Το Ισοτοπικό σπιν Μαθηµα 5ο 30/3/2017

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Το Ισοτοπικό σπιν Μαθηµα 5ο 30/3/2017"

Transcript

1 Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Το Ισοτοπικό σπιν Μαθηµα 5ο 3/3/217 Ισοσπίν 3/3/217

2 Τι θα συζητήσουµε σήµερα Ισοσπίν 3/3/ Η ιδέα και ο ορισµός του Ισοτοπικού σπιν («Ισοσπίν») Η αρχική ιδέα του Heisenberg για πρωτόνιο και νετρόνιο 2. Φορµαλισµός του Ισοσπίν Ανάλογος της γωνιακής στροφορµής και της εσωτερικής στροφορµής («σπιν») για σπιν ½ 3. Η σηµασία του για τις ισχυρές αλληλεπιδράσεις και η επέκταση της ιδέας σε περισσότερα σωµατίδια 4. Εφαρµογές Παραδείγµατα 1. Χρήσιµο εργαλείο - οι συντελεστές Glebsh-Gordan 2. το δευτέριο 3. σκεδάσεις

3 Ισοσπίν 3/3/217 3 p/n σχεδόν ίδια- δεδοµένα (1) A) Το πρωτόνιο (p) και το νετρόνιο (n) έχουν Σχεδόν ιδια µάζα

4 Ισοσπίν 3/3/217 4 p/n σχεδόν ίδια- δεδοµένα (2) Α) Το πρωτόνιο (p) και το νετρόνιο (n) έχουν: Σχεδόν ιδια µάζα Αριθµός πρωτονίων Αριθµός νετρονίων E (MeV) Πειραµατικά, έχουν τις ίδιες ισχυρές αλληλεπιδράσεις Π.χ - το ενεργειακό φάσµα κατοπρικών πυρήνων [ N1(p) = N2(n)] είναι σχεδόν το ίδιο Έχουν µόνο διαφορετικό φορτίο Κατοπτρικοί Πυρήνες

5 Το νουκλεόνιο µια υπόθεση Heisenberg (1932) αµέσως µετά την ανακάλυψη του νετρονίου από τον Chadwick: è όσον αφορά στις ισχυρές αλληλεπιδράσεις, πρωτόνιο και νετρόνιο είναι διαφορετικές καταστάσεις του ίδιου σωµάτιου («νουκλεόνιου») Werner Heisenberg Ορίζουµε το νουκλεόνιο (Ν) να έχει δύο καταστάσεις πρωτόνιο (p) και νετρόνιο (n) James Chadwick α 2 = πιθανότητα να δω πρωτόνιο β 2 = πιθανότητα να δω νετρόνιο α 2 + β 2 = 1 µετρήσω! è σίγουρα, κάποιο απ τα δύο θα Ισοσπίν 3/3/217 5

6 Το νουκλεόνιο p/n αναλογία µε στροφορµή (1) Ενεργειακό φάσµα ατόµου B= Ισοσπίν 3/3/217 6

7 Ισοσπίν 3/3/217 7 Το νουκλεόνιο p/n αναλογία µε στροφορµή (2) Ενεργειακό φάσµα ατόµου B= B Πολλαπλότητα στο ίδιο ενεργειακό επίπεδο Ύπαρξη µιας ιδιότητας / κβαντικού αριθµού που διαφοροποιεί το ένα µέλος της πολλαπλότητας από το άλλο όταν Β à Προβολή της στροφορµής στην κατεύθυνση του µαγνητικού πεδίου

8 p=n p n Το νουκλεόνιο p/n αναλογία µε στροφορµή (3) Μόνο Ισχυρές αλληλεπιδράσεις + ΗλεκτροΜαγνητικές αλληλεπιδράσεις Ισοσπίν 3/3/217 8

9 Ισοσπίν 3/3/217 9 Το νουκλεόνιο p/n αναλογία µε στροφορµή (4) p=n p n Μόνο Ισχυρές αλληλεπιδράσεις + ΗλεκτροΜαγνητικές αλληλεπιδράσεις Α) ύπαρξη µιας ιδιότητας / κβαντικού αριθµού που κάνει το πρωτόνιο ίδιο µε το νετρόνιο για τις ισχυρές αλληλεπιδράσεις è Ισοσπίν Β) αλλά και κάτι που τα διαφοροποιεί στις ηλεκτροµαγνητικές: à Φορτίο; Όχι ακριβώς à µια συνιστώσα του Ισοσπίν

10 Ισοσπίν p/n - αναλογία µε σπιν ½ (1) è Κατ αναλογία µε το ηλεκτρόνιο (e - ) που έχει σπιν S = ½ και δύο καταστάσεις της προβολής S z [ +½ και -½ ], è Ορίζουµε το νουκλεόνιο (Ν) να έχει Ισοσπίν I = ½ όπου η προβολή Ι 3 διακρίνει πρωτόνιο - νετρόνιο 3-διάστατος χώρος του Ισοσπίν Γενικά: Ι 3 = -Ι, -Ι+1,... Ι «πολλαπλότητα» Αριθµός πιθανών καταστάσεων µε Ισοπίν Ι = 2 Ι + 1 Ισοσπίν 3/3/217 1

11 Ισοσπίν p/n - αναλογία µε σπιν ½ (1) è Κατ αναλογία µε το ηλεκτρόνιο (e - ) που έχει σπιν S = ½ και δύο καταστάσεις της προβολής S z [ +½ και -½ ], è Ορίζουµε το νουκλεόνιο (Ν) να έχει Ισοσπίν I = ½ όπου η προβολή Ι 3 διακρίνει πρωτόνιο - νετρόνιο 3-διάστατος χώρος του Ισοσπίν Γενικά: Ι 3 = -Ι, -Ι+1,... Ι «πολλαπλότητα» Αριθµός πιθανών καταστάσεων µε Ισοπίν Ι = 2 Ι + 1 Για Ι = ½ : Ι 3 = +½, -½ Πρωτόνιο: I 3 = +½ Νετρόνιο: I 3 = -½ Ι 3 = +½ Ι 3 = -½ 3 Ισοσπίν 3/3/217 11

12 Ισοσπίν 3/3/ Ισοσπίν p/n φορµαλισµός σπιν ½ (1) è Δύο συµβολισµοί για τη µαθηµατική περιγραφή των καταστάσεων: 1) ket 2) spinors Νουκλεόνιο = γραµµικός συνδυασµός πρωτονίου και νετρονίου Αλλά όταν παρατηρώ το σύστηµα, βλέπω ή πρωτόνιο ή νετρόνιο

