπο των Στοιχειωδών Σωµατιδίων Γεώργιος Χατζηδάκης Εθνικό Μετσόβειο Πολυτεχνείο Σχολή Εφαρµοσµένων

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ

ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ ΥΛΗ Οτιδήποτε έχει μάζα και καταλαμβάνει χώρο Μάζα είναι η ποσότητα αδράνειας ενός σώματος, μονάδα kilogram (kg) (σύνδεση( δύναμης & επιτάχυνσης) F=m*γ Καταστάσεις της ύλης Στερεά,

Διαβάστε περισσότερα

Μοριακά Τροχιακά ιατοµικών Μορίων

Μοριακά Τροχιακά ιατοµικών Μορίων Μοριακά Τροχιακά ιατοµικών Μορίων Για την περιγραφή της ηλεκτρονικής δοµής των µορίων θα χρησιµοποιήσουµε µοριακά τροχιακά που θα είναι γραµµικοί συνδυασµοί ατοµικών τροχιακών. Τα µοριακά τροχιακά θα αποτελούν

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή φράση, η οποία

Διαβάστε περισσότερα

Το μποζόνιο Higgs (Σωματίδιο του Θεού) και ο ρόλος του Μεγάλου Αδρονικού Επιταχυντή στην Ανακάλυψη του Ομάδα Μαθητών:

Το μποζόνιο Higgs (Σωματίδιο του Θεού) και ο ρόλος του Μεγάλου Αδρονικού Επιταχυντή στην Ανακάλυψη του Ομάδα Μαθητών: 1 Το μποζόνιο Higgs (Σωματίδιο του Θεού) και ο ρόλος του Μεγάλου Αδρονικού Επιταχυντή στην Ανακάλυψη του Ομάδα Μαθητών: Ιωάννου Παναγιώτης, Λεωνίδου Άντρεα, Βαφέα Ραφαέλα, Παναρέτου Κατερίνα Συντονιστής

Διαβάστε περισσότερα

# αλλ/σεων με e # αλλ/σεων με πυρήνες

# αλλ/σεων με e # αλλ/σεων με πυρήνες Απώλεια ενέργειας φορτισμένων σωματιδίων Όταν ένα φορτισμένο σωματίδιο κινείται μέσα στην ύλη αλληλεπιδρά ΗΜ με τα αρνητικά e και τους θετικούς πυρήνες ανταλλάσσοντας φωτόνια. Το αποτέλεσμα αυτών των αλλ/σεων

Διαβάστε περισσότερα

1. Μολύβι, χάρακας, κρούση και πειραµατική επαλήθευση του θεωρητικού αποτελέσµατος

1. Μολύβι, χάρακας, κρούση και πειραµατική επαλήθευση του θεωρητικού αποτελέσµατος 1. ολύβι, χάρακας, κρούση και πειραµατική επαλήθευση του θεωρητικού αποτελέσµατος Πάρτε ένα µολύβι, ένα χάρακα και κάντε το εξής πείραµα: Κρατείστε το χάρακα σε ύψος Η από το τραπέζι, µετρείστε πάνω από

Διαβάστε περισσότερα

Large Hardron Collider (LHC)

Large Hardron Collider (LHC) 1 Large Hardron Collider (LHC) Ο LHC είναι ο μεγαλύτερος και ισχυρότερος επιταχυντής σωματιδίων που έχει ποτέ κατασκευαστεί. Βρίσκεται εγκατεστημένος στο Ευρωπαϊκό Κέντρο Πυρηνικών Ερευνών (CERN). Χρησιμοποιεί

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΕ 04

ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΕ 04 ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΕ 04 Χρήσιμες ερωτήσεις Ηλεκτρομαγνητισμού, Πυρηνικής Φυσικής και Σχετικότητας για τους υποψήφιους Φυσικούς του επικείμενου διαγωνισμού του Ασέπ από τα Πανεπιστημιακά Φροντιστηρία ΚΟΛΛΙΝΤΖΑ.

