Βασικές Διεργασίες Μηχανικής Τροφίμων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Βασικές Διεργασίες Μηχανικής Τροφίμων"

Transcript

1 Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 7: Φυγοκέντριση, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων

2 Μαθησιακοί Στόχοι Αρχή λειτουργίας φυγοκεντρικού διαχωρισμού Φυγοκεντρικοί διαχωριστήρες με δίσκους Φυγοκεντρικοί διαχωριστήρες με ατέρμονα κοχλία Κυκλώνες

3 Λέξεις Κλειδιά Καθίζηση Διαύγαση Διαχωριστήρας 2 φάσεων Διαχωριστήρας 3 φάσεων Ελαφριά φάση Βαριά φάση Ουδέτερη ζώνη G διαχωριστήρα Τερματική ταχύτητα

4 Μηχανικοί Διαχωρισμοί Εφαρμόζονται σε ετερογενή μίγματα και όχι σε ομογενή διαλύματα Βασίζονται στις διαφορές μεταξύ των φυσικών ιδιοτήτων των συστατικών του μίγματος όπως του σχήματος, του χρώματος, του μεγέθους και της πυκνότητας Παραδείγματα Διαχωρισμός υγρού από υγρό (π.χ. λάδι από νερό), στερεού από υγρό ή αέριο (π.χ. σκόνη γάλα από αέρα) και στερεού από στερεό (π.χ. αλεύρι από πίτυρα).

5 Διαχωρισμός με Βαρύτητα 1/6 Αρχή λειτουργίας Σε ένα αιώρημα στερεών σωματιδίων σε ρευστό ή σε ένα γαλάκτωμα η ελαφριά φάση θα διαχωριστεί από τη βαριά φάση υπό την επίδραση της βαρύτητας εάν το σύστημα αφεθεί σε ηρεμία ορισμένο χρόνο π.χ. διαύγαση του κρασιού ή του ελαιολάδου, διαχωρισμός της κρέμας του γάλακτος, διαχωρισμός λαδιού από νερό κά. Λάδι Νερό Άμμος

6 Διαχωρισμός με Βαρύτητα 2/6 Υπό την προϋπόθεση ότι η συγκέντρωση των σωματιδίων ή των σταγονιδίων στο αιώρημα δεν είναι μεγάλη (<0.2% κατ όγκο) έτσι ώστε η κίνηση των σωματιδίων να μην επηρεάζεται από τα άλλα σωματίδια, το ισοζύγιο ορμής σε σωματίδιο που κινείται στο πεδίο βαρύτητας θα είναι: όπου m dv dt F G F B F m μάζα σωματιδίου v ταχύτητα σωματιδίου t χρόνος F G δύναμη βαρύτητας F B δύναμη άνωσης δύναμη τριβής F D D F B F G

7 Διαχωρισμός με Βαρύτητα 3/6 Η δύναμη βαρύτητας είναι F Η δύναμη άνωσης είναι F Η δύναμη τριβής είναι όπου G B F D m g m Vg 1 C 2 D v 2 A g V όγκος σωματιδίου ρ πυκνότητα του ρευστού ρ πυκνότητα του σωματιδίου Α διατομή σωματιδίου C D συντελεστής τριβής

8 Διαχωρισμός με Βαρύτητα 4/6 Ο συντελεστής τριβής θα είναι: C C D D 24 Re 18.5 Re 0.6 Re 2 2 Re 500 C D Re όπου Re D v D διάμετρος σωματιδίου, m v ταχύτητα σωματιδίου, m/s ρ πυκνότητα ρευστού, kg/m 3 μ ιξώδες ρευστού, Pas

9 Διαχωρισμός με Βαρύτητα 5/6 Για Re <2 και για dv/dt=0 από το ισοζύγιο ορμής προκύπτει ότι η τερματική ταχύτητα του σωματιδίου στο πεδίο βαρύτητας θα είναι: v t D 2 ) g 18 όπου v t τερματική ταχύτητα σωματιδίου, m/s

10 Διαχωρισμός με Βαρύτητα 6/6 Παράδειγμα Να υπολογιστεί ο χρόνος που θα απαιτηθεί προκειμένου ένα στερεό σωματίδιο που ευρίσκεται μέσα σε λάδι να καθιζήσει στον πυθμένα του δοχείου, εάν η διάμετρος του σωματιδίου και η πυκνότητα του είναι 0.1 mm και 1100 kg/m 3 αντίστοιχα, η πυκνότητα και το ιξώδες του λαδιού είναι 910 kg/m 3 και 84 mpas αντίστοιχα, η δε απόσταση που πρέπει να διανύσει το σωματίδιο από τη θέση που ευρίσκεται μέχρι τον πυθμένα είναι 2 m. Λύση Από την εφαρμογή της σχέσης υπολογισμού της τερματικής ταχύτητας, προκύπτει: v t t L v D 2 ) g s 45 h m / s

11 Λάδι Νερό Άμμος Άμμος Νερό Λάδι Φυγοκεντρικός Διαχωρισμός 1/2 Αρχή λειτουργίας Πεδίο βαρύτητας Φυγοκεντρικό πεδίο Λάδι Νερό Άμμος

12 Φυγοκεντρικός Διαχωρισμός 2/2 Οι φυγοκεντρικοί διαχωριστήρες διακρίνονται σε: Φυγοκεντρικούς διαχωριστήρες κυλινδρικού δοχείου Φυγοκεντρικούς διαχωριστήρες με δίσκους Φυγοκεντρικούς διαχωριστήρες με ατέρμονα κοχλία Κυκλώνες

13 Φυγοκεντρικός Διαχωριστήρας Κυλινδρικού Δοχείου Βαριά φάση Ελαφριά φάση Στερεά Είσοδος αιωρήματος

14 Φυγοκεντρικός Διαχωριστήρας με Δίσκους 1/4

15 Φυγοκεντρικός Διαχωριστήρας με Δίσκους 2/4 Είσοδος μίγματος Έξοδος ελαφριάς φάσης Έξοδος βαριάς φάσης Έξοδος βαριάς φάσης Συστοιχία δίσκων Κανάλι κατανομής υγρού Βαριά φάση Ελαφριά φάση Συστοιχία δίσκων

16 Φυγοκεντρικός Διαχωριστήρας με Δίσκους 3/4 Για διαύγαση (διαχωρισμός στερεών από υγρό) χρησιμοποιούνται δίσκοι χωρίς οπές κατανομής του αιωρήματος. Αιώρημα Διαυγές υγρό Στερεά

17 Φυγοκεντρικός Διαχωριστήρας με Δίσκους 4/4 Για την απομάκρυνση των στερεών και διαχωρισμό του υγρού σε βαριά και ελαφριά φάση, υπάρχουν: Διαχωριστήρες με βαλβίδες όπου οι βαλβίδες ανοίγουν σε τακτά χρονικά διαστήματα για την απομάκρυνση των στερεών (περιεκτικότητα σε στερεά <10%) Διαχωριστήρες με ακροφύσια με συνεχή ροή στερεών (περιεκτικότητα σε στερεά 10-25%) Έξοδος ελαφριάς φάσης Έξοδος βαριάς φάσης Έξοδος στερεών Είσοδος μίγματος

18 Διαχωριστήρας με Ατέρμονα Κοχλία (Decanter) 1/2 Για διαχωρισμό μιγμάτων μέχρι και 50% σε στερεά, χρησιμοποιείται ο διαχωριστήρας με ατέρμονα κοχλία Περιστρεφόμενο τύμπανο Περιστρεφόμενος κοχλίας Έξοδος βαριάς υγρής φάσης Κοχλίας Είσοδος μίγματος Έξοδος στερεών Έξοδος ελαφριάς φάσης

19 Διαχωριστήρας με Ατέρμονα Κοχλία (Decanter) 2/2 Διαχωριστήρας με ατέρμονα κοχλία 2 φάσεων Διαχωριστήρας με ατέρμονα κοχλία 3 φάσεων Είσοδος αιωρήματος Έξοδος βαριάς φάσης Είσοδος αιωρήματος Έξοδος υγρών Έξοδος στερεών Έξοδος στερεών Έξοδος ελαφριάς φάσης

20 Κυκλώνας Έξοδος ρευστού Έξοδος ρευστού Εί σοδος ρευστού με στερεά Είσοδος μίγματος Έξοδος στερεών Έξοδος στερεών

21 Ανάλυση Φυγοκεντρικού Διαχωρισμού 1/5 Για κίνηση ενός σωματιδίου στο πεδίο βαρύτητας είχαμε: v t D 2 ) g 18 Για κίνηση ενός σωματιδίου σε φυγοκεντρικό πεδίο έχουμε αντίστοιχα: όπου v t D 2 18 ) v t τερματική ταχύτητα σωματιδίου, m/s ω γωνιακή ταχύτητα, 1/s R ακτίνα φυγοκεντρικού πεδίου, m 2 R

22 Ανάλυση Φυγοκεντρικού Διαχωρισμού 2/5 Σύγκριση φυγοκεντρικού πεδίου και πεδίου βαρύτητας G 2 R g 2n g 2 R 2 RN 894 όπου n N RPS (Revolutions Per Second) RPM (Revolutions Per Minute) Το G ενός φυγοκεντρικού διαχωριστήρα δίνει πόσες φορές ταχύτερα κινείται ένα σωματίδιο μέσα σ ένα ρευστό στο διαχωριστήρα σε σχέση με το πεδίο βαρύτητας

23 Ανάλυση Φυγοκεντρικού Διαχωρισμού 3/5 Παράδειγμα Πόσα G αναπτύσσει ένας φυγοκεντρικός διαχωριστήρας σε ακτίνα R=10cm που λειτουργεί με 2500 RPM. Λύση G 2 RN *

24 Ανάλυση Φυγοκεντρικού Διαχωρισμού 4/5 Ουδέτερη ζώνη Σε ένα φυγοκεντρικό διαχωριστήρα που χρησιμοποιείται για το διαχωρισμό δύο υγρών π.χ. λάδι από νερό, η ακτίνα διαχωρισμού των δύο φάσεων (λάδι από νερό) μέσα στο διαχωριστήρα ονομάζεται ουδέτερη ζώνη. Η ακτίνα της ουδέτερης ζώνης μπορεί να προσδιοριστεί από τη σχέση: όπου B R 3 0 R 3 B ρ Β και ρ Ε πυκνότητα βαριάς και ελαφριάς φάσης αντίστοιχα R 0 ακτίνα της ουδέτερης ζώνης R B ακτίνα εξόδου της βαριάς φάσης R E ακτίνα εξόδου της ελαφριάς φάσης E R 3 0 R 3 E

25 Ανάλυση Φυγοκεντρικού Διαχωρισμού 5/5 Ρύθμιση ουδέτερης ζώνη Όσο πιο κοντά προς την περιφέρεια είναι η ουδέτερη ζώνη, τόσο πιο αμιγής θα είναι η ελαφριά φάση (π.χ. λάδι). Όσο πιο κοντά προς τον άξονα του διαχωριστήρα είναι η ουδέτερη ζώνη τόσο πιο αμιγής θα είναι η βαριά φάση (π.χ. νερό). Με ρύθμιση της ακτίνας εξόδου της βαριάς ή της ελαφριάς φάσης μπορεί να ρυθμιστεί η θέση της ουδέτερης ζώνης

26 Βιβλιογραφία Σ. Γιαννιώτη, Παραδόσεις Μηχανικής Τροφίμων P.R.Singh & D.R. Heldman, Introduction to Food Engineering, Academic Press Mac Cabe & Smith, Βασικές Διεργασίες Χημικής Μηχανικής C. Geankolis, Transort Processes and Unit Oerations

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 7: Φυγοκέντριση, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Αρχή λειτουργίας

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 3: Ξήρανση (2/2), 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Κύριοι τύποι

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 6: Διήθηση, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Αρχή λειτουργίας

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 1: Εξάτμιση (1/2), 2ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Σκοπός συμπύκνωσης

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 8: Εκχύλιση, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Τύποι εκχύλισης

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 4: Ψύξη - Κατάψυξη (/3), ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Συντελεστής

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 3: Ξήρανση (1/), 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Βασικές έννοιες

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της

Διαβάστε περισσότερα

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής 1.Σκοπός Άσκηση 9 Προσδιορισμός του συντελεστή εσωτερικής τριβής υγρών Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός του συντελεστή εσωτερικής τριβής (ιξώδες) ενός υγρού. Βασικές θεωρητικές γνώσεις.1

Διαβάστε περισσότερα

Προσομοίωση Πολυφασικών Ροών

Προσομοίωση Πολυφασικών Ροών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜ. ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ - ΤΟΜΕΑΣ ΕΝΕΡΓΕΙΑΣ UNIVERSITY OF PATRAS-ENGINEERING SCHOOL MECHANICAL ENGINEERING AND AERONAUTICS

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 2 ο : Είδη ροής

Διαβάστε περισσότερα

1. Κατανάλωση ενέργειας

1. Κατανάλωση ενέργειας ΑΠΘ ΕΓΑΧΤ 1. Κατανάλωση ενέργειας 1α. Σ ένα αναδευόμενο δοχείο (Τ m, D 0.67 m, C 0.67 m, H m, N 90 RPM, με τέσσερις ανακλαστήρες), εφοδιασμένο με αναδευτήρα τύπου στροβίλου Rushton, αναδεύεται διάλυμα

Διαβάστε περισσότερα

Κυκλική κίνηση. Βασικές έννοιες. x=rcosθ, y=rsinθ, z=0. x 2 +y 2 =R 2. Γωνιακή μετατόπιση. Γωνιακή ταχύτητα. Θέση

Κυκλική κίνηση. Βασικές έννοιες. x=rcosθ, y=rsinθ, z=0. x 2 +y 2 =R 2. Γωνιακή μετατόπιση. Γωνιακή ταχύτητα. Θέση Κυκλική κίνηση Στη Φυσική, κυκλική κίνηση ονομάζεται η κίνηση στην οποία η τροχιά ενός κινητού ταυτίζεται με την περιφέρεια ενός κύκλου. Η πιο απλή από τις κυκλικές κινήσεις είναι η ομαλή, κατά την οποία

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

Απόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) :

Απόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) : ΠΑΝΕΠΙΣΤΗΜΙΟ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ Τομέας Περιβάοντος και Χρήσης Ενέργειας Εργαστήριο Τεχνοογίας Περιβάοντος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ (3 ο ΕΞΑΜΗΝΟ)

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

Ανάδευση και ανάμιξη Ασκήσεις

Ανάδευση και ανάμιξη Ασκήσεις 1. Σε μια δεξαμενή, με διάμετρο Τ = 1.2 m και συνολικό ύψος 1.8 m και ύψος πλήρωσης υγρού Η = 1.2 m, αναδεύεται υγρό latex (ρ = 800 kg/m 3, μ = 10 ) με ναυτική προπέλα (τετρ. βήμα, 3 πτερύγια, D = 0.36

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

Διαβάστε περισσότερα

Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις Περιεχόµενα Κεφαλαίου 5 Εφαρµογές Τριβής Οµοιόµορφη Κυκλική Κίνηση Δυναµική Κυκλικής Κίνησης Οι κλήσεις στους αυτοκινητοδρόµους

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 4: Ψύξη - Κατάψυξη (3/3), 2ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Πτώση

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΟΔΗΓΙΕΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΥΓΡΗΣ ΕΚΧΥΛΙΣΗΣ Ελένη Παντελή, Υποψήφια Διδάκτορας Γεωργία Παππά, Δρ. Χημικός Μηχανικός

Διαβάστε περισσότερα

Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1,2 10 5 N / m 2 (ή Ρα).

Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1,2 10 5 N / m 2 (ή Ρα). 1. Το κυβικό δοχείο του σχήματος ακμής h = 2 m είναι γεμάτο με υγρό πυκνότητας ρ = 1,1 10³ kg / m³. Το έμβολο που κλείνει το δοχείο έχει διατομή Α = 100 cm². Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών ΦΥΣ102 1 Πυκνότητα Πυκνότητα είναι η μάζα ανά μονάδα όγκου,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ισοζύγιο µηχανικής ενέργειας

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ισοζύγιο µηχανικής ενέργειας ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ Συστήµατα µεταφοράς ρευστών Ισοζύγιο µηχανικής ενέργειας Η αντίσταση στην ροή και η κίνηση ρευστών µέσα σε σωληνώσεις επιτυγχάνεται µε την παροχή ενέργειας ή απλά µε την αλλαγή της δυναµικής

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9 ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΑΝΤΛΙΕΣ. 1.-Εισαγωγή-Γενικά. 2.-Χαρακτηριστικές καμπύλες. 3.-Επιλογή Αντλίας. 4.-Αντλίες σε σειρά και σε παράλληλη διάταξη. 5.

ΑΝΤΛΙΕΣ. 1.-Εισαγωγή-Γενικά. 2.-Χαρακτηριστικές καμπύλες. 3.-Επιλογή Αντλίας. 4.-Αντλίες σε σειρά και σε παράλληλη διάταξη. 5. ΑΝΤΛΙΕΣ 1.-Εισαγωγή-Γενικά 2.-Χαρακτηριστικές καμπύλες 3.-Επιλογή Αντλίας 4.-Αντλίες σε σειρά και σε παράλληλη διάταξη 5.-Ειδική Ταχύτητα 1.-Εισαγωγή-Γενικά - Μετατροπή μηχανικής ενέργειας σε υδραυλική

Διαβάστε περισσότερα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6α Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Στερεό (ή άκαμπτο) σώμα Τα μοντέλα ανάλυσης που παρουσιάσαμε μέχρι τώρα δεν μπορούν να χρησιμοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούμε

Διαβάστε περισσότερα

Παραδείγµατα ροής ρευστών (Moody κλπ.)

Παραδείγµατα ροής ρευστών (Moody κλπ.) Παραδείγµατα ροής ρευστών (Mooy κλπ.) 005-006 Παράδειγµα 1. Να υπολογισθεί η πτώση πίεσης σε ένα σωλήνα από χάλυβα του εµπορίου µήκους 30.8 m, µε εσωτερική διάµετρο 0.056 m και τραχύτητα του σωλήνα ε 0.00005

Διαβάστε περισσότερα

σφαιρικό σωματίδιο είναι: Β = Vp x ρ p x g (1) οπού: V ο όγκος όπου: βαρύτητας (m/s 2 ) (3) π.d p2 /4) 3 ) ρ w η πυκνότητα

σφαιρικό σωματίδιο είναι: Β = Vp x ρ p x g (1) οπού: V ο όγκος όπου: βαρύτητας (m/s 2 ) (3) π.d p2 /4) 3 ) ρ w η πυκνότητα Καθίζηση τύπου Ι Έστω ότι ένα διακεκριμένο σφαιρικό σωματίδιο (Σχήμα 1) καθιζάνει σε μια ήρεμη δεξαμενή νερού. Στο σωματίδιο αυτό ασκούνται τρεις διαφορετικές κατακόρυφες δυνάμεις που είναι το βάρος του,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ Ρεολογία Επιστήµη που εξετάζει την ροή και την παραµόρφωση των υλικών κάτω από την άσκηση πίεσης. Η µεταφορά των υγρών στην βιοµηχανία τροφίµων συνδέεται άµεσα

Διαβάστε περισσότερα

Κυκλώνες Διαχωρισμού 2.1 ΕΙΣΑΓΩΓΗ

Κυκλώνες Διαχωρισμού 2.1 ΕΙΣΑΓΩΓΗ 2 Κυκλώνες Διαχωρισμού 2.1 ΕΙΣΑΓΩΓΗ Οι κυκλώνες χρησιμοποιούνται εκτενώς για το διαχωρισμό σωματιδίων από αέρια ρεύματα εδώ και δεκαετίες. Κατά τη λειτουργίας τους το αέριο ρεύμα εξαναγκάζεται να κινηθεί

Διαβάστε περισσότερα

Σωματίδιο (σύμβολο) Θέση Σχετικό φορτίο

Σωματίδιο (σύμβολο) Θέση Σχετικό φορτίο XHMEIA-NOTES Μάζα: είναι το μέτρο της αντίστασης που παρουσιάζει ένα σώμα ως προς την μεταβολή της ταχύτητάς του και εκφράζεται το ποσό της ύλης που περιέχεται σε μια ουσία. Όργανο μέτρησης: Ζυγός Όγκος:

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 7 ο : Κρίσιμη

Διαβάστε περισσότερα

Μηχανική και Ανάπτυξη Διεργασιών

Μηχανική και Ανάπτυξη Διεργασιών Μηχανική και Ανάπτυξη Διεργασιών Κωστής Μαγουλάς, Καθηγητής Επαμεινώνδας Βουτσάς, Επ. Καθηγητής 7ο Εξάμηνο, Σχολή Χημικών Μηχανικών ΕΜΠ . ΟΡΙΣΜΟΣ Οι διαχωρισμοί είναι οι πιο συχνά παρατηρούμενες διεργασίες

Διαβάστε περισσότερα

Τσακαλάκης Κώστας, Καθηγητής Ε.Μ.Π. - (2009)

Τσακαλάκης Κώστας, Καθηγητής Ε.Μ.Π. - (2009) 1 η Προσέγγιση του προβλήµατος 1 Ας θεωρηθεί ένα τεµάχιο (Σχήµα 1) το οποίο καταβυθίζεται υπό την επίδραση της βαρύτητας κατά τέτοιο τρόπο, ώστε η κίνησή του να µην παρεµποδίζεται από την παρουσία των

Διαβάστε περισσότερα

6 Εξαναγκασμένη ροή αέρα

6 Εξαναγκασμένη ροή αέρα 6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ -- ΠΕΙΡΑΙΑΣ -- 853 -- ΤΗΛ. 0-75, 3687 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ. Γ ΛΥΚΕΙΟΥ Α. Σε μια απλή αρμονική ταλάντωση, κατά τη διάρκεια μιας περιόδου η κινητική ενέργεια Κ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

ΔΙΑΧΩΡΙΣΜΟΣ ΜΙΓΜΑΤΩΝ (4 η εργαστηριακή άσκηση Β Γυμνασίου)

ΔΙΑΧΩΡΙΣΜΟΣ ΜΙΓΜΑΤΩΝ (4 η εργαστηριακή άσκηση Β Γυμνασίου) 2 ο ΕΚΦΕ ΗΡΑΚΛΕΙΟΥ Επιμέλεια: Ορφανάκη Πόπη Χημικός Φωτογραφίες: Κωτίτσας Αριστοτέλης Βιολόγος ΔΙΑΧΩΡΙΣΜΟΣ ΜΙΓΜΑΤΩΝ (4 η εργαστηριακή άσκηση Β Γυμνασίου) 1. Διαχωρισμός μίγματος με διήθηση Με τη μέθοδο

Διαβάστε περισσότερα

ΠΑΝΤΕΛΑΚΗΣ ΔΗΜΗΤΡΙΟΣ. Δρ. Γεωπόνος Εγγείων Βελτιώσεων, Εδαφολογίας και Γεωργικής Μηχανικής Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης

ΠΑΝΤΕΛΑΚΗΣ ΔΗΜΗΤΡΙΟΣ. Δρ. Γεωπόνος Εγγείων Βελτιώσεων, Εδαφολογίας και Γεωργικής Μηχανικής Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης ΠΑΝΤΕΛΑΚΗΣ ΔΗΜΗΤΡΙΟΣ Δρ. Γεωπόνος Εγγείων Βελτιώσεων, Εδαφολογίας και Γεωργικής Μηχανικής Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης Εξάμηνο Διδασκαλίας: Ε (Βασικές έννοιες για το έδαφος) Τμήμα Τεχνολόγων

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΣΤΗ ΧΗΜΕΙΑ ΤΑΞΗ :Β ΗΜΕΡΟΜΗΝΙΑ : 07/06/13 ΒΑΘΜΟΣ:...

ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΣΤΗ ΧΗΜΕΙΑ ΤΑΞΗ :Β ΗΜΕΡΟΜΗΝΙΑ : 07/06/13 ΒΑΘΜΟΣ:... ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΣΤΗ ΧΗΜΕΙΑ ΤΑΞΗ :Β ΗΜΕΡΟΜΗΝΙΑ : 07/06/13 ΒΑΘΜΟΣ:... ΟΝΟΜΑΤΕΠΩΝΥΜΟ :...ΤΜΗΜΑ :...Αρ:... Βαθμολογία εξεταστικού δοκιμίου

Διαβάστε περισσότερα

1.5 Ταξινόμηση της ύλης

1.5 Ταξινόμηση της ύλης 1.5 Ταξινόμηση της ύλης Θεωρία 5.1. Πως ταξινομείται η ύλη; Η ύλη ταξινομείται σε καθαρές ή καθορισμένες ουσίες και μίγματα. Τα μίγματα ταξινομούνται σε ομογενή και ετερογενή. Οι καθορισμένες ουσίες ταξινομούνται

Διαβάστε περισσότερα

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι. κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι. κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών

Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Ρευστoμηχανική Εισαγωγικές έννοιες Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Εισαγωγή Περιεχόμενα μαθήματος Βασικές έννοιες, συνεχές μέσο, είδη, μονάδες διαστάσεις

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 11 Εισαγωγή στην Ηλεκτροδυναμική Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο ΦΥΣ102 1 Στατικός

Διαβάστε περισσότερα

θα πρέπει να ανοιχθεί μια δεύτερη οπή ώστε το υγρό να εξέρχεται από αυτήν με ταχύτητα διπλάσιου μέτρου.

θα πρέπει να ανοιχθεί μια δεύτερη οπή ώστε το υγρό να εξέρχεται από αυτήν με ταχύτητα διπλάσιου μέτρου. Δίνονται g=10m/s 2, ρ ν =1000 kg/m 3 [u 2 =3u 1, 10 3 Pa, 0,5m/s] ΚΕΦΑΛΑΙΟ 3 ο : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI 16 Το ανοικτό δοχείο του σχήματος περιέχει

Διαβάστε περισσότερα

ΥδροδυναµικέςΜηχανές

ΥδροδυναµικέςΜηχανές ΥδροδυναµικέςΜηχανές Αντλίες Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Αντλίες Ορισµός Είναι οι µηχανές που χρησιµοποιούνται για να µετακινούν υγρά. Βασική ενεργειακή µετατροπή:

Διαβάστε περισσότερα

Διαφορική ανάλυση ροής

Διαφορική ανάλυση ροής Διαφορική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών ΜΕ και ΔΕ ροής: Διαφορές Οριακές και αρχικές συνθήκες Οριακές συνθήκες: Φυσική σημασία αλληλεπίδραση του όγκου ελέγχου με το περιβάλλον

Διαβάστε περισσότερα

3ο Μάθημα ΔΙΑΧΩΡΙΣΜΟΣ ΜΙΓΜΑΤΩΝ ΣΤΑ ΣΥΣΤΑΤΙΚΑ ΤΟΥΣ

3ο Μάθημα ΔΙΑΧΩΡΙΣΜΟΣ ΜΙΓΜΑΤΩΝ ΣΤΑ ΣΥΣΤΑΤΙΚΑ ΤΟΥΣ 3ο Μάθημα ΔΙΑΧΩΡΙΣΜΟΣ ΜΙΓΜΑΤΩΝ ΣΤΑ ΣΥΣΤΑΤΙΚΑ ΤΟΥΣ Άλλοτε είναι απλός, και άλλοτε πολύπλοκος Στη χημεία, αλλά και στις τεχνικές εφαρμογές και στη ζωή, χρειαζόμαστε συχνά καθαρές ουσίες. Στο μάθημα αυτό

Διαβάστε περισσότερα

ΦΥΓΟΚΕΝΤΡΗΣΗ- ΥΠΕΡΦΥΓΟΚΕΝΤΡΗΣΗ

ΦΥΓΟΚΕΝΤΡΗΣΗ- ΥΠΕΡΦΥΓΟΚΕΝΤΡΗΣΗ ΦΥΓΟΚΕΝΤΡΗΣΗ- ΥΠΕΡΦΥΓΟΚΕΝΤΡΗΣΗ ΑΝΝΑ-ΜΑΡΙΑ ΨΑΡΡΑ Τμήμα Βιοχημείας κ Βιοτεχνολογίας ΑΝΝΑ-ΜΑΡΙΑ ΨΑΡΡΑ 1 ΦΥΓΟΚΕΝΤΡΗΣΗ Μέθοδος διαχωρισμού σωματιδίων ακόμα και μακρομορίων όπως: Κυττάρων Υποκυτταρικών οργανιδίων

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Τα προβλήµατα που υπάρχουν πάντα στις περιπτώσεις βαρυτοµετρικών διαχωρισµών είναι η γνώση της συµπεριφοράς των στερεών, όσον αφορά στην καταβύθισή τους µέσα

Διαβάστε περισσότερα

ΠΠΜ 477 ΠΑΡΑΚΤΙΑ ΜΗΧΑΝΙΚΗ

ΠΠΜ 477 ΠΑΡΑΚΤΙΑ ΜΗΧΑΝΙΚΗ ΠΠΜ 477 ΠΑΡΑΚΤΙΑ ΜΗΧΑΝΙΚΗ ΠΕΙΡΑΜΑΤΙΚΗ ΑΣΚΗΣΗ - ΣΥΜΠΕΡΙΦΟΡΑ ΝΕΡΟΥ ΟΜΑΔΑ:. ΗΜΕΡ. ΠΑΡΑΔΟΣΗΣ: 2 ΠΕΡΙΕΧΟΜΕΝΑ ΥΠΟΒΟΛΗ ΕΡΓΑΣΙΑΣ... ΠΕΡΙΛΗΨΗ... 1.0 ΕΙΣΑΓΩΓH... 2.0 ΑΣΚΗΣΕΙΣ 2.1. ΝΕΡΟ ΕΛΕΥΘΕΡΟ ΣΤΟ ΠΕ ΙΟ ΒΑΡΥΤΗΤΑΣ...

Διαβάστε περισσότερα

Εισαγωγή Διάκριση των ρευστών

Εισαγωγή Διάκριση των ρευστών ΥΔΡΑΥΛΙΚΗ Εισαγωγή στην Υδραυλική Αντικείμενο Πυκνότητα και ειδικό βάρος σωμάτων Συστήματα μονάδων Ιξώδες ρευστού, επιφανειακή τάση, τριχοειδή φαινόμενα Υδροστατική πίεση Εισαγωγή Ρευστομηχανική = Μηχανικές

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ με θέμα:

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ με θέμα: ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΚΑΒΑΛΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ με θέμα: ΦΥΓΟΚΕΝΤΡΙΚΟΙ ΔΙΑΧΩΡΙΣΤΗΡΕΣ ΥΓΡΩΝ ΔΑΝΗΛΑΤΟΥ ΑΝΝΑ Α.Ε.Μ: 5052 Επιβλέπων Καθηγητής:

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url Ludwig Prandtl (1875 1953) 3. ΦΑΙΝΟΜΕΝΑ ΤΗΣ ΡΟΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Δυναμική Ροή Δυναμική Ροή (potential flow): η ροή ιδανικού ρευστού

Διαβάστε περισσότερα

Λίγη Φυσική. για τη σοκολάτα Ζωή Ευθυμιάδου 1, Βικτωρία Κελαναστάση 2, Αγγελική Κοσμά 3 1 ο Πρότυπο Πειραματικό Λύκειο Θες/νίκης «Μανόλης Ανδρόνικος»

Λίγη Φυσική. για τη σοκολάτα Ζωή Ευθυμιάδου 1, Βικτωρία Κελαναστάση 2, Αγγελική Κοσμά 3 1 ο Πρότυπο Πειραματικό Λύκειο Θες/νίκης «Μανόλης Ανδρόνικος» Λίγη Φυσική. για τη σοκολάτα Ζωή Ευθυμιάδου 1, Βικτωρία Κελαναστάση 2, Αγγελική Κοσμά 3 1 ο Πρότυπο Πειραματικό Λύκειο Θες/νίκης «Μανόλης Ανδρόνικος» 1 zoeefth@hotmail.com, 2 viktwria444@hotmail.com, 3

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

Σχήμα 22: Αλυσίδες κυλίνδρων

Σχήμα 22: Αλυσίδες κυλίνδρων Αλυσοκινήσεις Πλεονεκτήματα ακριβής σχέση μετάδοση λόγω μη ύπαρξης διολίσθησης, η συναρμολόγηση χωρίς αρχική πρόταση επειδή η μετάδοση δεν βασίζεται στην τριβή καθώς επίσης και ο υψηλός βαθμός απόδοσης

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΗΜΕΡΟΜΗΝΙΑ: 10/06/2014 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ: ΑΡ.:

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΗΜΕΡΟΜΗΝΙΑ: 10/06/2014 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ: ΑΡ.: ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013 2014 Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ Ι Ο Υ Ν Ι Ο Υ 2 0 1 4 ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΤΑΞΗ:B ΔΙΑΡΚΕΙΑ: 2 ώρες (μαζί με τη ΦΥΣΙΚΗ) ΗΜΕΡΟΜΗΝΙΑ: 10/06/2014

Διαβάστε περισσότερα

2.2 Το νερό ως διαλύτης - μείγματα

2.2 Το νερό ως διαλύτης - μείγματα 1 2.2 Το νερό ως διαλύτης - μείγματα 2.2-1. Τι ονομάζεται μείγμα; Μείγμα ονομάζεται κάθε σύστημα που προκύπτει από την ανάμειξη δύο ή περισσότερων ουσιών. Τα περισσότερα υλικά στη φύση είναι μίγματα. 2.2-2.

Διαβάστε περισσότερα

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος)

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος) Άσκηση Μ1 Θεωρητικό μέρος Μήκος και μάζα (βάρος) Όργανα μέτρησης μήκους Διαστημόμετρο Με το διαστημόμετρο μετράμε μήκη μέχρι και μερικά μέτρα, σε χαμηλές απαιτήσεις ως προς την ακρίβεια. Το κύριο μέρος

Διαβάστε περισσότερα

ΦΥΣΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ. Οι φυσικές καταστάσεις της ύλης είναι η στερεή, η υγρή και η αέρια.

ΦΥΣΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ. Οι φυσικές καταστάσεις της ύλης είναι η στερεή, η υγρή και η αέρια. ΦΥΣΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ Οι φυσικές καταστάσεις της ύλης είναι η στερεή, η υγρή και η αέρια. Οι μεταξύ τους μεταβολές εξαρτώνται από τη θερμοκρασία και την πίεση και είναι οι παρακάτω: ΣΗΜΕΙΟ ΤΗΞΗΣ ΚΑΙ ΣΗΜΕΙΟ

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΤΑΞΗ :Β

ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΤΑΞΗ :Β ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013-14 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΤΑΞΗ :Β ΜΑΘΗΜΑ : ΧΗΜΕΙΑ ΒΑΘΜΟΣ: ΗΜΕΡΟΜΗΝΙΑ : 06/06/14 ΔΙΑΡΚΕΙΑ: 2 Ώρες(Φυσική-Χημεία) Αριθμός σελίδων γραπτού:6 Ονοματεπώνυμο:...

Διαβάστε περισσότερα

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΦΡΟΝΤΙΣΤΗΡΙΟ ΓΝΩΣΗ ΘΕΜΑ 1 1. Σε μια ελαστική κρούση δύο σωμάτων διατηρείται: α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

Διαβάστε περισσότερα

Εξισώσεις Κίνησης (Equations of Motion)

Εξισώσεις Κίνησης (Equations of Motion) Εξισώσεις Κίνησης (Equations of Motion) Αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Η εφαρμογή της ρευστομηχανικής στην ωκεανογραφία βασίζεται στη Νευτώνεια

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

Γκύζη 14-Αθήνα Τηλ :

Γκύζη 14-Αθήνα Τηλ : ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 22 ΜΑΪΟΥ 2013 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Στις ερωτήσεις Α1-Α4 να γράψετε

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ Θέμα Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ - NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 3 ΙΟΥΝΙΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του 301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,

Διαβάστε περισσότερα

Χαρακτηριστικά λειτουργίας υδροστρoβίλων Pelton Francis

Χαρακτηριστικά λειτουργίας υδροστρoβίλων Pelton Francis Εργαστηριακό φυλλάδιο: Χαρακτηριστικά λειτουργίας υδροστρoβίλων Pelto racis 1. Αντικείμενο και σκοπός του πειράματος: Το πείραμα περιλαμβάνει την εξαγωγή χαρακτηριστικών καμπύλων λειτουργίας των υδροστροβίλων

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ -- ΠΕΙΡΑΙΑΣ -- 83 -- ΤΗΛ. 0-447, 43687 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ. Α. Σώμα εκτελεί εξαναγκασμένη ταλάντωση με εξίσωση x A ημωt. H δύναμη που αντιστέκεται

Διαβάστε περισσότερα

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΗ ΥΔΡΑΥΛΙΚΗ. Τμήμα Μηχανικών Περιβάλλοντος Γ εξάμηνο

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΗ ΥΔΡΑΥΛΙΚΗ. Τμήμα Μηχανικών Περιβάλλοντος Γ εξάμηνο ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΗ ΥΔΡΑΥΛΙΚΗ Τμήμα Μηχανικών Περιβάλλοντος Γ εξάμηνο ΜΟΥΤΣΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΛΕΚΤΟΡΑΣ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ -Ειδικότητα Υδραυλική Πανεπιστήμιο

Διαβάστε περισσότερα

κάθετη δύναμη εμβαδόν επιφάνειας Σύμβολο μεγέθους Ορισμός μεγέθους Μονάδα στο S.I.

κάθετη δύναμη εμβαδόν επιφάνειας Σύμβολο μεγέθους Ορισμός μεγέθους Μονάδα στο S.I. 4.1 Η πίεση ονομάζουμε το μονόμετρο φυσικό μέγεθος που ορίζεται ως το πηλίκο του μέτρου της συνολικής δύναμης που ασκείται κάθετα σε μια επιφάνεια προς το εμβαδόν της επιφάνειας αυτής. πίεση = κάθετη δύναμη

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου

Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Ζήτημα 1 ον 1.. Ένα σημειακό αντικείμενο εκτελεί απλή αρμονική ταλάντωση. Τις χρονικές στιγμές που το μέτρο της ταχύτητας του αντικειμένου είναι μέγιστο, το μέτρο

Διαβάστε περισσότερα

Τεχνολογία Περιβάλλοντος

Τεχνολογία Περιβάλλοντος Τεχνολογία Περιβάλλοντος Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 6ο μάθημα Τεχνολογίες απομάκρυνσης σωματιδιακών ρύπων Μέχρι τώρα Εισαγωγή στην πολυδιάστατη έννοια «Περιβάλλον»

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Ψυκτικές Μηχανές 28/9/2012. Υποπλοίαρχος (Μ) Α.Δένδης ΠΝ 1. Ψυκτικές Μηχανές (4.1) Ψυκτικές Μηχανές (4.1) Ψυκτικές Μηχανές (4.1)

Ψυκτικές Μηχανές 28/9/2012. Υποπλοίαρχος (Μ) Α.Δένδης ΠΝ 1. Ψυκτικές Μηχανές (4.1) Ψυκτικές Μηχανές (4.1) Ψυκτικές Μηχανές (4.1) Ψυκτικές Μηχανές Συμπιεστες Επανάληψη 1. Ποιός είναι ο σκοπός λειτουργίας του συμπιεστή; 4 Συμπύκνωση 3 Εκτόνωση Συμπίεση 1 Ατμοποίηση 2 Υποπλοίαρχος (Μ) Α.Δένδης Π.Ν. 1 2 Επανάληψη 2. Ποιά μεγέθη του

Διαβάστε περισσότερα

ΜΗΧΑΝΗΜΑΤΑ ΨΕΚΑΣΜΟΥ-AΚΡΟΦΥΣΙΑ

ΜΗΧΑΝΗΜΑΤΑ ΨΕΚΑΣΜΟΥ-AΚΡΟΦΥΣΙΑ 4 η Εργαστηριακή Άσκηση ΜΗΧΑΝΗΜΑΤΑ ΨΕΚΑΣΜΟΥ-AΚΡΟΦΥΣΙΑ ΔΙΔΑΣΚΟΝΤΕΣ: Κων/νος Αλιφέρης Γεωργία Παζιώτου ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΡΓΙΚΗΣ ΦΑΡΜΑΚΟΛΟΓΙΑΣ Τρόποι Εφαρμογής των Φ.Π. Ψεκασμοί Επιπάσεις Εφαρμογές στο έδαφος

Διαβάστε περισσότερα

Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ04 του ΑΣΕΠ

Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ04 του ΑΣΕΠ Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ του ΑΣΕΠ Ένα κινητό κινείται σε κύκλο Κεντρομόλος και επιτρόχια επιτάχυνση υπάρχουν: α Και οι δύο πάντα β Η πρώτη πάντα γ Η δεύτερη πάντα δ Ενδέχεται

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

Ενα τυπικό πρωτόκολλο για τον καθαρισμό μιας διαλυτής κυτταρικής πρωτείνης περιλαμβάνει

Ενα τυπικό πρωτόκολλο για τον καθαρισμό μιας διαλυτής κυτταρικής πρωτείνης περιλαμβάνει Ενα τυπικό πρωτόκολλο για τον καθαρισμό μιας διαλυτής κυτταρικής πρωτείνης περιλαμβάνει Διάσπαση της κυτταρικής μεμβράνης με ομοιογενοποίηση Διαφορική φυγοκέντριση ωστε να διαχωρισθεί η πρωτεινική ενεργότητα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Β Γυμνασίου 29 Μαρτίου 2013 Θεωρητικό Μέρος Θέμα 1 ο Α. Όταν μετατρέπουμε την τιμή ενός μήκους από km σε m προκύπτει: α) αριθμός πάντοτε μεγαλύτερος του αρχικού β) αριθμός πάντοτε μικρότερος του αρχικού

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Εργαστήριο Μηχανικής Ρευστών Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημ/νία παράδοσης Εργασίας: Τετάρτη 24 Μαΐου 2 1 Θεωρητική Εισαγωγή:

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 4: Ψύξη - Κατάψυξη (1/3), 2ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Βασικές

Διαβάστε περισσότερα

Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα

Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα Εργαστηριακή Άσκηση HM 150.01 Περιεχόμενα 1. Περιγραφή συσκευών... 1 2. Προετοιμασία για το πείραμα... 1 3. Πειράματα...

Διαβάστε περισσότερα

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2 Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα σύστημα ελατηρίου - μάζας εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Αν τετραπλασιάσουμε την ολική ενέργεια της ταλάντωσης αυτού του συστήματος

Διαβάστε περισσότερα