σφαιρικό σωματίδιο είναι: Β = Vp x ρ p x g (1) οπού: V ο όγκος όπου: βαρύτητας (m/s 2 ) (3) π.d p2 /4) 3 ) ρ w η πυκνότητα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "σφαιρικό σωματίδιο είναι: Β = Vp x ρ p x g (1) οπού: V ο όγκος όπου: βαρύτητας (m/s 2 ) (3) π.d p2 /4) 3 ) ρ w η πυκνότητα"

Transcript

1 Καθίζηση τύπου Ι Έστω ότι ένα διακεκριμένο σφαιρικό σωματίδιο (Σχήμα 1) καθιζάνει σε μια ήρεμη δεξαμενή νερού. Στο σωματίδιο αυτό ασκούνται τρεις διαφορετικές κατακόρυφες δυνάμεις που είναι το βάρος του, η άνωση και η οπισθέλκουσα. Σχήμα 1: Σφαιρικό σωματίδιο σε ήρεμο νερό κάτω από την επίδραση της οπισθέλκουσας δύναμης, της άνωσης και του βάρους του. Το βάρος του σωματιδίου είναι: Β = Vp x ρ p x g (1) οπού: V ο όγκος του σωματιδίου, m 3 ρ η πυκνότητα του σωματιδίου (kg/m 3 ) g η επιτάχυνση της βαρύτητας (m/s 2 ) Η ανωστική δύναμη είναι: A = Vp x ρ w x g (2) όπου V ο όγκος του σωματιδίου, m 3 ρ w η πυκνότητα του νερού kg/m 3 ) g η επιτάχυνση της βαρύτητας (m/s 2 ) Η οπισθέλκουσα δύναμη είναι: F = C D x A p x ρ w x Vs 2 /2 (3) όπου: C D ο συντελεστής οπισθέλκουσας Α η προβολή της σφαιρικής επιφάνειας (= π.d p2 /4) ρ w η πυκνότητα του νερού (kg/m 3 ) Vs η ταχύτητα καθίζησης (m/s) 1

2 Όταν η οπισθέλκουσα δύναμη γίνει ίση με τη συνισταμένη των δυνάμεων που αντιστοιχούν στο βάρος και στην άνωση του σωματιδίου τότε θα μηδενισθεί η επιτάχυνση και η πτώση θα γίνεται με την οριακή του ταχύτητα. Η οριακή αυτή ταχύτητα μπορεί να υπολογισθεί από τις σχέσεις 1, 2, 3 και τη σχέση 4 εάν αντικατασταθεί ο όγκος του σφαιρικού σωματιδίου με π π.d p3 /6 (όπου d p η διάμετρος του σωματιδίου). m p x dvs/dt (4) όπου: m p η μάζα του σωματιδίου, kg dvs/dt η επιτάχυνση του σωματιδίου (m/s 2 ) Β, Α και F οι δυνάμεις που αντιστοιχούν στο βάρος, την άνωση και την οπισθέλκουσα (Ν) Η οριακή ταχύτητα πτώσης ενός σφαιρικού σωματιδίου σε νερό που βρίσκεται κάτω από συνθήκες ηρεμίας δίνεται από την σχέση 5: Vs = [4/3x(g(ρ p- ρ w )1) d p / C D. ρ w ] 1/2 (5) Αν διαιρέσουμε τον αριθμητή και τον παρονομαστή της σχέσης 5 με ρ w, προκύπτει η σχέση 5α. όπου: Vs = [4/3x(g(ρ p /ρ w )-1) / C D ] 1/2 (5a) ρ p /ρ w = πυκνότητα σωματιδίου/πυκνότητα νερού, ονομάζεται και ειδική βαρύτητα ή σχετικό ειδικό βάρος του σωματιδίου, Ο συντελεστής οπισθέλκουσας, όταν πρόκειται για σφαιρικά σωματίδια, υπολογίζεται από τη σχέση: C D = 24/Re +3/[Re] 1/2 + 0,34 (6) και ο αριθμός Reynolds ορίζεται από τη σχέση 7: Re = Vs x d p x ρ w /μ (7) όπου: μ το δυναμικό ιξώδες του νερού (kg/m.s) Όταν ο αριθμός Re είναι μικρότερος από 0,3 τότε στην εξίσωση 6 σημαντικός είναι μόνο ο πρώτος όρος και μπορεί να θεωρηθεί ότι C D =24/Re. Κάτω απ' αυτές τις συνθήκες η σχέση 5 (που εκφράζει τον νόμο του Newton) παίρνει τη μορφή 8 που αντιστοιχεί στο νόμο του Stokes. Vs = (g x d 2 p (ρ p /ρ w )-1) / 18 ν (8) 2

3 Όπου: ν = το κινηματικό ιξώδες του νερού (m 2 /s) ρ p /ρρ w = το σχετικό ειδικό βάρος του σωματιδίου Για μεγάλες τιμές του αριθμού Re (π.χ. για Re >2000) ο συντελεστής C D τείνει προς την τιμή 0,4. Έτσι για μεγάλες τιμές του αριθμού Re η σχέση 5α γίνεται: Vs = [3,3 x g x (g(ρ p /ρ w )-1) d p ] 1/2 (5β) Στο Σχήμα 2 δίνεται η γραφική παράσταση της εξάρτησης της οριακής ταχύτητας πτώσης σωματιδίων άμμου (σχετικό ειδικό βάρος 2,65) σε νερό θερμοκρασίας 20 C από το μέγεθος των σωματιδίων για περιοχές μικρών αριθμών Re (νόμος του Stokes), για ενδιάμεσες τιμές αριθμών Re (μεταβατικές συνθήκες) και για περιοχές μεγάλων αριθμών Re (συνθήκες τυρβώδους ροής, νόμος του Newton). 3

4 ΚΑΘΙΖΗΣΗ ΤΥΠΟΥ Ι Παράδειγμα 1 Να σχεδιασθεί μία τετραγωνική δεξαμενή καθίζησης άμμου για την επεξεργασία m 3 /d ακατέργαστου επιφανειακού νερού (ποταμού) με ρυθμό επιφανειακής φόρτισης (SurfaceOverflowRate) = 12 m 3 /m 2 _d και υδραυλικό χρόνο παραμονής περίπου 4 h. Ο ρυθμός επιφανειακής φόρτισης φράγματος (WeirOverflowRate) να μην ξεπερνά τα 3000 m 3 /m_d. Όταν για Re<<0,,5 ισχύει V s = g*(ρ s ρ w )*d 2 / 18μ (Stokes), να καθορίσετε ποια σωματίδια από τα κλάσματα του πίνακα θα κατακρατηθούν. Η ειδική πυκνότητα άμμου είναι 1,15 kg/m 3. Λύση 1. Διαστάσεις δεξαμενής α. Απαιτούμενη επιφάνεια = Q/ρυθμό επιφ. Φόρτισης (SOR) = m 3 /d / 12 m 3 /m 2 _d = 1683 m 2 (τετραγωνική δεξαμενή) L = W = 41 m ~ 45m β. Βάθος Η = Vs * t = 12 m 3 /m 2 _d * 4 h = 0,5 m 3 /m 2 _h * 4 h = 2 m κατασκευάζουμε δεξαμενή με LxWxH = 45x45x2 *** κανονικά θα έπρεπε να βρούμε την καινούρια πλέον SOR, διότι ο ρυθμός καθίζησης ισούται με την επιφανειακή φόρτιση SOR: νέα SOR = 20200/45*455 = 9,98 m 3 /m 2 _d και Η = 0,42* *4 = 1,7m ~ 2m 2. Έλεγχος της επιφανειακής φόρτισης φράγματος υπερχείλισης (WOR): WOR = Q/W = 20200/45 = 448,8 m 3 /m_d Για να εκπληρώνει τον όρο 300< θα πρέπει να επιλέξουμε μία W = 67 m. 3. Για να καθορίσουμε ποια σωματίδια από τα κλάσματα του πίνακα θα κατακρατηθούν πρέπει να συγκρίνουμε την ταχύτητα του κάθε κλάσματος με βάση την εξίσωση του Stocke V s = g*(ρ s ρ w )*d 2 / 18μ, με την νέα SOR που προκύπτει από τα κατασκευαστικά δεδομένα. Και SOR = 10 m 3 /m 2 _d = 0,1157 0,12 mm/s 4

5 Επομένως από τα κλάσματα του παραπάνω πίνακα με την συγκεκριμένη κατασκευή και χαρακτηριστικά θα κατακρατηθούν πάνω από 90% στερεά με διάμετρο από 0,04 και πάνω Παράδειγμα 2 Να υπολογισθεί η οριακή ταχύτητα καθίζησης ενός σφαιρικού σωματιδίου άμμου διαμέτρου 0,4 mm. Η καθίζηση γίνεται σε μια δεξαμενή που περιέχει νερό το οποίο βρίσκεται σε συνθήκες ηρεμίας και η θερμοκρασία του είναι 20 C Δίνονται η πυκνότητα και το δυναμικό ιξώδες του νερού στους 20 C. Πυκνότητα 998,2 kg/m 3, δυναμικό ιξώδες 1, N.s/m 2. Η πυκνότητα της άμμου λαμβάνεται ίση με 2650 kg/m 3. Λύση Από το Σχήμα 2 σωματίδια άμμου με διάμετρο 0,4 mm καθιζάνουν υπό καθεστώς μεταβατικών συνθηκών. Ξεκινάμε την επίλυση της άσκησης κάνοντας μια παραδοχή για τον αριθμό Reynolds. Έστω λοιπόν Re =100. Βήμα 1 Με βάση την τιμή Re = 100 υπολογίζουμε την ταχύτητα καθίζησης (Vs) και το συντελεστή οπισθέλκουσας (C D ). 100 = (Vs (m/s)x(0,4x10-3 m)x998,2 kg/m 3 )/(1,002 x 10-3 N.s/m 2 ) = Vs (m/s)x398,483 s/m Vs = 0,251 m/s C D = 24/ /(100) 1/2 + 0,34 = 0,88 Στη συνέχεια με την τιμή C D = 0,88 (που υπολογίσθηκε για το συντελεστή οπισθέλκουσας) υπολογίζουμε (από τη σχέση 5α) την αντίστοιχη ταχύτητα καθίζησης. Vs,1 = [ 4/3((9,81 (m/s 2 )x(2650/998,2-1)x0,4x10-3 )/(C D )) ] 1/2 Vs,1 = [ (8,658x10-3 )/0,88) ] 1/2 Επειδή η τιμή Vs = 0,251 m/s διαφέρει σημαντικά από την τιμή Vs,1 =0,099 m/s δοκιμάζουμε εκ νέου λαμβάνοντας ως βάση για τους υπολογισμούς την τιμή Vs,1 = 0,099 m/s. Βήμα 2 Για Vs,1 = 0,099 m/s υπολογίζονται: Ν R = 398,483 x 0,099 = 39,45 C D = (24/39,45) + ((3/(39,45) 1/2 ) + 0,34 = 1,43 Vs,2 = ((8,658x10-3 )/1,43) 1/2 m/s = 0,078 m/s 5

6 Επειδή η τιμή Vs,2 = 0,099 m/s που βρέθηκε από την πρώτη δοκιμή εξακολουθεί να διαφέρει σημαντικά από την τιμή Vs,2 = 0,078 m/s που βρέθηκε με τη δεύτερη δοκιμή, επιχειρείται ένα τρίτο βήμα υπολογισμών με βάση την τιμή Vs,2 = 0,078 m/s. Βήμα 3 Για Vs,2 = 0,078 m/s υπολογίζονται: Ν R = 398,483 x 0,078 =31,08 C D = (24/31,08) + ((3/(31,08) 1/2 ) + 0,34 = 1,65 Vs,3 = ((8,658x10-3 )/1,65) 1/2 m/s = 0,072 m/s Παρατηρούμε ότι οι τιμές των ταχυτήτων καθίζησης πλησίασαν αρκετά (τιμές Vs,2 = 0,078 m/s και Vs,3 = 0,072 m/s). Έτσι σταματάμε τα βήματα των δοκιμών και θεωρούμε σαν οριακή ταχύτητα καθίζησης των σωματιδίων της άμμου τη μέση τιμή (0,072 +0,078)/2= 0,075 m/s. Θεωρία καθίζησης ΙΙ Το βάθος της δεξαμενής δεν αποτελεί συντελεστή για τον προσδιορισμό του μεγέθους των σωματιδίων που θα αφαιρεθούν πλήρως στην ζώνη καθίζησης. Ο συντελεστής που θα πρέπει να καθορισθεί ονομάζεται επιφανειακή φόρτιση, έχει τις μονάδες της ταχύτητας q o = Q/A (m 3 /m 2 _h) και αντιστοιχεί στην τελική ταχύτητα καθίζησης των σωματιδίων που θα αφαιρεθούν 100%. Εάν διεξαχθεί μια παρόμοια σύγκριση μεταξύ διακοπτόμενης και συνεχούς καθίζησης σε μία ορθογώνια δεξαμενή, η διαδρομή των καθιζανόντων σωματιδίων δεν θα είναι μία ευθεία γραμμή. Όπως καθορίσθηκε στην ανάλυση ασυνεχούς καθίζησης η μέση ταχύτητα του καθιζάνοντος συσσωματωμένου σωματιδίου θα αυξηθεί με το βάθος. Λόγω του ότι η διαδρομή τείνει να είναι καμπύλη (εικόνα) το βάθος είναι ένας συντελεστής στην καθίζηση συσσωμάτωσης. Για τον λόγο αυτό η ανάλυση πρέπει να διεξαχθεί σε μία στήλη με το ίδιο βάθος της επιδιωκόμενης δεξαμενής καθίζησης. Δεξαμενές καθίζησης διακεκριμένων σωματιδίων είναι συνήθως 2,5-3 μέτρα βαθιές, ενώ για την καθίζηση συσσωμάτων είναι συνήθως 3-4 μέτρα. Για λόγους πρακτικής το πλάτος δεν πρέπει να ξεπερνά τα 12 μέτρα (κατασκευή μηχανικών εξοπλισμών αφαίρεσης της ιλύος) και έτσι το μήκος της δεξαμενής πρέπει να διατηρηθεί σε λιγότερο από 48 μέτρα. 6

7 Παράδειγμα 3 Σχεδιασμός μιας ορθογώνιας δεξαμενής καθίζησης για καθίζηση τύπου ΙΙ Μία πόλης πρέπει να επεξεργασθεί m 3 νερού. Σωματίδια συσσωμάτωσης παράγονται κατά την διαδικασία κρωκίδωσης συσσωμάτωσης και η ανάλυση στήλης στο εργαστήριο έδειξε ότι μια επιφανειακή ταχύτητα υπερχείλισης 20 m 3 /m 2 _d επιτυγχάνει ικανοποιητική απομάκρυνση σε ένα βάθος 3,5 μέτρων. Να καθορισθούν οι διαστάσεις της απαιτούμενης δεξαμενής. Λύση 1. Υπολογισμός της επιφάνειας (προτείνονται δύο δεξαμενές, έκαστη να επεξεργάζεται 7500 m 3 /d) Q=q o A s 7500 m 3 /d = A s x20m/d A s =7500/20 = 375 m 2 2. Επιλογή σχέσης μήκους προς πλάτος 3/1 και υπολογισμός των διαστάσεων της επιφάνειας W x 3W = 375 m 2 Width =11,2 ~ 11 m Length = 33,5 ~34 m 3. Υπολογισμός του χρόνου παραμονής t= volume/flow rate = (11m x 34m x 3,5m)/[(7500 m 3 /d) x (1d/24h)] = 4,2 h 4. Υπολογισμός της οριζόντιας ταχύτητας v h = Q/A s = 7500 (m 3 /d) x 1d/24h /11m x 3,5 = 8,1 m/h 5. Υπολογισμός της ταχύτητας υπερχείλισης (weir overflow rate). Κατασκευάζοντας έναν απλό υπερχειλιστή κατά μήκος του τελικού άκρου της δεξαμενής, το μήκος του υπερχειλιστή θα είναι 11m και η ταχύτητα υπερχείλισης: 7500m 3 /d x 1d/24h x 1/11m = 28,4 m 3 /m_h Είναι αναγκαίο να εφαρμόσουμε 5 φορές αυτή το πλάτος (αύξηση του μήκους του υπερχειλιστή με εσωτερική κατασκευή παράλληλων καναλιών) 7

8 Σχήμα 3 6. Πρόσθεση ζωνών εισόδου και εξόδου στο ίσο βάθος της δεξαμενής και ζώνη ιλύος όπως στο Σχήμα 4 Καθίζηση Παράδειγμα 4 Μια μονάδα επεξεργασίας πόσιμου νερού έχει 4 δεξαμενές καθίζησης και επεξεργάζεται 630 m 3 /h. Κάθε μια δεξαμενή καθίζησης έχει πλάτος (W) 5 m, 24,5 m μήκος (L) και 4,5m βάθος (D). Να καθορίσετε 1) τον χρόνο παραμονής, 2) την ταχύτητα επιφανειακής φόρτισης, 3) την οριζόντια ταχύτητα κίνησης και 4) την ταχύτητα υπερχείλισης υποθέτοντας ότι το μήκος του υπερχειλιστή είναι 2,5 φορές το μήκος του πλάτους της δεξαμενής Λύση Βήμα 1 ο Υπολογισμός του χρόνου παραμονής για κάθε μια δεξαμενή καθίζησης Q=630m3/h /4 δεξαμενές = m3 θα επεξεργάζεται η κάθε μία δεξαμενή t= V/Q=5x24.5x4.5/630 m 3 /h = 551.3/157.5 = 3.5 h Βήμα 2 ο Υπολογισμός της επιφανειακής φόρτισης u = Q/LxW = m 3 /h /5m x 24.5 m = 1.28 m 3 /m 2 _h (βιβλιογραφικές τιμές: για διακεκριμένα σωματίδια m/h και για συσσωματωμένα m/h) Βήμα 3 ο Υπολογισμός της οριζόντιας ταχύτητας v= Q/WxD = / 5 x 4.5 = 7 m/h 8

9 (βιβλιογραφικές τιμές: να μην υπερβαίνει για ελαφρά συσσωματωμένα σωματίδια τα 9 m/h και για βαρύτερα διακεκριμένα σωματίδια περίπου 36 m/h) Βήμα 4 ο Υπολογισμός του ρυθμού υπερχείλισης v w = Q/2.5xW = 157.5/2.5x4.5 =14m/h πολύ μεγάλοι ρυθμοί υπερχείλισης οδηγούν σε αυξημένες ταχύτητες στην έξοδο. Αυτές οι ταχύτητες επαναφέρουν σωματίδια και συσσωματώματα, τα οποία κανονικά έχουν καθιζάνει, στο ρεύμα εκροής και διαφεύγουν με το καθαρό νερό. Εφαρμοζόμενοι ρυθμοί υπερχείλισης κυμαίνονται από 6 m 3 /m_h ( ανα μέτρο μήκους του υπερχειλιστή) για ελαφρά σωματίδια μέχρι 14 m 3 /m_h για βαρύτερα διακεκριμένα σωματίδια. Είναι αναγκαίο να κατασκευαστεί ειδική εσωτερική μονάδα συλλογής του καθαρού νερού 9υπερχειλιστής) όπως στο σχήμα 3. Καθίζηση κεκλιμένων πλακών Κεκλιμένες πλάκες και σωλήνες χρησιμοποιούνται συχνά στην επεξεργασία του πόσιμου νερού. Ένας μεγάλος αριθμός κεκλιμένων πλακών ή σωλήνων (d=20-50mm) τοποθετούνται μαζί και λειτουργούν ως μία μονάδα. Τοποθετούνται κεκλιμένα με μία γωνία 7-60 ο. Η τυπική απόσταση μεταξύ δύο πλακών για μη παρεμποδιζόμενη καθίζηση είναι 5 cm με ύψος 1-2 m. Τα σωματίδια ή τα συσσωματώματα καθιζάνουν με την βοήθεια της βαρύτητας. Πρόκειται συνήθως για ελαφριές κατασκευές από πλαστικά PVC ή ΑΒC (1x3). Οι συστοιχίες αγωγών δείχνουν έχουν μια καλή απόδοση αλλά παρουσιάζουν εμφράγματα. Κατασκευάζονται σε ομόρυθμη, παράλληλη και αντίθετη ροή. Η επιφανειακή φόρτιση ή ταχύτητα καθίζησης (u) και η οριζόντια ταχύτητα (v) υπολογίζονται ως ακολούθως: u = Q*w /A(H cosθ + w cos 2 θ) v = Q/A sinθ όπου u = επιφανειακή φόρτιση ή ταχύτητα καθίζησης, m/s v = ταχύτητα του νερού στην δεξαμενή καθίζησης, m/s A = επιφάνεια της δεξαμενής, m 2 θ = γωνία κλίσης, w = πλάτος της δεξαμενής καθίζησης, m H = κάθετο ύψος, m 9

10 Καθίζηση Παράδειγμα 5 Δύο δεξαμενές συσσωμάτωσης επεξεργάζονται 3600 m 3 /h και απομακρύνουν συσσωματώματα μεγαλύτερα από 0.02 mm. Η ταχύτητα καθίζησης των σωματιδίων 0.02 mm μετρήθηκε στο εργαστήριο ίση με 0.22 mm/s στους 15 ο C. Τοποθετήθηκαν σωληνοειδής συστήματα καθίζησης με μία γωνία 50 ο και η το πλευρικό ύψος είναι 1.22m. Καθορίστε την επιφάνεια της δεξαμενής που απαιτείται για την συστοιχία καθίζησης και το μέγεθος του καθενός στοιχείου στους 15 ο C. Λύση Βήμα 1 ο Υπολογισμός της επιφάνειας που απαιτείται για το σύστημα των καθιζητήρων Q=(1 m 3 /s)/2 = 0.5 m 3 /s = 30 m 3 /min W=50.8 mm = m Θ=50 ο Εφαρμόζοντας την εξίσωση u = Q*w /A(H cosθ + w cos 2 θ) u = 0.5*(0.0508)/A*(1.22x x ) u = /A Βήμα 2 ο Υπολογισμός της επιφάνειας Α Στην πράξη οι πραγματικές συνθήκες στον καθιζητήρα δεν είναι τόσο ιδανικές και ελεγχόμενες όσο στο εργαστήριο Οπότε είναι αναγκαίο να εφαρμοσθεί ένας συντελεστής ασφαλείας 0.6 για να προσδιορισθεί η ταχύτητα καθίζησης u = 0.6x m/s = /A => A = 236 m 2 ~ 240 m 2 Βήμα 3 ο Υπολογισμός του ρυθμού επιφανειακής φόρτισης Q/A Q/A = (0.5x24x60x60 m 3 /d)/240 m 2 = 180 m 3 /m 2 _d 10

11 Βήμα 4 ο Υπολογίστε την ταχύτητα ροής στον καθιζητήρα εφαρμόζοντας την εξίσωση v = Q/A sinθ v = 180/0.766 = 235 m/d = m/min = m/s Βήμα 5 ο Υπολογίστε το μέγεθος της δεξαμενής καθίζησης Σχεδιάζουμε δύο όμοιες δεξαμενές καθίζησης. Επιλέγουμε το βάθος (D) της δεξαμενής 4 m. Το πλάτος (W) επιλέγεται 8.0 m. Υπολογισμός του μήκους της δεξαμενής L = 240 m 2 /8 m = 30 m Στην πράξη πάντα προβλέπουμε επιπλέον χώρο ίσο με το ¼ του μήκους της δεξαμενής για μελλοντική αύξηση της ικανότητας καθίζησης, επομένως το πραγματικό μήκος της δεξαμενής γίνεται 30 x 4/3 = 40 m Βήμα 6 ο Ελέγχουμε την οριζόντια ταχύτητα Q/A = (30 m 3 /min)/(4 m x8 m) = m/min Βήμα 7 ο Έλεγχος του αριθμού Reynolds (R) στο σύστημα των καθιζητήρων Υδραυλική ακτίνα r = /(4 x ) = m R = v*r/μ = ( m/s)*( m)/ m 2 /s = 3 <2000 οπότε πρόκειται για μια στρωτή ροή 11

ΚΑΘΙΖΗΣΗ. Η καθίζηση είναι μία φυσική διεργασία κατά την οποία επιτυγχάνεται διαχωρισμός των αιωρουμένων στερεών με βαρύτητα.

ΚΑΘΙΖΗΣΗ. Η καθίζηση είναι μία φυσική διεργασία κατά την οποία επιτυγχάνεται διαχωρισμός των αιωρουμένων στερεών με βαρύτητα. ΚΑΘΙΖΗΣΗ Η καθίζηση είναι μία φυσική διεργασία κατά την οποία επιτυγχάνεται διαχωρισμός των αιωρουμένων στερεών με βαρύτητα. Χρησιμοποιείται σε εγκαταστάσεις καθαρισμού νερού για: αφαίρεση συσσωματωμένης

Διαβάστε περισσότερα

Ερωτήσεις στο Κεφ. «Αρχές κατακάθισης ή καθίζησης»

Ερωτήσεις στο Κεφ. «Αρχές κατακάθισης ή καθίζησης» Ερωτήσεις στο Κεφ. «Αρχές κατακάθισης ή καθίζησης» 1) Ποιοι είναι οι κυριότεροι λόγοι για τη χρησιμοποίηση της κατακάθισης ως μεθόδου διαχωρισμού στερεών από ρευστά; ) Ποιοι είναι οι κυριότεροι στόχοι

Διαβάστε περισσότερα

Προεπεξεργασία Υγρών Αποβλήτων (σχάρισμα, εξισορρόπηση παροχής, αμμοσυλλογή, λιποδιαχωρισμός)

Προεπεξεργασία Υγρών Αποβλήτων (σχάρισμα, εξισορρόπηση παροχής, αμμοσυλλογή, λιποδιαχωρισμός) Προεπεξεργασία Υγρών Αποβλήτων (σχάρισμα, εξισορρόπηση παροχής, αμμοσυλλογή, λιποδιαχωρισμός) ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΑΣΤΙΚΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ Με την προεπεξεργασία στοχεύουμε να προστατεύσουμε τις κυρίως διεργασίες

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία

Διαβάστε περισσότερα

h 1 M 1 h 2 M 2 P = h (2) 10m = 1at = 1kg/cm 2 = 10t/m 2

h 1 M 1 h 2 M 2 P = h (2) 10m = 1at = 1kg/cm 2 = 10t/m 2 ΕΡΓΑΣΤΗΡΙΟ 4 Ο Ενότητα: Βασικές υδραυλικές έννοιες Πίεση απώλειες πιέσεως Ι. Υδροστατική πίεση Η υδροστατική πίεση, είναι η πίεση που ασκεί το νερό, σε κατάσταση ηρεμίας, στα τοιχώματα του δοχείου που

Διαβάστε περισσότερα

6 Εξαναγκασμένη ροή αέρα

6 Εξαναγκασμένη ροή αέρα 6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 5 ΣΤΡΩΤΗ ΡΟΗ ΓΥΡΩ ΑΠΟ ΣΤΕΡΕΗ ΣΦΑΙΡΑ ΓΙΑ ΜΙΚΡΟΥΣ ΑΡΙΘΜΟΥΣ REYNOLDS

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της

Διαβάστε περισσότερα

1. 20 mg/l = 0,02 kg/m 3 => (0,02 kg/m 3 )( m 3 /d)(7 d/w) = kg/w = kg/mo = kg/a

1. 20 mg/l = 0,02 kg/m 3 => (0,02 kg/m 3 )( m 3 /d)(7 d/w) = kg/w = kg/mo = kg/a Παράδειγμα Για την παραγωγή 20.000 m /d να σχεδιασθεί δεξαμενή συσσωμάτωσης. Από πειραματικά δεδομένα γνωρίζουμε ότι η καλύτερη δόση κροκιδωτικού είναι 20 mg/l θειικού αργιλίου. Η θερμοκρασία σχεδιασμού

Διαβάστε περισσότερα

Παραδείγµατα ροής ρευστών (Moody κλπ.)

Παραδείγµατα ροής ρευστών (Moody κλπ.) Παραδείγµατα ροής ρευστών (Mooy κλπ.) 005-006 Παράδειγµα 1. Να υπολογισθεί η πτώση πίεσης σε ένα σωλήνα από χάλυβα του εµπορίου µήκους 30.8 m, µε εσωτερική διάµετρο 0.056 m και τραχύτητα του σωλήνα ε 0.00005

Διαβάστε περισσότερα

Υδραυλικός Υπολογισμός Βροχωτών Δικτύων

Υδραυλικός Υπολογισμός Βροχωτών Δικτύων Υδραυλικός Υπολογισμός Βροχωτών Δικτύων Π. Σιδηρόπουλος Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@uth.gr Συνολικό δίκτυο ύδρευσης Α. Ζαφειράκου,

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο

Διαβάστε περισσότερα

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745. 1 Παράδειγμα 101 Να υπολογίσετε τη μάζα 10 m 3 πετρελαίου, στους : α) 20 ο C και β) 40 ο C. Δίνονται η πυκνότητά του στους 20 ο C ρ 20 = 845 kg/m 3 και ο συντελεστής κυβικής διαστολής του β = 9 * 10-4

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

Απόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) :

Απόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) : ΠΑΝΕΠΙΣΤΗΜΙΟ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ Τομέας Περιβάοντος και Χρήσης Ενέργειας Εργαστήριο Τεχνοογίας Περιβάοντος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ (3 ο ΕΞΑΜΗΝΟ)

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 2 ο : Είδη ροής

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017

Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΕΞΑΜΕΝΩΝ ΑΠΟΜΑΚΡΥΝΣΗΣ ΑΜΜΟΥ

ΣΧΕ ΙΑΣΜΟΣ ΕΞΑΜΕΝΩΝ ΑΠΟΜΑΚΡΥΝΣΗΣ ΑΜΜΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Χηµικών Μηχανικών ΣΧΕ ΙΑΣΜΟΣ ΕΞΑΜΕΝΩΝ ΑΠΟΜΑΚΡΥΝΣΗΣ ΑΜΜΟΥ ΒΛΥΣΙ ΗΣ ΑΠΟΣΤΟΛΟΣ Καθηγητής ΕΜΠ Αθήνα 004 ΑΠΟΜΑΚΡΥΝΣΗ ΑΜΜΟΥ 1. Εισαγωγή Με τον όρο «άµµος» εννοούµε ανόργανα

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου B Λυκείου Θεωρητικό Μέρος Θέμα ο 0 Μαρτίου 0 A. Ποια από τις παρακάτω προτάσεις για μια μπαταρία είναι σωστή; Να εξηγήσετε πλήρως την απάντησή σας. α) Η μπαταρία εξαντλείται πιο γρήγορα όταν τη συνδέσουμε

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί

Διαβάστε περισσότερα

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

Τεχνική Περιβάλλοντος

Τεχνική Περιβάλλοντος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Καθίζηση Δεξαμενές καθίζησης Ευθύμιος Νταρακάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας 3. Τριβή στα ρευστά Ερωτήσεις Θεωρίας Θ3.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν: α. Η εσωτερική τριβή σε ένα ρευστό ονομάζεται. β. Η λίπανση των τμημάτων μιας μηχανής οφείλεται στις δυνάμεις

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ Π. Σιδηρόπουλος Δρ. Πολιτικός Μηχανικός Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@teilar.gr ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΑ

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Τα προβλήµατα που υπάρχουν πάντα στις περιπτώσεις βαρυτοµετρικών διαχωρισµών είναι η γνώση της συµπεριφοράς των στερεών, όσον αφορά στην καταβύθισή τους µέσα

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 7 ο : Κρίσιμη

Διαβάστε περισσότερα

Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών

Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Ρευστoμηχανική Εισαγωγικές έννοιες Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Εισαγωγή Περιεχόμενα μαθήματος Βασικές έννοιες, συνεχές μέσο, είδη, μονάδες διαστάσεις

Διαβάστε περισσότερα

Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα

Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα Εργαστηριακή Άσκηση HM 150.01 Περιεχόμενα 1. Περιγραφή συσκευών... 1 2. Προετοιμασία για το πείραμα... 1 3. Πειράματα...

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ

Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΥΝΤΕΛΕΣΤΗΣ ΙΞΩΔΟΥΣ Κατά την κίνηση των υγρών, εκτός από την υδροστατική πίεση που ενεργεί κάθετα σε όλη την επιφάνεια, έχουμε και

Διαβάστε περισσότερα

Σχεδιασμός και ανάλυση δικτύων διανομής Υδραυλικές αρχές Υδραυλικός Υπολογισμός ακτινωτών δικτύων

Σχεδιασμός και ανάλυση δικτύων διανομής Υδραυλικές αρχές Υδραυλικός Υπολογισμός ακτινωτών δικτύων Σχεδιασμός και ανάλυση δικτύων διανομής Υδραυλικές αρχές Υδραυλικός Υπολογισμός ακτινωτών δικτύων Π. Σιδηρόπουλος Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail:

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I. Εργαστηριακή Άσκηση

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I. Εργαστηριακή Άσκηση ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I Εργαστηριακή Άσκηση Μέτρηση Ιξώδους Επιμέλεια: Λάμπρος Καϊκτσής Μάρτιος

Διαβάστε περισσότερα

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ (040) 670854-1 Fax (040) 670854-41

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ (040) 670854-1 Fax (040) 670854-41 Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Εγχειρίδιο Οδηγιών HM 135 Συσκευή Μέτρησης της Οπισθέλκουσας Δύναμης σε Σφαίρες G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια

Διαβάστε περισσότερα

ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ

ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ Γιάννης Λ. Τσιρογιάννης Γεωργικός Μηχανικός M.Sc., PhD Επίκουρος Καθηγητής ΤΕΙ Ηπείρου Τμ. Τεχνολόγων Γεωπόνων Κατ. Ανθοκομίας Αρχιτεκτονικής Τοπίου ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ Υδραυλική Έκδοση

Διαβάστε περισσότερα

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως. Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton):

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton): Συναγωγή Θερμότητας: Συναγωγή Θερμότητας Μέσω Συναγωγής μεταδίδεται η θερμότητα μεταξύ της επιφάνειας ενός στερεού σώματος και ενός ρευστού το οποίο βρίσκεται σε κίνηση σχετικά με την επιφάνεια και ταυτόχρονα

Διαβάστε περισσότερα

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ / ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Αγγελίδης Π., Επίκ. καθηγητής

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ / ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Αγγελίδης Π., Επίκ. καθηγητής ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ / ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Αγγελίδης Π., Επίκ. καθηγητής ΘΕΩΡΙΑ ΟΜΟΙΩΜΑΤΩΝ ΘΕΩΡΙΑ ΟΜΟΙΩΜΑΤΩΝ Πριν την κατασκευή μεγάλων Υδραυλικών

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΝΤΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΝΤΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΝΤΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ Εισαγωγικά Στην περίπτωση που επιθυμείται να διακινηθεί υγρό από μία στάθμη σε μία υψηλότερη στάθμη, απαιτείται η χρήση αντλίας/ αντλιών. Γενικώς, ονομάζεται δεξαμενή

Διαβάστε περισσότερα

μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2

μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2 ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ 1 Μια κυλινδρική δεξαμενή ακτίνας 6m και ύψους h=5m είναι γεμάτη με νερό, βρίσκεται στην κορυφή ενός πύργου ύψους 45m και χρησιμοποιείται για το πότισμα ενός χωραφιού α Ποια η παροχή

Διαβάστε περισσότερα

Σημειώσεις Εγγειοβελτιωτικά Έργα

Σημειώσεις Εγγειοβελτιωτικά Έργα 4. ΚΛΕΙΣΤΟΙ ΑΓΩΓΟΙ 4.1. Γενικά Για τη μελέτη ενός δικτύου κλειστών αγωγών πρέπει να υπολογιστούν οι απώλειες ενέργειας λόγω τριβών τόσο μεταξύ του νερού και των τοιχωμάτων του αγωγού όσο και μεταξύ των

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. A.1 Μια διαφορά

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Εργαστήριο Μηχανικής Ρευστών Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημ/νία παράδοσης Εργασίας: Τετάρτη 24 Μαΐου 2 1 Θεωρητική Εισαγωγή:

Διαβάστε περισσότερα

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής 1.Σκοπός Άσκηση 9 Προσδιορισμός του συντελεστή εσωτερικής τριβής υγρών Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός του συντελεστή εσωτερικής τριβής (ιξώδες) ενός υγρού. Βασικές θεωρητικές γνώσεις.1

Διαβάστε περισσότερα

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi. Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Στις παρακάτω ερωτήσεις Α-Α4 να σημειώσετε την σωστή απάντηση Α. Νερό διαρρέει έναν κυλινδρικό σωλήνα, ο οποίος στενεύει σε κάποιο σημείο του χωρίς να διακλαδίζεται. Ποια

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΑΠΟΡΡΟΗΣ ΟΜΒΡΙΩΝ ΣΤΑ ΓΗΠΕ Α ΠΟ ΟΣΦΑΙΡΟΥ ΡΟΥΦ ΚΑΙ ΚΥΨΕΛΗΣ ΤΟΥ Ο.Ν.Α ΗΜΟΥ ΑΘΗΝΑΙΩΝ

ΜΕΛΕΤΗ ΑΠΟΡΡΟΗΣ ΟΜΒΡΙΩΝ ΣΤΑ ΓΗΠΕ Α ΠΟ ΟΣΦΑΙΡΟΥ ΡΟΥΦ ΚΑΙ ΚΥΨΕΛΗΣ ΤΟΥ Ο.Ν.Α ΗΜΟΥ ΑΘΗΝΑΙΩΝ ΜΕΛΕΤΗ ΑΠΟΡΡΟΗΣ ΟΜΒΡΙΩΝ ΣΤΑ ΓΗΠΕ Α ΠΟ ΟΣΦΑΙΡΟΥ ΡΟΥΦ ΚΑΙ ΚΥΨΕΛΗΣ ΤΟΥ Ο.Ν.Α ΗΜΟΥ ΑΘΗΝΑΙΩΝ ΕΡΓΟ: ΚΑΤΑΣΚΕΥΗ ΣΥΝΘΕΤΙΚΟΥ ΧΛΟΟΤΑΠΗΤΑ ΣΤΑ ΓΗΠΕ Α ΠΟ ΟΣΦΑΙΡΟΥ ΡΟΥΦ & ΚΥΨΕΛΗΣ ΑΝΑ ΟΧΟΣ: Ι.. ΜΠΟΥΛΟΥΓΑΡΗΣ ΤΕΧΝΙΚΗ ΕΠΙΧΕΙΡΗΣΗ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η

(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Σειρά Ασκήσεων σε Συναγωγή Θερμότητας Οι λύσεις θα παρουσιαστούν στις παραδόσεις του μαθήματος μετά την επόμενη εβδομάδα. Για να σας φανούν χρήσιμες στην κατανόηση της ύλης του μαθήματος,

Διαβάστε περισσότερα

Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε.

Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 Μαρούσι 04-02-2014 Καθηγητής Σιδερής Ε. ΘΕΜΑ 1 ο (βαθμοί 4) (α) Θέλετε να κρεμάσετε μια ατσάλινη δοκό που έχει

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό

Διαβάστε περισσότερα

6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο:

6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: 6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε στο

Διαβάστε περισσότερα

Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΚΟΡΥΦΗ ΑΝΩΣΤΙΚΗ ΦΛΕΒΑ ΜΕΣΑ ΣΕ ΣΤΡΩΜΑΤΙΣΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ Α.E.I. ΠΕΙΡΑΙΑ Τ.Τ. Σ.Τ.Ε.Φ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ ΚΑΤΑΝΟΜΗ ΠΙΕΣΗΣ ΣΤΗΝ ΕΠΙΦΑΝΕΙΑΣΥΜΜΕΤΡΙΚΗΣ ΑΕΡΟΤΟΜΗΣ &ΥΠΟΛΟΓΙΣΜΟΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi. Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΠΑΡΑΛΛΗΛΗ ΡΟΗ ΕΠΑΝΩ ΑΠΟ ΕΠΙΠΕΔΗ ΠΛΑΚΑ Σκοπός της άσκησης Η κατανόηση

Διαβάστε περισσότερα

και επιτάχυνση μέτρου 1 4m/s. Ποια από τις παρακάτω προτάσεις είναι η σωστή;

και επιτάχυνση μέτρου 1 4m/s. Ποια από τις παρακάτω προτάσεις είναι η σωστή; Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α Α1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση και χρειάζεται χρόνο Δt = πs για να διανύσει την απόσταση από τη μια ακραία θέση στην άλλη.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 5: Ελεύθερη ή Φυσική Θερμική Συναγωγιμότητα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 5: Ελεύθερη ή Φυσική Θερμική Συναγωγιμότητα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 5: Ελεύθερη ή Φυσική Θερμική Συναγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 7: Φυγοκέντριση, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Αρχή λειτουργίας

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Στρωτή ή γραμμική

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή Αδράνειας) Γ ΛΥΚΕΙΟΥ. Α)Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση.

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή Αδράνειας) Γ ΛΥΚΕΙΟΥ. Α)Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση. ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή δράνειας) Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 Ο : )Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση. 1. Για ένα ζεύγος δυνάμεων Η ροπή του, εξαρτάται

Διαβάστε περισσότερα

11 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

11 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ 11 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός της άσκησης Σκοπός της άσκησης είναι να μελετηθεί η φυσική εκροή του νερού από στόμιο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΑEI ΠΕΙΡΑΙΑ (ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΚΑΤΑΝΟΜΗ ΠΙΕΣΗΣ & ΥΠΟΛΟΓΙΣΜΟΣ ΟΠΙΣΘΕΛΚΟΥΣΑΣ Σκοπός της άσκησης Η μέτρηση

Διαβάστε περισσότερα

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος. Κυριακή 5 Μαρτίου Θέμα 1ο

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος. Κυριακή 5 Μαρτίου Θέμα 1ο Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος Κυριακή 5 Μαρτίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Στον πυθμένα των δύο δοχείων 1 και 2

Διαβάστε περισσότερα

Δραστηριότητα A3 - Φυσική Ιξώδες και δείκτης διάθλασης ελαιόλαδου

Δραστηριότητα A3 - Φυσική Ιξώδες και δείκτης διάθλασης ελαιόλαδου Δραστηριότητα A3 - Φυσική Ιξώδες και δείκτης διάθλασης ελαιόλαδου Πολλές από τις φυσικές ιδιότητες του ελαιόλαδου ήταν γνωστές στους αρχαίους Έλληνες και τις χρησιμοποιούσαν για να ελέγχουν την ποιότητά

Διαβάστε περισσότερα

Τσακαλάκης Κώστας, Καθηγητής Ε.Μ.Π. - (2009)

Τσακαλάκης Κώστας, Καθηγητής Ε.Μ.Π. - (2009) 1 η Προσέγγιση του προβλήµατος 1 Ας θεωρηθεί ένα τεµάχιο (Σχήµα 1) το οποίο καταβυθίζεται υπό την επίδραση της βαρύτητας κατά τέτοιο τρόπο, ώστε η κίνησή του να µην παρεµποδίζεται από την παρουσία των

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Δημοκρίτειο Πανεπιστήμιο Θράκης

Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1η Να γίνει μελέτη σχεδιασμού και εφαρμογής ενός συστήματος επαναχρησιμοποίησης λυμάτων 1000 ισοδυνάμων κατοίκων για άρδευση με περιορισμούς (το ίδιο ισχύει και για υπεδάφια διάθεση) Βήμα 1. Υπολογισμός

Διαβάστε περισσότερα

ιάθεση Αστικών Υγρών Αποβλήτων από Μικρούς Παραθαλάσσιους Οικισμούς Π. Β. Αγγελίδης, Επίκ. Καθηγητής.Π.Θ.

ιάθεση Αστικών Υγρών Αποβλήτων από Μικρούς Παραθαλάσσιους Οικισμούς Π. Β. Αγγελίδης, Επίκ. Καθηγητής.Π.Θ. ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ιάθεση Αστικών Υγρών Αποβλήτων από Μικρούς Παραθαλάσσιους Οικισμούς Π. Β. Αγγελίδης, Επίκ. Καθηγητής.Π.Θ. Η επιτυγχανόμενη

Διαβάστε περισσότερα

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης 2013 ΘΕΜΑ Α Για τις ερωτήσεις 1 έως 4 γράψτε τον αριθμό τις ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Για ένα

Διαβάστε περισσότερα

ΟΜΑΔΑ Α. ΠΡΟΣΟΧΗ!! Τα αποτελέσματα να γραφούν με 3 σημαντικά ψηφία. ΤΥΠΟΛΟΓΙΟ. Τριβή κύλισης σε οριζόντιο δρόμο: f

ΟΜΑΔΑ Α. ΠΡΟΣΟΧΗ!! Τα αποτελέσματα να γραφούν με 3 σημαντικά ψηφία. ΤΥΠΟΛΟΓΙΟ. Τριβή κύλισης σε οριζόντιο δρόμο: f ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 03 Μαρούσι 04-0-03 ΟΜΑΔΑ Α ΘΕΜΑ ο (βαθμοί 3,5) Η μέγιστη δύναμη με την οποία ένα κινητήρας ωθεί σε κίνηση ένα sport αυτοκίνητο

Διαβάστε περισσότερα

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους.

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους. Πρόβλημα Λάδι πυκνότητας 900 kg / και κινηματικού ιξώδους 0.000 / s ρέει διαμέσου ενός κεκλιμένου σωλήνα στην κατεύθυνση αυξανομένου υψομέτρου, όπως φαίνεται στο παρακάτω Σχήμα. Η πίεση και το υψόμετρο

Διαβάστε περισσότερα

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται: Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής διατομής με σταθερή ταχύτητα. Η πίεση κατά μήκος του σωλήνα στην κατεύθυνση της ροής μπορεί

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Θετικού Προσανατολισμού Σχ. έτος ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο

Φυσική Γ Λυκείου Θετικού Προσανατολισμού Σχ. έτος ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο 1ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη ϕράση που τη συμπληρώνει σωστά.

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ Στην αρχική περιοχή

Διαβάστε περισσότερα

Προσομοίωση Πολυφασικών Ροών

Προσομοίωση Πολυφασικών Ροών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜ. ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ - ΤΟΜΕΑΣ ΕΝΕΡΓΕΙΑΣ UNIVERSITY OF PATRAS-ENGINEERING SCHOOL MECHANICAL ENGINEERING AND AERONAUTICS

Διαβάστε περισσότερα

των δύο σφαιρών είναι

των δύο σφαιρών είναι ΘΕΜΑ B. Μια μικρή σφαίρα μάζας συγκρούεται μετωπικά και ελαστικά με ακίνητη μικρή σφαίρα μάζας. Μετά την κρούση οι σφαίρες κινούνται με αντίθετες ταχύτητες ίσων μέτρων. Ο λόγος των μαζών των δύο σφαιρών

Διαβάστε περισσότερα

21/6/2012. Δυνάμεις. Δυναμική Ανάλυση. Δυναμική ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΔΥΝΑΜΗΣ ΔΥΝΑΜΗ

21/6/2012. Δυνάμεις. Δυναμική Ανάλυση. Δυναμική ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΔΥΝΑΜΗΣ ΔΥΝΑΜΗ Δυνάμεις Δυναμική Ανάλυση Δυνάμεις παράγονται από τον άνθρωπο για να ωθήσουν το σώμα ή ένα όργανο Η κατανόηση ενός αθλήματος ή μιας κίνησης απαιτεί την κατανόηση των δυνάμεων που ασκούνται Η αξιολόγηση

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΥΔΡΑΥΛΙΚΩΝ ΕΡΓΩΝ

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΥΔΡΑΥΛΙΚΩΝ ΕΡΓΩΝ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡ. ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΥΔΡΑΥΛΙΚΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ» ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΥΔΡΑΥΛΙΚΩΝ ΕΡΓΩΝ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 10 ΥΔΡΟΣΤΑΤΙΚΗ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D Barsbüttel Γερμάνια Τηλ: (040) Fax: (040)

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D Barsbüttel Γερμάνια Τηλ: (040) Fax: (040) Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Εγχειρίδιο Οδηγιών HM 135 Συσκευή Μέτρησης της Οπισθέλκουσας Δύναμης σε Σφαίρες G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια

Διαβάστε περισσότερα

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά. Τετάρτη 12 Απριλίου Θέμα 1ο

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά. Τετάρτη 12 Απριλίου Θέμα 1ο Διαγώνισμα Ρευστά Τετάρτη 12 Απριλίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Στον πυθμένα των δύο δοχείων 1 και 2 του διπλανού σχήματος, που

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 5 ο : Το οριακό

Διαβάστε περισσότερα

Περιορισμοί και Υδραυλική Επίλυση Αγωγών Λυμάτων Ι

Περιορισμοί και Υδραυλική Επίλυση Αγωγών Λυμάτων Ι Περιορισμοί και Υδραυλική Επίλυση Αγωγών Λυμάτων Ι Π. Σιδηρόπουλος Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@uth.gr 1. Βάθος Τοποθέτησης Tο

Διαβάστε περισσότερα

ΘΕΜΑ 2: Α. Ένα σωματίδιο κινείται στο επίπεδο xy έτσι ώστε υ

ΘΕΜΑ 2: Α. Ένα σωματίδιο κινείται στο επίπεδο xy έτσι ώστε υ 3 η ΕΡΓΑΣΙΑ Τα θέματα είναι ισοδύναμα. Όπου απαιτείται δίνεται η τιμή της επιτάχυνσης της βαρύτητας ως g=9.8m/sec 2. Ημερομηνία Παράδοσης: 26/2/2006 ΘΕΜΑ 1: A. Σχεδιάστε τα διαγράμματα θέσης-χρόνου, ταχύτητας-χρόνου

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ» ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΔΙΔΑΣΚΩΝ: Επικ. Καθ. Δ. ΜΑΘΙΟΥΛΑΚΗΣ ΘΕΜΑΤΑ ΤΕΤΡΑΜΗΝΟΥ

Διαβάστε περισσότερα

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό.... - v - Πρόλογος.....- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί..... - xii - ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΜΕΤΑΔΟΣΗ

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ -- ΠΕΙΡΑΙΑΣ -- 853 -- ΤΗΛ. 0-75, 3687 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ. Γ ΛΥΚΕΙΟΥ Α. Σε μια απλή αρμονική ταλάντωση, κατά τη διάρκεια μιας περιόδου η κινητική ενέργεια Κ

Διαβάστε περισσότερα

3. ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOULLI Κίνηση σωµατιδίων ρευστού

3. ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOULLI Κίνηση σωµατιδίων ρευστού . ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOLLI Κίνηση σωµατιδίων ρευστού ύναµη, επιτάχυνση F mα εφαρµογή στην κίνηση σωµατιδίου εύτερος νόµος του NEWTON Επιτάχυνση F mα ΒΑΣΙΚΕΣ ΠΑΡΑ ΟΧΕΣ Ρευστά χωρίς ιξώδες Πίεση-Βαρύτητα

Διαβάστε περισσότερα

Έργο Δύναμης Έργο σταθερής δύναμης

Έργο Δύναμης Έργο σταθερής δύναμης Παρατήρηση: Σε όλες τις ασκήσεις του φυλλαδίου τα αντικείμενα θεωρούμε ότι οι δυνάμεις ασκούνται στο κέντρο μάζας των αντικειμένων έτσι ώστε αυτά κινούνται μόνο μεταφορικά, χωρίς να μπορούν να περιστραφούν.

Διαβάστε περισσότερα

8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8.1 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΩΣΤΙΚΟ ΕΔΡΑΝΟ ΟΛΙΣΘΗΣΗΣ 8.1. Εισαγωγή Το απλό επίπεδο ωστικό έδρανο ολίσθησης (Σχήμα 8.1) είναι ίσως η απλούστερη περίπτωση εφαρμογής της εξίσωσης Reynolds που περιγράφει τη

Διαβάστε περισσότερα

Καβάλα, Οκτώβριος 2013

Καβάλα, Οκτώβριος 2013 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΑΝ.ΜΑΚΕ ΟΝΙΑΣ - ΘΡΑΚΗΣ Επιχειρησιακό Πρόγραµµα "Ψηφιακή Σύγκλιση" Πράξη: "Εικονικά Μηχανολογικά Εργαστήρια", Κωδικός ΟΠΣ: 304282 «Η Πράξη συγχρηµατοδοτείται από το Ευρωπαϊκό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΦΥΕ14 - ΕΡΓΑΣΙΑ 6 Προθεσμία αποστολής: 4/7/2006

ΦΥΕ14 - ΕΡΓΑΣΙΑ 6 Προθεσμία αποστολής: 4/7/2006 ΦΥΕ14 - ΕΡΓΑΣΙΑ 6 Προθεσμία αποστολής: 4/7/2006 Άσκηση 1 Δύο σφαίρες με ίσες μάζες m είναι δεμένες με νήματα μήκους l από το ίδιο σημείο της οροφής Σ. Αν η κάθε σφαίρα φέρει φορτίο q να βρεθεί η γωνία

Διαβάστε περισσότερα