Διαβάστε περισσότερα

Εισαγωγή γή στη Φυσική των Επιταχυντών II Γ. Παπαφιλίππου Τμήμα Επιταχυντών -CERN

Εισαγωγή γή στη Φυσική των Επιταχυντών II Γ. Παπαφιλίππου Τμήμα Επιταχυντών -CERN γή στη Φυσική των στη Φυσική τω ων Επιταχυντώ ών Επιταχυντών II Γ. Παπαφιλίππου Τμήμα Επιταχυντών -CERN Επιμορφωτικό πρόγραμμα Ελλήνων καθηγητών CERN, Ιούλιος 2008 1 Βασικές αρχές δυναμικής των επιταχυντών

Διαβάστε περισσότερα

Μη Σχετικιστική Κβαντομηχανική

Μη Σχετικιστική Κβαντομηχανική Μη Σχετικιστική Κβαντομηχανική Υπενθυμίζουμε τη συνταγή που θέτει την εξίσωση Schrödger σε αντιστοιχία με τη μη-σχετικιστική σχέση ενέργειας-ορμής: p E () m μέσω της αντικατάστασης των E, p με διαφορικούς

Διαβάστε περισσότερα

Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα

Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα ΦΥΕ 40 Κβαντική Φυσική Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα Μαθημα 5.1 - διασπάσεις Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Διαβάστε περισσότερα

Διάσπαση σωµατιδίων. = m C 2 + p 2 = m C 2 + E B 2! m B E C = (E B = (E C. p B. , p), p C. ,- p) = (m A , 0) p A = E B. + m C 2 + E B 2! m B.

Διάσπαση σωµατιδίων. = m C 2 + p 2 = m C 2 + E B 2! m B E C = (E B = (E C. p B. , p), p C. ,- p) = (m A , 0) p A = E B. + m C 2 + E B 2! m B. πριν: µετά: Διάσπαση σωµατιδίων p A = (m A, 0) p B = (E B, p), p C = (E C,- p) E C = m C + p = m C + E B! m B m A = E B + m C + E B! m B " ( m A! E ) B = m C + E B! m B " m A! m A E B = m C! m B " E B

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1 Στροφορµή ΦΥΣ 131 - Διαλ.25 1 ΦΥΣ 131 - Διαλ.25 2 Στροφορµή q Ένα από τα βασικά µεγέθη που σχετίζονται µε την περιστροφική κίνηση είναι η στροφορµή q Θυµηθείτε ότι για µάζα m που κινείται µε ταχύτητα v

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ Lab. MEchanics Applied TECHNICAL UNIVERSITY OF CRETE ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ 1 η Συνέχεια διαλέξεων B Μέρος 1 ΒΑΣΙΚΑ ΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Χρήστος Α. Ελευθεριάδης. ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ Βασικές αρχές και Πυρηνοσύνθεση

Χρήστος Α. Ελευθεριάδης. ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ Βασικές αρχές και Πυρηνοσύνθεση Χρήστος Α. Ελευθεριάδης ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ Βασικές αρχές και Πυρηνοσύνθεση ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ Βασικές αρχές και Πυρηνοσύνθεση Χρήστος Α. Ελευθεριάδης Εκδόσεις Κ. Ν. Επισκόπου 7 Τ. 2310 203566 www.copycity.gr

Διαβάστε περισσότερα

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα,

Διαβάστε περισσότερα

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p University of Ioannina Deartment of Materials Science & Engineering Comutational Materials Science τική Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π1, 7146, elidorik@cc.uoi.gr cmsl.materials.uoi.gr/elidorik

Διαβάστε περισσότερα

ΥδροδυναµικέςΜηχανές

ΥδροδυναµικέςΜηχανές ΥδροδυναµικέςΜηχανές Τρίγωνα ταχυτήτων στροβιλοµηχανών Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Κυλινδρικέςσυντεταγµένες Στα σχήµατα παριστάνονται αξονικές τοµές και όψεις

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ)

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ 1. Για το κωνικό

Διαβάστε περισσότερα

Αναζητώντας παράξενα σωµατίδια στο πείραµα ALICE. 1. Περίληψη

Αναζητώντας παράξενα σωµατίδια στο πείραµα ALICE. 1. Περίληψη Αναζητώντας παράξενα σωµατίδια στο πείραµα ALICE 1. Περίληψη Η άσκηση που προτείνεται εδώ έχει να κάνει µε την αναζήτηση παράξενων σωµατιδίων, που παράγονται από συγκρούσεις στο LHC και καταγράφονται από