13 Ισοσπίν 3/3/ Ισοσπίν p/n φορµαλισµός σπιν ½ (2) Στην περίπτωση των spinors βολεύει να αναπαραστήσουµε τους τελεστές I 1 I 2 και I 3 µε τη βοήθεια των πινάκων του Pauli è I i = ½ σ i Wolfgang Pauli Μερικές Ιδιότητες των πινάκων αυτών: σ i σ j =δ ij + iε ijk σ k, [σ i,σ j ] = 2iε ijk σ k 1, όταν i=j 1, όταν i,j,k είναι στη σειρά 1,2,3 ή 2,3,1 ή 3,1,2 δ ij =, όταν i j ε ijk =, όταν i,j,k είναι ανακατεµένα (π.χ 1,3,2)

14 Ισοσπίν 3/3/ Ισοσπίν p/n φορµαλισµός σπιν ½ (3) Οπότε: 1. I 3 p = ½ p 2. I 3 n = -½ n Ι 3 = +½ Ι 3 = -½ 3

15 Ισοσπίν p/n φορµαλισµός σπιν ½ (4) Οπότε: 1. I 3 p = ½ p 2. I 3 n = -½ n Ι 3 = +½ Ι 3 = -½ 3 3. I + = I 1 + i I 2 = ½ (σ 1 + i σ 2 ) è è I + n = p è I + p = 4. I - = I 1 - i I 2 = ½ (σ 1 - i σ 2 ) è è I p = n Τελεστής ανύψωσης ( raising ) Τελεστής υποβίβασης ( lowering ) Έχουµε τελεστές να µετατρέπουµε το πρωτόνιο σε νετρόνιο και τανάπαλιν è στροφή στο χώρο του ισοσπίν Ισοσπίν 3/3/217 15

16 Ισοσπίν 3/3/ Ισοσπίν p/n φορµαλισµός σπιν ½ (4) Οπότε: 3 1. I 3 p = ½ p 2. I 3 n = -½ n Ι 3 = +½ Ι 3 = -½ I + Ι, I 3 >= [Ι(Ι+1)-I 3 (I 3 +1)] Ι, I 3 +1> è è I + n = p è I + p = I - Ι, I 3 >= [Ι(Ι+1)-I 3 (I 3-1)] Ι, I 3-1> è è I - p = n è I - n = Τελεστής ανύψωσης ( raising ) Τελεστής υποβίβασης ( lowering )

17 Η φυσική: διατήρηση του ισοσπίν στις ισχυρές αλληλεπιδράσεις 1. Οι ισχυρές αλληλεπιδράσεις δεν επηρεάζονται από την ανταλλαγή πρωτονίου νετρονίου 2. Η ανταλλαγή πρωτονίου νετρονίου ισοδυναµεί µε στροφή στο χώρο του ισοσπίν 3. Οι ισχυρές αλληλεπιδράσεις είναι αναλλοίωτες κατά τις στροφές στο χώρο του ισοσπίν (συµµετρία) è Το ισοσπίν διατηρείται σε όλες τις ισχυρές αλληλεπιδράσεις! (θεώρηµα Noether: κάθε συµµετρία σχετίζεται µε µια αρχή διατήρησης ) Amalie (Emmy) Noether Ισοσπίν 3/3/217 17

18 Ισοσπίν p/n σχέση I 3 µε το φορτίο Όσον αφορά στις ισχυρές αλληλεπιδράσεις, το πρωτόνιο ειναι ίδιο µε το νετρόνιο Η διαφορά τους είναι η συνιστώσα I 3 του ισοσπίν Αλλά ξέρουµε ότι η διαφορά τους είναι επίσης το φορτίο τους Q è Ποιά η σχέση ανάµεσα στο I 3 και το φορτίο; Πρωτόνιο: Νετρόνιο: Q (φορτίο) Ι3 (Ισοσπιν) Β (Βαρυονικός αρ.) +1 + ½ +1 - ½ +1 Q = I 3 + ½ B Ισοσπίν 3/3/217 18

19 Ισοσπίν Δευτέριο, d (1) Ισοσπίν 3/3/ Έχουµε σύστηµα 2 νουκλεονίων (Ν-Ν). Προσθέτουµε τα ισοσπίν τους για να δούµε τι µπορεί να προκύψει ως σύστηµα Ν-Ν. Χρησιµοποιούµε τους συντελεστές Clebsch-Gordon (σε πίνακες)

20 ΣΥΣΤΗΜΑ ΔΥΟ ΝΟΥΚΛΕΟΝΙΩΝ I=1 (ΣΥΜΜΕΤΡΙΚΗ) I= (ΑΝΤΙΣΥΜΜΕΤΡΙΚΗ) I I 1 1 ή 1 1 I i = 1, I f = 1 σ 1 επαλήθευση πειραµατική 5% I = 5% I = 1 σ 2 Ισοσπίν 3/3/217 σ 1 /σ 2 =2

21 Συντελεστές Glebsch-Gordon (1) Χρήση συντελεστών Clebsch-Gordon υπενθύµιση: Πρόσθεση στροφορµών όπου και j 1 j 2 j j 1 + j 2 συντελεστές Clebsch-Gordan Ισοσπίν 3/3/217 21

22 Συντελεστές Glebsch-Gordon (2) Ισοσπίν 3/3/217 22

23 Ισοσπίν Δευτέριο, d (2) Ισοσπίν 3/3/ Έχουµε σύστηµα 2 νουκλεονίων (Ν-Ν). Προσθέτουµε τα ισοσπίν τους για να δούµε τι µπορεί να προκύψει ως σύστηµα Ν-Ν. Οι συνδυασµοί Χρησιµοποιούµε τους συντελεστές Clebsch-Gordon

24 Ισοσπίν Δευτέριο, d (3) Ισοσπίν 3/3/ Κανουµε τις πράξεις, ή... Χρησιµοποιούµε τους συντελεστές Clebsch- Gordon Και βλέπουµε από ποιούς αρχικούς συνδυασµούς µπορεί να προκύψει κάθε τελική κατάσταση

25 Ισοσπίν Δευτέριο, d (3) Ισοσπίν 3/3/ Κανουµε τις πράξεις, ή... Χρησιµοποιούµε τους συντελεστές Clebsch- Gordon Και βλέπουµε από ποιούς αρχικούς συνδυασµούς µπορεί να προκύψει κάθε τελική κατάσταση Τριπλέτα µε Ι = 1 Μονήρης µε Ι =

26 Ισοσπίν Δευτέριο, d (4) Πειραµατικά, έχουµε µόνο µία κατάσταση αν Ι = 1, θα είχαµε και τις αλλες δύο καταστάσεις è άρα, το δευτέριο είναι η µονήρης κατάσταση του ισοσπίν (isosinglet) è το δευτέριο έχει Ι Ι 3 > = > Τριπλέτα µε Ι = 1 Συµµετρικές καταστάσεις σε ανταλλαγή p-n Μονήρης µε Ι = Αντισυµµετρική κατάσταση σε ανταλλαγή p-n Ισοσπίν 3/3/217 26

27 Ισοσπίν σκέδαση νουκλεονίων (1) Ισοσπίν 3/3/ a) p + p à d + π + b) p + n à d + π c) n + n à d + π - το δευτέριο είναι Ι,Ι 3 > = > Ι= + Ι=1 τα πιόνια είναι Ι = 1, µε Ι 3 = +1,, -1 για τα π +,, π και π -, αντίστοιχα 1 1> 1 > 1-1>

28 Ισοσπίν σκέδαση νουκλεονίων (2) Ισοσπίν 3/3/ a) p + p à d + π + b) p + n à d + π c) n + n à d + π - το δευτέριο είναι Ι,Ι 3 > = > Ι= + Ι=1 τα πιόνια είναι Ι = 1, µε Ι 3 = +1, -, -1 για τα π +,, π και π -, αντίστοιχα Αφού το ισοσπίν διατηρείται: 1 1> 1 > 1-1>

29 Ισοσπίν σκέδαση νουκλεονίων (3) a) p + p à d + π + b) p + n à d + π c) n + n à d + π - Ισοσπίν 3/3/ το δευτέριο είναι Ι,Ι 3 > = > Ι= + Ι=1 τα πιόνια είναι Ι = 1, µε Ι 3 = +1,, -1 για τα π +,, π και π -, αντίστοιχα Αφού το ισοσπίν διατηρείται: 1 1> 1 > Συµφωνία µε πείραµα 1-1> è Τα πλάτη σκέδασης (scattering amplitudes) è και οι ενεργές διατοµές είναι:

30 ΣΥΣΤΗΜΑ ΠΙΟΝΙΟΥ ΝΟΥΚΛΕΟΝΙΟΥ π + Π: I Π =1 π περίπου ίδιες µάζες π - I ολικό : 1/2 ή 3/2 Q Π,Ν =Ι 3 +Β/2 p Ν: I Ν =1/2 περίπου ίδιες µάζες n Διατήρηση isospin στις ισχυρές αλληλεπιδράσεις Παράδειγµα: σκέδαση Π-Ν: 6 δυνατές καταστασεις: I ολ =3/2 : -3/2, -1/2, 1/2, 3/2 I ολ =1/2 : -1/2, 1/2 Οι ενεργές διατοµές εξαρτώνται ΜΟΝΟ Ισοσπίν από δύο 3/3/217 πλάτη: I 3/2, I 1/2

31 ΣΥΣΤΗΜΑ ΠΙΟΝΙΟΥ ΝΟΥΚΛΕΟΝΙΟΥ ελαστικές σκεδάσεις Καθαρό Ι = 3/2 πλάτος ίδια ενεργό διατοµή (στην ίδια ενέργεια) π ελαστική σκέδαση ανταλλαγή φορτίου ελαστική σκέδαση ανταλλαγή φορτίου είναι µίγµα Τα ποσοστά ανάµειξης των δύο πλατών δίνονται από τους συντελεστές Clebsch-Gordan οι ενεργές διατοµές για κάθε αλληλεπίδραση Λόγω διατήρησης I ΔΕΝ υπάρχει τελεστής που να συνδέει αρχική ψ i > & τελική ψ f > κατάσταση µε Διαφορετικό isospin! Ισοσπίν 3/3/217 (αρχ.&τελ.) (αρχ.&τελ.)

32 ΥΠΟΛΟΓΙΣΜΟΣ ΣΧΕΤΙΚΩΝ ΕΝΕΡΓΩΝ ΔΙΑΤΟΜΩΝ ΑΠΟ ΤΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ Clebsch-Gordan Ισοσπίν 3/3/217 Αρχική κατάσταση Τελική κατάσταση σ α (ελαστική σκέδαση) καθαρή I = 3/2, Ι 3 = +3/2 σ β (ελαστική σκέδαση) I = 3/2, I 3 = -1/2 σ γ I = 1/2, I 3 = -1/2 (ανταλλαγή φορτίου) H: τελεστής isospin Λόγω διατήρησης isospin

33 Ισοσπίν σκέδασεις π-ν (1) Ισοσπίν 3/3/ a) π + + p à π + + p b) π + p à π + p c) π - + p à π - + p d) π + + n à π + + n e) π + n à π + n f) π - + n à π - + n g) π + + n à π + p h) π + p à π + + n i) π + n à π - + p j) π - + p à π + n ελαστικές ανταλλαγή φορτίου Ι π =1 Ι Ν =½

34 Ισοσπίν σκέδασεις π-ν (2) Ισοσπίν 3/3/ a) π + + p à π + + p b) π + p à π + p c) π - + p à π - + p d) π + + n à π + + n e) π + n à π + n f) π - + n à π - + n g) π + + n à π + p h) π + p à π + + n i) π + n à π - + p j) π - + p à π + n ελαστικές ανταλλαγή φορτίου Ι π =1 Ι Ν =½ Ισχυρές σκεδάσεις µε ίδιο ισοσπίν = όµοιες

35 Ισοσπίν 3/3/217 σ α σ β σ γ ψ f ψ i

36 Ισοσπίν σκέδασεις π-ν (3) Ισοσπίν 3/3/ a) π + + p à π + + p c) π - + p à π - + p j) π - + p à π + n π - + p στην τελική φάση από Μ 3 π - + p στην τελική φάση από Μ 1 Παρόµοια:

37 Ισοσπίν σκέδασεις π-ν (4) Ισοσπίν 3/3/ a) π + + p à π + + p c) π - + p à π - + p j) π - + p à π + n Μ 3 >> Μ 1 Οπότε: Συντονισµός µε Ι = 3/2

38 Ισοσπίν 3/3/ Ισοσπίν και κουάρκς Με την καθιέρωση των κουάρκ, στο στανταρντ µοντέλο η συµµετρία ισοσπίν χαρακτηρίζει τα «πάνω» και «κάτω» κουάρκς (αντί για το πρωτόνιο και το νετρόνιο όπου πρωτοχρησιµοποιήθηκε) Στην πυρηνική φυσική χρησιµοποιείται στο επίπεδο των πρωτονίων και νετρονίων.

39 Τι συζητήσαµε για το ισοτοπικό σπιν Ισοσπίν 3/3/ Η ιδέα και ο ορισµός του Ισοτοπικού σπιν («Ισοσπίν») Η αρχική ιδέα του Heisenberg για πρωτόνιο και νετρόνιο 2. Φορµαλισµός του Ισοσπίν Ανάλογος της γωνιακής στροφορµής και της εσωτερικής στροφορµής («σπιν») για σπιν ½ 3. Η σηµασία του για τις ισχρυρές αλληλεπιδράσεις και η επέκταση της ιδέας σε περισσότερα σωµατίδια 3. Εφαρµογές Παραδείγµατα 1. Χρήσιµο εργαλείο - οι συντελεστές Glebsh-Gordan 2. το δευτέριο 3. σκεδάσεις

40 ΠΑΡΑΔΟΞΟΤΗΤΑ & ISOSPIN (strangeness) Παράδοξα (παράξενα) σωµατίδια: ονοµάστηκαν εξαιτίας του µεγάλου χρόνου ζωής τους (διάσπαση µε ασθενή αλλ.) Πλούσια παραγωγή (ισχυρή αλληλεπίδραση) Εισαγωγή νέου κβαντικού αριθµού (παραδοξότητα) (strangeness S) S διατηρείται στις ισχυρές αλληλεπιδράσεις [παράγονται σε ζεύγη µε αντίθετη παραξενιά] S παραβιάζεται στη διάσπαση παράξενων σωµατιδίων (διάσπαση σε ΜΗ παράξενα σωµατίδια) [ασθενής αλληλ.]

41 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΑΡΑΔΟΞΟΤΗΤΑΣ & ISOSPIN ΣΤΑ ΣΩΜΑΤΙΑ Λ υπερόνιο (βαρυόνιο) υπάρχει ΜΟΝΟ ουδέτερο I I 3 Λ p + π ½ 1 ½ -1 ασθενής αλληλεπίδραση : I ΔΕΝ διατηρείται Παρατηρήθηκε ΤΑΥΤΟΧΡΟΝΗ ΠΑΡΑΓΩΓΗ Λ υπερονίου & Κ σε ισχυρή αλληλεπίδραση: π p Λ + Κ Κ Q Κ I = + 3 1/ 2 Q = +1/ Κ + I3 2 I Λ, I 3 = : Ι 3 = Λ = 1/ 2 + Κ Κ Κ Ι I Ι3 I 3 Κ + : Ι 3 =1/ 2 Κ : Ι 3 = 1/ 2 1 ½ -1 ½, K ζεύγος isospin, ζεύγος isospin ½ -½ ανήκει σε άλλη δυάδα & 1/ 2 $ % 1/ 2 & 1/ 2 $ % 1/ 2 #! " #! "?? + Κ Κ K Κ Q K = I 1/ 2 Q Κ = I3 1/ 2 3 (µεσόνιο)

42 -1/2 1/2 & $ % K K + # & c! ' $ K $ " % K #!! " +1/2-1/2 Κ Κ Κ Κ + σωµάτιο & αντισωµάτιο σωµάτιο & αντισωµάτιο Q K = I3 + 1/ 2 Q K = I3 1/ 2 Q Λ = Q = +1/ K + I3 2 Q = 1/ K I3 2 B K = S K =1 S K Λ: βαρυόνιο: ΜΟΝΟ quarks 1 + =1 S = 1 K S K = 1 S = +1 K p Λπ S quark έχει παραδοξότητα -1 Παράδειγµα: Διάσπαση παράξενων σωµατίων Ι 3 Ι S -1/2 1/2 1/2-1 1/2-1 οι Gellmann-Nishijima προτείνουν: Q Ι = = I 3 + B Λ =1 S Λ = 1 I3 Λ = B + S 2

43 Παράδειγµα διάσπασης Κ + p e Λ +π π e + e γ + e π π Λ + p

44 Σ- υπερόνιο: Παραγωγή: π ± S = 1 + p Σ ± + Κ + (ισχυρή αλληλ.) I I 3 S 1 ½ 1 ½ ±1 ½ ±1 ½ Σ υπερόνια: µία τριάδα Σ +, Σ -, Σ (όλα ΒΑΡΥΟΝΙΑ!) Σ Λ + γ (H/M αλληλ.) I I 3 S ΔΕΝ διατηρείται Ι3 Διατηρειται στις Η/Μ Αλληλ. ΔΙΑΤΗΡΕΙΤΑΙ Σ + η + π + (ασθενής αλληλ.) I I 3 S 1 ½ ½ +1-1 ΔΕΝ διατηρείται ΔΕΝ διατηρείται

45 S = 2 Ξ υπερόνιο: [Ξ -, Ξ αποτελούν δυάδα I ] Παραγωγή: Ξ Λ + π Ι Ι 3 S K + p Ξ + Κ + Κ + Κ + π ½ ½ ½ ½ ½ ½ 1 -½ ½ -½ ½ ½ -½ από διατήρηση S Ω - : S = -3 [είχε προβλεφθεί από το πρότυπο των quark] Οι διαφορές ηλεκτροµαγνητικής µάζας µεταξύ των µελών της πολλαπλότητας Δm Σωµάτια αντισωµάτια ΙΔΙΑ µάζα [Θεώρηµα CPT] [Σ + - Σ - διαφορετικές µάζες: ΔΕΝ είναι σωµατ. αντισωµ.] m ~ a 1 2 +

46 Ξ π + Λ Παράδειγµα διάσπασης Το K ΔΕΝ παρατηρείται στην εικόνα. Αλληλεπίδραση: K + p Ξ + π + + Κ + Κ + Κ S: παραξενιά K p ~ 1GeV / c

47

48 Σ υπερόνια Ξ υπερόνια Ω βαρυόνιο

Το Ισοτοπικό σπιν Μαθηµα 5ο 27/3/2014

Το Ισοτοπικό σπιν Μαθηµα 5ο 27/3/2014 Το Ισοτοπικό σπιν Μαθηµα 5ο 27/3/2014 Ισοσπίν 27/3/2014 Τι θα συζητήσουµε σήµερα 1. Η ιδέα και ο ορισµός του Ισοτοπικού σπιν («Ισοσπίν») Η αρχική ιδέα του Heisenberg για πρωτόνιο και νετρόνιο 2. Φορµαλισµός

Διαβάστε περισσότερα

Το Ισοτοπικό σπιν. και εγαρµογές του στην Πυρηνική Φυσική και τη Φυσική Στοιχειωδών Σωµατιδίων. Κώστας Κορδάς. LHEP, University of Bern

Το Ισοτοπικό σπιν. και εγαρµογές του στην Πυρηνική Φυσική και τη Φυσική Στοιχειωδών Σωµατιδίων. Κώστας Κορδάς. LHEP, University of Bern Το Ισοτοπικό σπιν και εγαρµογές του στην Πυρηνική Φυσική και τη Φυσική Στοιχειωδών Σωµατιδίων Κώστας Κορδάς LHEP, University of Bern ιάλεξη υπό τύπο διδασκαλίας σε προπτυχιακούς φοιτητές Αριστοτέλειο Πανεπιστήµιο

Διαβάστε περισσότερα

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμ ιο Θεσσαλονίκης Στοιχειώδη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, Ιδιότητες των Σωματίων Ισοτοπικό Σπιν

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, Ιδιότητες των Σωματίων Ισοτοπικό Σπιν ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 206 Ιδιότητες των Σωματίων Ισοτοπικό Σπιν Stathis STILIARIS, UoA 206 Ιδιότητες

Διαβάστε περισσότερα

Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος

Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος Παράδοξα σωματίδια Μετά την ανακάλυψη του μεσονίου που είχε προβλέψει ο Yukawa, την ανακάλυψη των αντισωματιδίων του Dirac και την κοπιώδη αλλά αποτελεσματική

Διαβάστε περισσότερα

Νουκλεόνια και ισχυρή αλληλεπίδραση

Νουκλεόνια και ισχυρή αλληλεπίδραση Νουκλεόνια και ισχυρή αλληλεπίδραση Πρωτόνια και νετρόνια. Το πρότυπο των κουάρκ για τα νουκλεόνια. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Κουάρκ: τα δομικά στοιχεία των αδρονίων ΑΣΚΗΣΗ Διασπάσεις σωματιδίων

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω

Διαβάστε περισσότερα

Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι

Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι I,S: SU() group I : SU() group ΠΡΟΤΥΠΟ ΤΩΝ ΑΔΡΟΝΙΩΝ ΜΕ ΣΤΑΤΙΚΑ QUARKS QUARK ATOMS Πλήθος Βαρυονίων & Μεσονίων ~ 96 - αρχικά οι κανονικότητες (patterns) των αδρονικών

Διαβάστε περισσότερα

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β διάσπαση II Δήμος Σαμψωνίδης (28-11- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Spin και πάριτυ ενός πυρήνα (J και πάριτυ: J p ) Σπιν πυρήνα, J = ολικό τροχιακό σπίν

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ PhD Τηλ: 1 69 97 985, wwwdlaggr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ: 1 69 97 985, E-mail: dlag@ottgr, wwwdlaggr Ε ΟΥΑΡ ΟΣ ΛΑΓΑΝΑΣ, PhD KENTΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Τηλ: 1 69

Διαβάστε περισσότερα

1 ΣΤΟΙΧΕΙΑ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑΣ Στοιχειώδη σωµατίδια 1) Τι ονοµάζουµε στοιχειώδη σωµατίδια και τι στοιχειώδη σωµάτια; Η συνήθης ύλη, ήταν γνωστό µέχρι το 1932 ότι αποτελείται

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (14-12- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 2η Πετρίδου Χαρά Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 10-Jan-11 Πετρίδου Χαρά Στοιχειώδη Σωµάτια

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Κ. Βελλίδης & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 018 Συντεταγμένες Κ. Βελλίδη (Στοιχειώδη Σωμάτια): Τομέας ΠΦΣΣ: β όροφος, 10-77-6946 ΙΕΣΕ: β όροφος,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ισχυρές Αλληλεπιδράσεις Γκλουόνια και Χρώμα Κβαντική Χρωμοδυναμική Ασυμπτωτική Ελευθερία

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ισχυρές Αλληλεπιδράσεις Γκλουόνια και Χρώμα Κβαντική Χρωμοδυναμική Ασυμπτωτική Ελευθερία ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Ισχυρές Αλληλεπιδράσεις Γκλουόνια και Χρώμα Κβαντική Χρωμοδυναμική Ασυμπτωτική

Διαβάστε περισσότερα

Μάθημα 9o' 12/5/2014

Μάθημα 9o' 12/5/2014 Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ Μάθημα 9o' 12/5/2014! Λεπτονικές διασπάσεις διανυσµατικών µεσονίων Παράδειγµα ουδέτερων διανυσµατικών µεσονιων Τύπος VanRoyen Weisskopf για το επιµέρους πλάτος διάσπασης

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 10η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Σωμάτια & Αντισωμάτια Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 16/12/2011 Πετρίδου Χαρά Στοιχειώδη Σωμάτια

Διαβάστε περισσότερα

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά Πυρηνικές Δυνάμεις Διάλεξη 4η Πετρίδου Χαρά Η Ύλη στο βιβλίο: Cottingham & Greenwood 2 Κεφάλαιο 5: Ιδιότητες των Πυρήνων 5.5: Μαγνητική Διπολική Ροπή του Πυρήνα 5.7: Ηλεκτρική Τετραπολική του Πυρήνα 5.1:

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Πυρηνικές Δυνάμεις, Πυρηνικά Δυναμικά Το Δευτέριο Πειραματική Μαρτυρία

Διαβάστε περισσότερα

Στοιχειώδη σωμάτια. Τα σωμάτια ύλης

Στοιχειώδη σωμάτια. Τα σωμάτια ύλης Στοιχειώδη σωμάτια Γύρω στο 1930 η εικόνα που είχαν οι φυσικοί για τα στοιχειώδη σωμάτια- σωμάτια που τότε πίστευαν ότι δεν είχαν συστατικά φαίνεται στον παρακάτω πίνακα: Σωμάτια Σύμβολο Μάζα ΜeV/c 2 Τα

Διαβάστε περισσότερα

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15 Διάλεξη 14: Μεσόνια και αντισωματίδια Μεσόνια Όπως αναφέρθηκε προηγουμένως (διάλεξη 13) η έννοια των στοιχειωδών σωματίων άλλαξε πολλές φορές μέχρι σήμερα. Μέχρι το 1934 ο κόσμος των στοιχειωδών σωματιδίων

Διαβάστε περισσότερα

Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες

Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες διασπάσεις)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης 1 Stathis STILIARIS,

Διαβάστε περισσότερα

Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ

Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ Λεπτονικές διασπάσεις διανυσµατικών µεσονίων Παράδειγµα ουδέτερων διανυσµατικών µεσονιων V Q Q V " l l ( : e, µ ) l ( V : #,", ) l l, 0 0 0 6# " Q &( V % l l ' ) $

Διαβάστε περισσότερα

Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 23-24 Στοιχειώδη Σωμάτια και κβαντικοί αριθμοί τους - Αλληλεπίδραση σωματιδίων

Διαβάστε περισσότερα

γ-διάσπαση Διάλεξη 17η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

γ-διάσπαση Διάλεξη 17η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου γ-διάσπαση Διάλεξη 17η Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου 1 Τι θα μάθουμε σήμερα 2 Τι είναι η γ-διάσπαση γ-αποδιέγερση ηλεκτρόνια εσωτερικών μετατροπών εσωτερική δημιουργία ζεύγους (e + e - ) Πως προκύπτει?

Διαβάστε περισσότερα

Ο Πυρήνας του Ατόμου

Ο Πυρήνας του Ατόμου 1 Σκοποί: Ο Πυρήνας του Ατόμου 15/06/12 I. Να δώσει μία εισαγωγική περιγραφή του πυρήνα του ατόμου, και της ενέργειας που μπορεί να έχει ένα σωματίδιο για να παραμείνει δέσμιο μέσα στον πυρήνα. II. III.

Διαβάστε περισσότερα

Διάλεξη 17: Το μοντέλο των κουάρκ

Διάλεξη 17: Το μοντέλο των κουάρκ Διάλεξη 17: Το μοντέλο των κουάρκ Από την επιτυχία της αναπαράστασης των σωματιδίων σε οκταπλέτες ή δεκαπλέτες προκύπτει ένα πολύ εύλογο ερώτημα. Τι συμβαίνει και οι ιδιότητες των σωματιδίων που έχουν

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (19-12- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Τα Θεμελιώδη Φερμιόνια απο τα οποία αποτελείται η Ύλη:

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα Τ3: Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα Τ3: Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 21η Πετρίδου Χαρά Τμήμα Τ3: Χ. Πετρίδου Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 14/12/2017 Πετρίδου Χαρά Στοιχειώδη Σωμάτια 2 Τα Θεμελιώδη Φερμιόνια απο τα

Διαβάστε περισσότερα

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 1γ Μια ματιά στα Στοιχειώδη Σωμάτια και τους κβαντικούς αριθμούς τους Κώστας

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 21η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 16/12/2016 Πετρίδου Χαρά Στοιχειώδη Σωμάτια 2 Τα Θεμελιώδη Φερμιόνια

Διαβάστε περισσότερα

ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ. ΜΑΘΗΜΑ 4ο

ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ. ΜΑΘΗΜΑ 4ο ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ ΜΑΘΗΜΑ 4ο Αλληλεπιδράσεις αδρονίου αδρονίου Μελέτη χαρακτηριστικών των ισχυρών αλληλεπιδράσεων (αδρονίων-αδρονίων) Σε θεµελιώδες επίπεδο: αλληλεπιδράσεις µεταξύ quark

Διαβάστε περισσότερα

www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html

www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html Σύγχρονη Φυσική Στοιχειώδη Σωµατίδια Σωµατίδια Επιταχυντές Ανιχνευτές Αλληλεπιδράσεις Συµµετρίες Νόµοι ιατήρησης Καθιερωµένο Πρότυπο www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html Σύγχρονη Φυσική: Στοιχειώδη

Διαβάστε περισσότερα

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (18-12- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 20η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 15 Δεκ

Διαβάστε περισσότερα

Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή

Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή Πυρηνική Σταθερότητα Ο πυρήνας αποτελείται από πρωτόνια και νετρόνια τα οποία βρίσκονται συγκεντρωμένα σε έναν πάρα πολύ μικρό χώρο. Εύκολα καταλαβαίνουμε

Διαβάστε περισσότερα

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 9

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 9 Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2018-19 Τμήμα T3: Χ. Πετρίδου Μάθημα 9 β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις) Πετρίδου Χαρά

Διαβάστε περισσότερα

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο γ - διάσπαση Δήμος Σαμψωνίδης (6-12- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 γ - διάσπαση Τύποι διασπάσεων Ενεργειακά Ακτινοβολία πολυπόλων Κανόνες επιλογής Εσωτερικές

Διαβάστε περισσότερα

ΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ

ΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ ΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ ΚΕΝΤΡΙΚΗ ΙΔΕΑ ΤΗΣ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Όλα στη φύση αποτελούνται από στοιχειώδη σωματίδια τα οποία είναι φερμιόνια

Διαβάστε περισσότερα

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο γ - διάσπαση Δήμος Σαμψωνίδης (21-11- 2017) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 γ - διάσπαση Τύποι διασπάσεων Ενεργειακά Ακτινοβολία πολυπόλων Κανόνες επιλογής Εσωτερικές

Διαβάστε περισσότερα

Φερμιόνια & Μποζόνια

Φερμιόνια & Μποζόνια Φερμιόνια & Μποζόνια Φερμιόνια Στατιστική Fermi-Dirac spin ημιακέραιο 1 3 5,, 2 2 2 Μποζόνια Στατιστική Bose-Einstein 0,1, 2 spin ακέραιο δύο ταυτόσημα φερμιόνια, 1 & 2 δύο ταυτόσημα μποζόνια, 1 & 2 έχουν

Διαβάστε περισσότερα

Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων

Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων 1) Ποιες από τις πιο κάτω αντιδράσεις επιτρέπονται και ποιες όχι βάσει των αρχών διατήρησης που ισχύουν για τις ασθενείς αλληλεπιδράσεις ν μ + p μ + +n ν e +

Διαβάστε περισσότερα

Το Καθιερωμένο Πρότυπο. (Standard Model)

Το Καθιερωμένο Πρότυπο. (Standard Model) Το Καθιερωμένο Πρότυπο (Standard Model) Αρχαίοι Ίωνες φιλόσοφοι Αρχικά οι αρχαίοι Ίωνες φιλόσοφοι, θεώρησαν αρχή των πάντων το νερό, το άπειρο, τον αέρα, ή τα τέσσερα στοιχεία της φύσης, ενώ αργότερα ο

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 25η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 25η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 25η Πετρίδου Χαρά Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 2 Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω από μετασχηματισμούς

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 12η Πετρίδου Χαρά Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 2 Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω από μετασχηματισμούς

Διαβάστε περισσότερα

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 12η Πετρίδου Χαρά Νόµοι Διατήρησης στις Θεµελειώδεις Αλληλειδράσεις 14-Jan-13 Πετρίδου Χαρά Στοιχειώδη Σωµάτια 2 Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 3

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Κ. Βελλίδης & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 018 Κλασσική-Κβαντική Εικόνα Πεδίου Εικονικά σωµάτια Διαγράµµατα Feynman Ηλεκτροµαγνητικές και Ασθενείς

Διαβάστε περισσότερα

Μάθημα 5 α) β-διάσπαση β) Ασκήσεις

Μάθημα 5 α) β-διάσπαση β) Ασκήσεις Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 5 α) β-διάσπαση β) Ασκήσεις Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Διαβάστε περισσότερα

Σημαντικό: Σε περίπτωση προβλήματος επικοινωνήστε με το διδάσκοντα

Σημαντικό: Σε περίπτωση προβλήματος επικοινωνήστε με το διδάσκοντα Σημαντικό: Οι διαφάνειες που ακολουθούν αποτελούν συμπληρωματικό υλικό -ΚΑΙ ΜΟΝΟ- των διαλέξεων της Παρασκευής (Θ. Μερτζιμέκης) και ως τέτοιες πρέπει να λαμβάνονται. Σε περίπτωση προβλήματος επικοινωνήστε

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο. Δ. Σαμψωνίδης Κ. Κορδάς Χ. Πετρίδου 20 Ιανουαρίου 2017

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο. Δ. Σαμψωνίδης Κ. Κορδάς Χ. Πετρίδου 20 Ιανουαρίου 2017 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δ. Σαμψωνίδης Κ. Κορδάς Χ. Πετρίδου 20 Ιανουαρίου 2017 2 Κουάρκ Κουάρκ και Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθµός

Διαβάστε περισσότερα

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη

Διαβάστε περισσότερα

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Hideki Yukawa and the Nuclear Force Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής πυρηνική δύναμη Η πυρηνική δύναμη (ή αλληλεπίδραση νουκλεονίουνουκλεονίου, ή NN forces,

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 23η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 23η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 23η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις

Διαβάστε περισσότερα

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 10/05/16

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 10/05/16 Διάλεξη 20: Διαγράμματα Feynman Ισχυρές αλληλεπιδράσεις Όπως στην περίπτωση των η/μ αλληλεπιδράσεων έτσι και στην περίπτωση των ισχυρών αλληλεπιδράσεων υπάρχει η αντίστοιχη αναπαράσταση μέσω των διαγραμμάτων

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Ζήτηµα 1ο Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα µε το πρότυπο

Διαβάστε περισσότερα

Ξ. Ασλάνογλου Τμήμα Φυσικής Ακαδ. Έτος ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ

Ξ. Ασλάνογλου Τμήμα Φυσικής Ακαδ. Έτος ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ Ξ. Ασλάνογλου Τμήμα Φυσικής Ακαδ. Έτος 2016-17 ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ Το Δυναμικό του Πυρήνα Πυρηνικές δυνάμεις: Πολύ ισχυρές ελκτικές, μικρής εμβέλειας, σε μικρές αποστάσεις γίνονται απωστικές (Δυναμικό τοίχου)

Διαβάστε περισσότερα

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Δήμος Σαμψωνίδης (29-11- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας

Διαβάστε περισσότερα

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο 1 Το Μποζόνιο Higgs 29/05/13 Σκοποί: I. Να απαντήσει στο ερώτημα του τι είναι ακριβώς το σωματίδιο Higgs. II. Να εισάγει τους διάφορους τρόπους παραγωγής και μετάπτωσης του Higgs. III. Να δώσει μία σύντομη

Διαβάστε περισσότερα

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β διάσπαση II Δήμος Σαμψωνίδης (30-11- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Fermi- Kurie plot (μάζα ν) Διάγραμμα της ρίζας του αριθμού των σωματίων β με ορμή

Διαβάστε περισσότερα

Σημαντικό: Σε περίπτωση προβλήματος επικοινωνήστε με το διδάσκοντα

Σημαντικό: Σε περίπτωση προβλήματος επικοινωνήστε με το διδάσκοντα Σημαντικό: Οι διαφάνειες που ακολουθούν αποτελούν συμπληρωματικό υλικό -ΚΑΙ ΜΟΝΟ- των διαλέξεων της Παρασκευής (Θ. Μερτζιμέκης) και ως τέτοιες πρέπει να λαμβάνονται. Σε περίπτωση προβλήματος επικοινωνήστε

Διαβάστε περισσότερα

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια Περιεχόµενα Διαγράµµατα Feynman Δυνητικά σωµάτια Οι τρείς αλληλεπιδράσεις Ηλεκτροµαγνητισµός Ισχυρή Ασθενής Περίληψη Κ. Παπανικόλας, Ε. Στυλιάρης, Π. Σφήκας

Διαβάστε περισσότερα

Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 )

Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 ) Πρόσθεση Στροφορμών Δομή Διάλεξης Ορισμός Ολικής Στροφορμής Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 ) Συντελεστές μετάβασης (Glebsch-Gordon) για σύνθεση από l=1, s=1/2

Διαβάστε περισσότερα

Ο CKM Πίνακας και Παραβίαση της CP Συµµετρίας. Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1

Ο CKM Πίνακας και Παραβίαση της CP Συµµετρίας. Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1 Ο CKM Πίνακας και Παραβίαση της CP Συµµετρίας Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1 Παραβίαση της CP Συµµετρίας στο πρώιµο Σύµπαν αναµένεται ίσος αριθµός βαρυονίων και αντί-βαρυονίων σήµερα, στο παρατηρούµενο

Διαβάστε περισσότερα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας

Διαβάστε περισσότερα

Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα

Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα Ενέργεια σύνδεσης Η συνολική μάζα ενός σταθερού πυρήνα είναι πάντοτε μικρότερη από αυτή των συστατικών του. Ως παράδειγμα μπορούμε να θεωρήσουμε έναν πυρήνα

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 39 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 016 Κλασική Κβαντική Κβαντική Εικόνα Πεδίου Θεωρία Yukawa Διαγράμματα Feynman

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια II. Διάλεξη 11η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια II. Διάλεξη 11η Πετρίδου Χαρά Στοιχειώδη Σωματίδια II Διάλεξη 11η Πετρίδου Χαρά Η εξίσωση Dirac Οι Ασθενείς Αλληλεπιδράσεις 29-5-2014 Πετρίδου Χαρά Στοιχειώδη Σωµάτια 2 Η κυματική εξίσωση ελεύθερου σωματιδίου 3 Η σχετικιστική εξίσωση

Διαβάστε περισσότερα

Μάθημα 9 Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό Yukawa Δευτέριο Βάθος πηγαδιού δυναμικού νουλεονίνων Ενέργεια Fermi

Μάθημα 9 Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό Yukawa Δευτέριο Βάθος πηγαδιού δυναμικού νουλεονίνων Ενέργεια Fermi Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 017-18) Τμήμα T: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 9 Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό Yukawa

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δ. Σαμψωνίδης Κ. Κορδάς 21 Ιανουαρίου 2011 2 Κουάρκ Κουάρκ και Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθμός (Β) Αντίστοιος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 : ΜΑΓΝΗΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΤΟΥ ΠΥΡΗΝΑ. Η εξίσωση Schrödinger για ένα σωματίδιο χωρίς spin, έχει τη μορφή: ψ 4.1

ΚΕΦΑΛΑΙΟ 4 : ΜΑΓΝΗΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΤΟΥ ΠΥΡΗΝΑ. Η εξίσωση Schrödinger για ένα σωματίδιο χωρίς spin, έχει τη μορφή: ψ 4.1 ΚΕΦΑΛΑΙΟ 4 : ΜΑΓΝΗΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΤΟΥ ΠΥΡΗΝΑ Τροχιακή Στροφορμή Η εξίσωση Schrödinger για ένα σωματίδιο χωρίς spin, έχει τη μορφή: = + = M Hψ V r r ( ) ψ ( ) E ( r) ψ 4. Όπου η δυναμική ενέργεια V(r) είναι

Διαβάστε περισσότερα

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 19/04/16

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 19/04/16 Διάλεξη 15: Νετρίνα Νετρίνα Τα νετρίνα τα συναντήσαμε αρκετές φορές μέχρι τώρα: Αρχικά στην αποδιέγερση β αλλά και αργότερα κατά την αποδιέγερση των πιονίων και των μιονίων. Τα νετρίνα αξίζει να τα δούμε

Διαβάστε περισσότερα

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό

Διαβάστε περισσότερα

β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας

Διαβάστε περισσότερα

Πυρηνική Επιλογής. Τα νετρόνια κατανέμονται ως εξής;

Πυρηνική Επιλογής. Τα νετρόνια κατανέμονται ως εξής; Πυρηνική Επιλογής 1. Ποιος είναι ο σχετικός προσανατολισμός των σπιν που ευνοεί τη συνδεδεμένη κατάσταση μεταξύ p και n; Η μαγνητική ροπή του πρωτονίου είναι περί τις 2.7 πυρηνικές μαγνητόνες, ενώ του

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δ. Σαμψωνίδης Κ. Κορδάς 21 Ιανουαρίου 2011 2 Κουάρκ Κουάρκ και Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθμός (Β) Αντίστοιος

Διαβάστε περισσότερα

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Δήμος Σαμψωνίδης (27-11- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 β - διάσπαση Βήτα διάσπαση (εκπομπή e - ή e + ) είναι ένας μηχανισμός αποκατάστασης

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ 1. O επιταχυντής

Διαβάστε περισσότερα

s (spin) -s s αξονικό διάνυσμα r p

s (spin) -s s αξονικό διάνυσμα r p Συμμετρία αναστροφής του χρόνου Τ Με την αναστροφή του χρόνου Τ έχουμε t -t, p p, J J. Γι αυτό το λόγο ο Τ δεν έχει ιδιοτιμές δοτμές όπως οι C και P. Παρόλα αυτά σε συνδυασμό με την P, PT σημαίνει ότι

Διαβάστε περισσότερα

Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις

Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις Ασθενείς Αλληλεπιδράσεις έχουμε ήδη δει διάφορες αντιδράσεις που γίνονται μέσω των ασθενών αλληλεπιδράσεων π.χ. ασθενείς διασπάσεις αδρονίων + + 0 K ππ Λ pπ n pe ν π e μ v + + μ ασθενείς διασπάσεις λεπτονίων

Διαβάστε περισσότερα

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6β β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις)

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A Ένα ισότοπο, το οποίο συµβολίζουµε µε Z X, έχει ατοµικό αριθµό Ζ και µαζικό αριθµό Α. Ο πυρήνας του ισοτόπου

Διαβάστε περισσότερα

Ομοτιμία Parity Parity

Ομοτιμία Parity Parity Ομοτιμία Parity Ο μετασχηματισμός της Parity, αντιστρέφει κάθε χωρική συντεταγμένη. P(t,x) (t,-x), ή Pψ(r) ψ(-r) που αντιστοιχεί σε ανάκλαση και μετά στροφή 18 ο. αν επαναλάβουμε την διαδικασία προφανώς

Διαβάστε περισσότερα

Μάθημα 7 Διαγράμματα Feynman

Μάθημα 7 Διαγράμματα Feynman Στοιχειώδη Σωμάτια (M.Sc Υπολογιστικής Φυσικής) Μάθημα 7 Διαγράμματα Feynman Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη M.Sc. Υπολ. Φυσ., AΠΘ, 2 Δεκεμβρίου 2013 Κουάρκ και Λεπτόνια

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 ΔΥΟ Μεγάλες, απλές κατηγοριοποιήσεις σωματίων, Ι. Φερμιόνια Μποζόνια Στατιστική Συμπεριφορά Νόμοι διατήρησης. Τα φερμιόνια δεν «καταστρέφονται»

Διαβάστε περισσότερα

Ατομική και Μοριακή Φυσική

Ατομική και Μοριακή Φυσική Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ατομική και Μοριακή Φυσική Επίδραση του πυρήνα στα ατομικά φάσματα Λιαροκάπης Ευθύμιος Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 11η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική 2 Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ Θέµα 1 ο 1. Σύµφωνα µε το πρότυπο του Bohr για το άτοµο του υδρογόνου: α) το ηλεκτρόνιο εκπέµπει

Διαβάστε περισσότερα

Μάθηµα 2 Πείραµα Rutherford και µέγεθος πυρήνων, Πυρήνες-συµβολισµοί

Μάθηµα 2 Πείραµα Rutherford και µέγεθος πυρήνων, Πυρήνες-συµβολισµοί Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωµατιδίων (5ου εξαµήνου, χειµερινό 2016-17) Τµήµα T3: Χ. Πετρίδου Μάθηµα 2 Πείραµα Rutherford και µέγεθος πυρήνων, Πυρήνες-συµβολισµοί Πετρίδου Χαρά Αριστοτέλειο

Διαβάστε περισσότερα

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j Γωνίες Euler ΦΥΣ 11 - Διαλ.3 1 q Όλοι σχεδόν οι υπολογισµοί που έχουµε κάνει για την κίνηση ενός στερεού στο σύστηµα συντεταγµένων του στερεού σώµατος Ø Για παράδειγµα η γωνιακή ταχύτητα είναι: ω = i ω

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. «Μεταπτυχιακή Εξειδίκευση Καθηγητών των Φυσικών Επιστημών» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. «Μεταπτυχιακή Εξειδίκευση Καθηγητών των Φυσικών Επιστημών» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «Μεταπτυχιακή Εξειδίκευση Καθηγητών των Φυσικών Επιστημών» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Έννοιες και Μεθοδολογίες της σωματιδιακής

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Φλοιώδης Δομή των Πυρήνων Η σύζευξη Spin Τροχιάς (L S)( Διέγερση και Αποδιέγερση

Διαβάστε περισσότερα