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 1. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Χαρακτηριστικά μεγέθη περιοδικών φαινομένων

ΠΕΡΙΛΗΨΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 1. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Χαρακτηριστικά μεγέθη περιοδικών φαινομένων ΠΕΡΙΛΗΨΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Χαρακτηριστικά μεγέθη περιοδικών φαινομένων Περίοδος Τ (s) Τ = N t Συχνότητα f (Hz) f = t N Σχέση περιόδου και συχνότητας Τ = f T Γωνιακή

Διαβάστε περισσότερα

Μέτρηση Γωνίας Brewster Νόμοι του Fresnel

Μέτρηση Γωνίας Brewster Νόμοι του Fresnel Μέτρηση Γωνίας Bewse Νόμοι του Fesnel [] ΕΙΣΑΓΩΓΗ Στο πείραμα, δέσμη φωτός από διοδικό lase ανακλάται στην επίπεδη επιφάνεια ενός ακρυλικού ημι-κυκλικού φακού, πολώνεται γραμμικά και ανιχνεύεται από ένα

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα

Διαβάστε περισσότερα

ιάνυσµα ονοµάζεται το µαθηµατικό µέγεθος που περιγράφεται από µιατριάδαστοιχείων: το

ιάνυσµα ονοµάζεται το µαθηµατικό µέγεθος που περιγράφεται από µιατριάδαστοιχείων: το Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι Μαθηµατικά Ι Ακαδ. Έτος 2008-9 1/44 1. Ορισµοί 2. Είδη διανυσµάτων 3. Πράξεις διανυσµάτων 4. Εσωτερικό, εξωτερικό και µικτό γινόµενο

Διαβάστε περισσότερα

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014 Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού Ιωάννης Γκιάλας 14 Μαρτίου 2014 Έργο ηλεκτροστατικής δύναμης W F Δl W N i i1 F Δl i Η μετατόπιση Δl περιγράφεται από ένα διάνυσμα που

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑΪΟΥ 204 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

δ-ray με κινητική ενέργεια T e και ορμή p e παράγεται σε μια γωνία Θ q, p

δ-ray με κινητική ενέργεια T e και ορμή p e παράγεται σε μια γωνία Θ q, p δ rays Κατά τον ιονισμό το εκπεμπόμενο θα έχει κινητική ενέργεια : 0 T T max q, p δ-ray με κινητική ενέργεια T και ορμή p παράγεται σε μια γωνία Θ T p cosθ = p T max max όπου p max η ορμή ενός με τη μέγιστη

Διαβάστε περισσότερα

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ Ένα ρεύµα ονοµάζεται εναλλασσόµενο όταν το πλάτος του χαρακτηρίζεται από µια συνάρτηση του χρόνου, η οποία εµφανίζει κάποια περιοδικότητα. Το συνολικό ρεύµα που διέρχεται από µια

Διαβάστε περισσότερα

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές.

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές. ΜΑΘΗΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Θέµα 1 ο α) Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί µεταβολή AB από την κατάσταση A (p, V, T ) στην κατάσταση B (p, V 1, T ). i) Ισχύει V 1 = V. ii) Η µεταβολή παριστάνεται

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΘΕΜΑ A ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Παρασκευή, 0 Μαΐου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ Στις ερωτήσεις Α -Α να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΣΤΡΕΦΟΜΕΝΟΙ ΙΣΚΟΙ & ΠΕΡΙ ΣΤΡΟΦΟΡΜΗΣ

ΣΤΡΕΦΟΜΕΝΟΙ ΙΣΚΟΙ & ΠΕΡΙ ΣΤΡΟΦΟΡΜΗΣ ΣΤΡΕΦΜΕΝΙ ΙΣΚΙ & ΠΕΡΙ ΣΤΡΦΡΜΗΣ Ένας οµογενής και συµπαγής δίσκος µάζας m και ακτίνας =,2m στρέφεται γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το κέντρο του µε γωνιακή ταχύτητα µέτρου ω =1 ra/sec.

Διαβάστε περισσότερα

Ανίχνευση Νετρίνων Εισαγωγή

Ανίχνευση Νετρίνων Εισαγωγή 3 Ανίχνευση Νετρίνων Εισαγωγή Τα νετρίνα ανιχνεύονται από τηλεσκόπια Cherenkov έσω της παρατήρησης της ακτινοβολίας Cherenkov (βλέπε Παράγραφο 4.1) που εκπέπεται από τα φορτισένα σωάτια που παράγονται

Διαβάστε περισσότερα

o Ευθύγραµµη οµαλά µεταβαλλόµενη κίνηση. 1 x x (t t ) a(t t ) (1.5) r a =σταθ. Να επιλύουν προβλήµατα που αναφέρονται στις παραπάνω κινήσεις.

o Ευθύγραµµη οµαλά µεταβαλλόµενη κίνηση. 1 x x (t t ) a(t t ) (1.5) r a =σταθ. Να επιλύουν προβλήµατα που αναφέρονται στις παραπάνω κινήσεις. x υ= x= x +υ(t t ) t 0 0 (1.) a= 0 (1.3) o Ευθύγραµµη οµαλά µεταβαλλόµενη κίνηση. 1 x x (t t ) a(t t ) = 0+υ0 0 + 0 (1.4) υ=υ 0+ a(t t 0) (1.5) r a =σταθ. (1.6) Να επιλύουν προβλήµατα που αναφέρονται στις

Διαβάστε περισσότερα

Εισαγωγή στη φυσική στοιχειωδών σωματιδίων

Εισαγωγή στη φυσική στοιχειωδών σωματιδίων Εργαστήριο Εισαγωγή στη φυσική στοιχειωδών σωματιδίων Hypatia : http://hypatia.phys.uoa.gr/ To Hypatia αποτελεί μέρος του ATLAS ASEC, ένα καινοτόμο εκπαιδευτικό πρόγραμμα στη Φυσική των Στοιχειωδών Σωματιδίων.

Διαβάστε περισσότερα

Κατερίνα Αρώνη Δεκέμβριος 2012

Κατερίνα Αρώνη Δεκέμβριος 2012 Κατερίνα Αρώνη Δεκέμβριος 2012 Η αναζήτηση Από τα αρχαία χρόνια ο άνθρωπος προσπαθούσε να ανακαλύψει τα δομικά συστατικά της ύλης. Ο Αριστοτέλης πίστευε ότι 4 βασικά στοιχεία συνθέτουν τον κόσμο γύρω μας:

Διαβάστε περισσότερα

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1 Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΜΑΪΟΥ 03 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία συµπληρώνει

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ Μοντέλο ατόμου m p m n =1,7x10-27 Kg m e =9,1x10-31 Kg Πυρήνας: πρωτόνια (p + ) και νετρόνια (n) Γύρω από τον πυρήνα νέφος ηλεκτρονίων (e -

Διαβάστε περισσότερα

Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης

Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης Στη Φυσική ενδιαφερόμαστε για την δυναμική εξέλιξη των διαφόρων συστημάτων. Καίριο

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΕΣ - ΕΙΣΑΓΩΓΙΚΑ

ΠΛΗΡΟΦΟΡΙΕΣ - ΕΙΣΑΓΩΓΙΚΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2015-16 ΠΛΗΡΟΦΟΡΙΕΣ - ΕΙΣΑΓΩΓΙΚΑ 18/9/2014 ΕΙΣΑΓΩΓΗ_ΚΕΦ. 1 1 ΠΛΗΡΟΦΟΡΙΕΣ Διδάσκων Γεράσιμος Κουρούκλης Καθηγητής (Τμήμα Χημικών Μηχανικών). (gak@auth.gr,

Διαβάστε περισσότερα

Κέντρο Μάζας - Παράδειγμα

Κέντρο Μάζας - Παράδειγμα Κέντρο Μάζας - Παράδειγμα ΦΥΣ 131 - Διαλ.1 1 Ο Ρωμαίο (m R =77kg) διασκεδάζει την Ιουλιέτα (m I =55kg) παίζοντας την κιθάρα του καθισμένος στην πρύμνη της βάρκας τους (μήκους.7 m) που είναι ακίνητη στα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù

ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù www.ziti.gr Πρόλογος Το βιβλίο που κρατάτε στα χέρια σας είναι γραμμένο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ ΜΑΪΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα