Περιεχόμενα. Πίνακας συμβόλων σελίδα 10 Πρόλογος 13

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περιεχόμενα. Πίνακας συμβόλων σελίδα 10 Πρόλογος 13"

Transcript

1

2

3 Περιεχόμενα Πίνακας συμβόλων σελίδα 10 Πρόλογος 13 1 Ανάκτηση Boole Παράδειγμα προβλήματος ανάκτησης πληροφοριών Μια πρώτη ματιά στη δημιουργία αντεστραμμένων ευρετηρίων Επεξεργασία ερωτημάτων Boole Το επεκτεταμένο μοντέλο Boole σε σύγκριση με την καταταγμένη ανάκτηση Βιβλιογραφία και περαιτέρω μελέτη 39 2 Λεξιλόγιο όρων και λίστες καταχωρίσεων Έγγραφα και αποκωδικοποίηση ακολουθιών χαρακτήρων Προσδιορισμός του λεξιλογίου όρων Ταχύτερος υπολογισμός τομής λιστών καταχωρίσεων μέσω δεικτών παράβλεψης Λίστες καταχωρίσεων με πληροφορίες θέσεων και ερωτήματα φράσεων Βιβλιογραφία και περαιτέρω μελέτη 70 3 Λεξικά και ανάκτηση ανεκτική σε σφάλματα Δομές αναζήτησης για λεξικά Ερωτήματα χαρακτήρων μπαλαντέρ Διόρθωση ορθογραφικών σφαλμάτων Φωνητική διόρθωση Βιβλιογραφία και περαιτέρω μελέτη 90 4 Κατασκευή ευρετηρίου Βασικά στοιχεία υλικού Κατασκευή διατεταγμένων ευρετηρίων κατά μπλοκ Κατασκευή ευρετηρίου στη μνήμη με μία διέλευση Κατανεμημένη ευρετηρίαση 100 5

4 6 Περιεχόμενα 4.5 Δυναμική ευρετηρίαση Άλλοι τύποι ευρετηρίων Βιβλιογραφία και περαιτέρω μελέτη Συμπίεση ευρετηρίου Στατιστικές ιδιότητες των όρων στην ανάκτηση πληροφοριών Συμπίεση λεξικού Συμπίεση αρχείου καταχωρίσεων Βιβλιογραφία και περαιτέρω μελέτη Βαθμολόγηση, στάθμιση όρων, και το μοντέλο διανυσματικού χώρου Παραμετρικά ευρετήρια και ευρετήρια ζώνης Συχνότητα και στάθμιση όρων Το μοντέλο διανυσματικού χώρου για τη βαθμολόγηση Μεταβλητές συναρτήσεις tf idf Βιβλιογραφία και περαιτέρω μελέτη Υπολογισμός βαθμολογιών σε ένα πλήρες σύστημα αναζήτησης Αποδοτική βαθμολόγηση και κατάταξη Οι συνιστώσες ενός συστήματος ανάκτησης πληροφοριών Αλληλεπίδραση διανυσματικής βαθμολόγησης και τελεστών ερωτήματος Βιβλιογραφία και περαιτέρω μελέτη Η αξιολόγηση στην ανάκτηση πληροφοριών Αξιολόγηση συστημάτων ανάκτησης πληροφοριών Πρότυπες συλλογές ελέγχου Αξιολόγηση μη καταταγμένης ανάκτησης Αξιολόγηση αποτελεσμάτων καταταγμένης ανάκτησης Εκτίμηση της συνάφειας Μια γενικότερη εικόνα: ποιότητα συστήματος και χρησιμότητα για τους χρήστες Ψήγματα αποτελεσμάτων Βιβλιογραφία και περαιτέρω μελέτη Ανάδραση συνάφειας και διεύρυνση ερωτημάτων Ανάδραση συνάφειας και ψευδοανάδραση συνάφειας Καθολικές μέθοδοι για την αναδιατύπωση ερωτημάτων Βιβλιογραφία και περαιτέρω μελέτη Ανάκτηση XML Βασικές έννοιες XML Προκλήσεις στην ανάκτηση XML Ένα διανυσματικό μοντέλο για την ανάκτηση XML 239

5 Περιεχόμενα Αξιολόγηση της ανάκτησης XML Σύγκριση κειμενοκεντρικής και δεδομενοκεντρικής ανάκτησης XML Βιβλιογραφία και περαιτέρω μελέτη Πιθανοτική ανάκτηση πληροφοριών Βασικές αρχές θεωρίας πιθανοτήτων Η αρχή της πιθανοτικής κατάταξης Το δυαδικό μοντέλο ανεξαρτησίας Αποτίμηση και κάποιες επεκτάσεις Βιβλιογραφία και περαιτέρω μελέτη Γλωσσικά μοντέλα για την ανάκτηση πληροφοριών Γλωσσικά μοντέλα Το μοντέλο πιθανοφάνειας ερωτήματος Τα γλωσσικά μοντέλα συγκριτικά με άλλες προσεγγίσεις στην ανάκτηση πληροφοριών Διευρυμένες προσεγγίσεις γλωσσικών μοντέλων Βιβλιογραφία και περαιτέρω μελέτη Ταξινόμηση κειμένου και απλοϊκή Bayes Το πρόβλημα της ταξινόμησης κειμένου Ταξινόμηση κειμένου με την απλοϊκή Bayes Το μοντέλο Bernoulli Ιδιότητες της απλοϊκής Bayes Επιλογή χαρακτηριστικών Αξιολόγηση της ταξινόμησης κειμένου Βιβλιογραφία και περαιτέρω μελέτη Ταξινόμηση σε διανυσματικό χώρο Αναπαραστάσεις εγγράφων και μέτρα συγγενικότητας στους διανυσματικούς χώρους Ταξινόμηση Rocchio k πλησιέστεροι γείτονες Γραμμικοί έναντι μη γραμμικών ταξινομητών Ταξινόμηση με περισσότερες από δύο κλάσεις Αντιστάθμιση μεροληψίας διακύμανσης Βιβλιογραφία και περαιτέρω μελέτη Μηχανές διανυσμάτων υποστήριξης και μηχανική μάθηση σε έγγραφα Μηχανές διανυσμάτων υποστήριξης: η γραμμικά διαχωρίσιμη περίπτωση Επεκτάσεις του μοντέλου μηχανών διανυσμάτων υποστήριξης 368

6 8 Περιεχόμενα 15.3 Προβλήματα στην ταξινόμηση εγγράφων κειμένου Μέθοδοι μηχανικής μάθησης στην περιστασιακή ανάκτηση πληροφοριών Βιβλιογραφία και περαιτέρω μελέτη Επίπεδη συσταδοποίηση Η συσταδοποίηση στην ανάκτηση πληροφοριών Διατύπωση του προβλήματος Αξιολόγηση συσταδοποίησης K μέσοι Συσταδοποίηση βάσει μοντέλου Βιβλιογραφία και περαιτέρω μελέτη Ιεραρχική συσταδοποίηση Ιεραρχική συσσωρευτική συσταδοποίηση Συσταδοποίηση απλού συνδέσμου και συσταδοποίηση πλήρους συνδέσμου Συσσωρευτική συσταδοποίηση ομαδικού μέσου Συσταδοποίηση κεντροειδούς Βελτιστότητα της ιεραρχικής συσσωρευτικής συσταδοποίησης Διαιρετική συσταδοποίηση Χαρακτηρισμός συστάδων Θέματα υλοποίησης Βιβλιογραφία και περαιτέρω μελέτη Διάσπαση μητρών και λανθάνουσα σημασιολογική ευρετηρίαση Βασικά στοιχεία γραμμικής άλγεβρας Μήτρες όρων εγγράφων και διασπάσεις ιδιαζουσών τιμών Χαμηλόβαθμες προσεγγίσεις Λανθάνουσα σημασιολογική ευρετηρίαση Βιβλιογραφία και περαιτέρω μελέτη Βασικές αρχές αναζήτησης στον Ιστό Γενικές πληροφορίες και ιστορικά στοιχεία Χαρακτηριστικά του Ιστού Η διαφήμιση ως οικονομικό μοντέλο Η εμπειρία των χρηστών τής αναζήτησης Μέγεθος ευρετηρίου και εκτίμησή του Σχεδόν διπλότυπες σελίδες και αλληλεπικάλυψη Βιβλιογραφία και περαιτέρω μελέτη Σταχυολόγηση Ιστού και ευρετήρια Επισκόπηση Σταχυολόγηση 493

7 Περιεχόμενα Κατανεμημένα ευρετήρια Διακομιστές συνδετικότητας Βιβλιογραφία και περαιτέρω μελέτη Ανάλυση συνδέσμων Ο Ιστός σε μορφή γράφου PageRank Κομβικές σελίδες και σελίδες κύρους Βιβλιογραφία και περαιτέρω μελέτη 531 Βιβλιογραφία 533 Ευρετήριο 561

8

9 1 Ανάκτηση Boole Η έννοια του όρου ανάκτηση πληροφοριών (information retrieval, IR) είναι ιδιαίτερα ευρεία. Ακόμα και όταν απλώς βγάζουμε την πιστωτική μας κάρτα από το πορτοφόλι για να πληκτρολογήσουμε τον αριθμό της έχουμε μια μορφή ανάκτησης πληροφοριών. Όμως, ως πεδίο ακαδημαϊκής μελέτης, η ανάκτηση πληροφοριών μπορεί να οριστεί ως εξής: Ανάκτηση πληροφοριών (ΑΠ) είναι η εύρεση υλικού (συνήθως εγγράφων) α- δόμητης φύσης (συνήθως κειμένου) μέσα σε μεγάλες συλλογές (που βρίσκονται συνήθως αποθηκευμένες σε υπολογιστές), το οποίο ικανοποιεί μια ανάγκη πληροφόρησης. Ορισμένη κατ αυτόν τον τρόπο, η ανάκτηση πληροφοριών ήταν μια δραστηριότητα που αφορούσε λίγους μόνο ανθρώπους: βιβλιοθηκονόμους, βοηθούς νομικών επαγγελμάτων, και άλλους επαγγελματίες της αναζήτησης. Ο κόσμος μας όμως έχει πλέον αλλάξει και εκατοντάδες εκατομμύρια άνθρωποι ασχολούνται καθημερινά με την ανάκτηση πληροφοριών, όποτε χρησιμοποιούν μια μηχανή α- ναζήτησης ή ψάχνουν στην ηλεκτρονική τους αλληλογραφία. Η ανάκτηση πληροφοριών εξελίσσεται με ταχείς ρυθμούς στην επικρατέστερη μορφή προσπέλασης δεδομένων, ξεπερνώντας την παραδοσιακή αναζήτηση σε βάσεις δεδομένων (το είδος της αναζήτησης που πραγματοποιείται στην πράξη όταν κάποιος υπάλληλος σας λέει: «Λυπάμαι, μπορώ να βρω τα στοιχεία της παραγγελίας σας μόνο αν μου δώσετε τον αριθμό παραγγελίας»). Η ανάκτηση πληροφοριών καλύπτει και άλλους τύπους προβλημάτων πληροφόρησης και αναζήτησης δεδομένων, πέρα από αυτά που αναφέρονται στον παραπάνω βασικό ορισμό. Ο όρος «αδόμητα δεδομένα» περιγράφει δεδομένα τα οποία δεν έχουν ξεκάθαρη, σημασιολογικά εμφανή δομή, εύχρηστη για τον υπολογιστή. Είναι το αντίθετο των δομημένων δεδομένων, των οποίων αντιπροσωπευτικό παράδειγμα είναι οι σχεσιακές βάσεις δεδομένων, όπως αυτές που χρησιμοποιούν συνήθως οι εταιρείες για να παρακολουθούν τα αποθέματα των προϊόντων τους και τα στοιχεία του προσωπικού τους. Στην πραγματικότητα, 1 Στη σημερινή φρασεολογία, η λέξη «αναζήτηση» τείνει να αντικαταστήσει την «ανάκτηση (πληροφοριών)» ο όρος «αναζήτηση» είναι αρκετά διφορούμενος, ωστόσο στο βιβλίο θα χρησιμοποιούμε τους δύο όρους ως συνώνυμους. 21

10 22 Ανάκτηση Boole δεν υπάρχουν σχεδόν καθόλου δεδομένα που να είναι πραγματικά «αδόμητα». Αυτό είναι οπωσδήποτε αληθές για όλα τα δεδομένα κειμένου, αν λάβουμε υπόψη την υποκείμενη γλωσσολογική δομή των ανθρώπινων γλωσσών. Ακόμα όμως και όταν ως δομή εννοούμε την εμφανή, ρητά καθορισμένη δομή, τα περισσότερα κείμενα έχουν τέτοια στοιχεία δόμησης, όπως επικεφαλίδες, παραγράφους και υποσημειώσεις, στοιχεία που αντιπροσωπεύονται συνήθως στα έγγραφα με συγκεκριμένη σήμανση (όπως στον κώδικα των ιστοσελίδων). Η ανάκτηση πληροφοριών χρησιμοποιείται και για «ημιδομημένες» αναζητήσεις, για παράδειγμα, όταν θέλουμε να βρούμε κάποιο έγγραφο που να περιλαμβάνει τη λέξη Java στον τίτλο του και τη λέξη νημάτωση στο σώμα κειμένου του. Το πεδίο της ΑΠ καλύπτει επίσης θέματα σχετικά με την υποστήριξη των χρηστών στη «φυλλομέτρηση» και το φιλτράρισμα συλλογών εγγράφων, ή στην παραπέρα επεξεργασία ενός συνόλου ανακτημένων εγγράφων. Δεδομένου ενός συνόλου εγγράφων, συσταδοποίηση (clustering) είναι η εργασία της κατάταξης των εγγράφων στις κατάλληλες ομάδες, ανάλογα με το περιεχόμενό τους. Μοιάζει με την τακτοποίηση βιβλίων σε ένα ράφι, ανάλογα με το θέμα τους. Δεδομένου ενός συνόλου θεμάτων, τις τρέχουσες ανάγκες πληροφόρησης, ή άλλες κατηγορίες (όπως η καταλληλότητα των συγγραμμάτων για διάφορες ηλικιακές ομάδες), ταξινόμηση (classification) είναι η επιλογή των κλάσεων (τάξεων ή κατηγοριών), αν υπάρχουν, στις οποίες ανήκει κάθε ένα από τα έγγραφα ενός συνόλου εγγράφων. Συχνά την προσεγγίζουμε ταξινομώντας πρώτα μερικά έγγραφα χειρωνακτικά, ελπίζοντας ότι στη συνέχεια θα μπορούμε να ταξινομήσουμε τα νέα έγγραφα αυτομάτως. Τα συστήματα ανάκτησης πληροφοριών διακρίνονται επίσης ανάλογα με την κλίμακα στην οποία λειτουργούν, και θα ήταν χρήσιμο να ξεχωρίσουμε τρεις σημαντικές κλίμακες. Στην αναζήτηση στον Ιστό το σύστημα πρέπει να παρέχει δυνατότητες αναζήτησης σε δισεκατομμύρια έγγραφα αποθηκευμένα σε εκατομμύρια υπολογιστές. Σημαντικά ζητήματα είναι η ανάγκη συγκέντρωσης των εγγράφων για τη δημιουργία ευρετηρίων, η δυνατότητα κατασκευής συστημάτων που να λειτουργούν αποδοτικά σε αυτή την τεράστια κλίμακα, και ο χειρισμός συγκεκριμένων γνωρισμάτων του Ιστού, όπως η αξιοποίηση του υπερ-κειμένου (hypertext) και η αποφυγή της παραπλάνησης από παρόχους ιστότοπων που «μαγειρεύουν» τα περιεχόμενα των σελίδων τους ώστε να παρουσιάζονται υ- ψηλότερα στα αποτελέσματα των μηχανών αναζήτησης, δεδομένης πλέον της μεγάλης εμπορικής σημασίας του Ιστού. Εστιάζουμε σε όλα αυτά τα ζητήματα στα Κεφάλαια Στο άλλο άκρο βρίσκεται η προσωπική ανάκτηση πληροφοριών. Τα τελευταία χρόνια, τα λειτουργικά συστήματα ευρείας κυκλοφορίας διαθέτουν ενσωματωμένες δυνατότητες ανάκτησης πληροφοριών όπως το λογισμικό Spotlight στο Mac OS X της Apple ή η δυνατότητα άμεσης αναζήτησης (Instant Search) στα Windows Vista. Τα προγράμματα ηλεκτρονικού ταχυδρομείου, πέρα από την αναζήτηση, παρέχουν και δυνατότητες ταξινόμησης κειμένου: διαθέτουν τουλάχιστον κάποιο φίλτρο ανεπιθύμητης αλληλογραφίας (spam filter) ενώ συχνά περιλαμβάνουν και αυτόματα ή ρυθμιζόμενα από το χρήστη μέσα για την ταξινόμηση των μηνυμάτων και την άμεση τοποθέτησή τους σε συγκεκριμέ-

11 1.1 Παράδειγμα προβλήματος ανάκτησης πληροφοριών 23 νους φακέλους. Στα χαρακτηριστικά ζητήματα αυτής της κλίμακας περιλαμβάνεται ο χειρισμός του μεγάλου εύρους διαφορετικών τύπων εγγράφων που μπορεί να συναντήσει κανείς σε έναν συνηθισμένο προσωπικό υπολογιστή, και η κατασκευή του συστήματος αναζήτησης ώστε να λειτουργεί απροβλημάτιστα και να είναι αρκετά ελαφρύ κατά την εκκίνησή του, την επεξεργασία, αλλά και στη χρήση χώρου στο δίσκο για να εκτελείται στον υπολογιστή χωρίς να ενοχλεί τον ιδιοκτήτη του. Ενδιάμεσα βρίσκεται ο χώρος της αναζήτησης σε επίπεδο επιχείρησης, οργανισμού, και συγκεκριμένου τομέα, όπου μπορεί να παρέχονται δυνατότητες ανάκτησης σε συλλογές που περιλαμβάνουν τα εσωτερικά έγγραφα κάποιας εταιρείας, μια βάση δεδομένων για πατέντες, ή άρθρα για την έρευνα στη βιοχημεία. Σε αυτή την περίπτωση, τα έγγραφα αποθηκεύονται συνήθως σε συγκεντρωτικά συστήματα αρχείων, με έναν ή λίγους υπολογιστές να είναι α- φιερωμένοι αποκλειστικά στην παροχή δυνατοτήτων αναζήτησης στη συλλογή. Το βιβλίο περιλαμβάνει πολύτιμες τεχνικές για όλο αυτό το φάσμα, αλλά η κάλυψη κάποιων πλευρών της παράλληλης και της κατανεμημένης αναζήτησης σε συστήματα κλίμακας Ιστού είναι σχετικά μικρή, εξαιτίας του μικρού αριθμού δημοσιευμένων άρθρων για τις λεπτομέρειες τέτοιων συστημάτων. Ωστόσο, εκτός και αν απασχοληθούν σε κάποια από τις λίγες εταιρείες που παρέχουν αναζήτηση σε κλίμακα Ιστού, οι περισσότεροι τεχνολόγοι λογισμικού είναι πιθανότερο να ασχοληθούν με την αναζήτηση σε προσωπική κλίμακα ή σε κλίμακα επιχείρησης. Σε αυτό το κεφάλαιο, ξεκινάμε με ένα πολύ απλό παράδειγμα προβλήματος ΑΠ και παρουσιάζουμε την ιδέα της μήτρας όρων-εγγράφων (Ενότητα 1.1) καθώς και την πρωταρχικής σημασίας δομή δεδομένων του αντεστραμμένου ευρετηρίου (Ενότητα 1.2). Στη συνέχεια εξετάζουμε το μοντέλο ανάκτησης Boole και τον τρόπο επεξεργασίας των ερωτημάτων Boole (Ενότητες 1.3 και 1.4). 1.1 Παράδειγμα προβλήματος ανάκτησης πληροφοριών Ένα ογκώδες βιβλίο που πολλοί έχουν στη βιβλιοθήκη τους είναι το Shakespeare s Collected Works (Άπαντα του Σαίξπηρ). Ας υποθέσουμε ότι θέλετε να βρείτε ποια θεατρικά έργα του Σαίξπηρ περιέχουν τα ονόματα Βρούτος και Καίσαρ αλλά όχι Καλπουρνία (Brutus Caesar Calpurnia). Ένας τρόπος να το καταφέρετε αυτό είναι να ξεκινήσετε από την αρχή και να διαβάσετε όλα τα έργα, σημειώνοντας όποιο έργο περιλαμβάνει τα ονόματα Brutus και Caesar αλλά α- γνοώντας το αν περιλαμβάνει το Calpurnia. Η απλούστερη μορφή ανάκτησης εγγράφων είναι η πραγματοποίηση μιας τέτοιας γραμμικής σάρωσης μέσω του υπολογιστή. Αυτή η διαδικασία συχνά αναφέρεται και ως grepping σε κείμενο (grepping through text), από το όνομα της εντολής grep του Unix, η οποία χρησιμοποιείται για το συγκεκριμένο σκοπό. Το grepping είναι πολύ αποτελεσματικό, κυρίως χάρη στην ταχύτητα των σύγχρονων υπολογιστών, και συχνά παρέχει χρήσιμες δυνατότητες για αναζήτηση μοτίβων με χαρακτήρες μπαλαντέρ (wildcard) μέσω κανονικών εκφράσεων (regular expressions). Στους σύγχρονους υπολογιστές, για την εκτέλεση απλών ερωτημάτων σε συλλογές μέσου μεγέθους

12 24 Ανάκτηση Boole (τα Άπαντα του Σαίξπηρ συνολικά περιέχουν κάτι λιγότερο από ένα εκατομμύριο λέξεις), πραγματικά δεν χρειάζεστε τίποτα παραπάνω. Για πολλούς άλλους σκοπούς, όμως, χρειάζεστε πράγματι περισσότερα: 1. Για την ταχεία επεξεργασία μεγάλων συλλογών εγγράφων. Η ποσότητα των διαδικτυακά διαθέσιμων δεδομένων έχει αυξηθεί σχεδόν όσο και η ταχύτητα των υπολογιστών, και τώρα πλέον θέλουμε να πραγματοποιούμε αναζητήσεις σε συλλογές της τάξης των δισεκατομμυρίων ως τρισεκατομμυρίων λέξεων. 2. Για ισχυρότερες και πιο ευέλικτες δυνατότητες ταιριάσματος. Για παράδειγμα, δεν θα ήταν πρακτικό να εκτελέσετε το ερώτημα Romans countrymen με το grep, όταν το θα μπορούσε να σημαίνει «μέσα σε 5 λέξεις» ή «μέσα στην ίδια πρόταση». 3. Για να είναι εφικτή η καταταγμένη ανάκτηση (ranked retrieval, η ανάκτηση με κατάταξη των αποτελεσμάτων). Σε πολλές περιπτώσεις, θέλετε να έχετε τη βέλτιστη απάντηση σε μια ανάγκη πληροφόρησης, μεταξύ πολλών εγγράφων που περιέχουν συγκεκριμένες λέξεις. Για να αποφύγουμε τη γραμμική σάρωση των κειμένων για κάθε ερώτημα, μπορούμε να δημιουργήσουμε εκ των προτέρων ευρετήρια των εγγράφων. Ας παραμείνουμε στα Άπαντα του Σαίξπηρ για να παρουσιάσουμε τις βασικές αρχές του μοντέλου ανάκτησης Boole. Έστω ότι καταγράφουμε για κάθε έγγραφο στην περίπτωσή μας, για κάθε θεατρικό έργο αν περιλαμβάνει κάθε μία από το σύνολο των λέξεων που χρησιμοποίησε ο Σαίξπηρ (συνολικά, περίπου διαφορετικές λέξεις). Το αποτέλεσμα είναι μια δυαδική μήτρα σύμπτωσης (incidence matrix) όρων-εγγράφων, όπως αυτή του Σχήματος 1.1. Όροι είναι οι ευρετηριασμένες μονάδες κειμένου (καλύπτονται περαιτέρω στην Ενότητα 2.2) συνήθως είναι λέξεις και, προς το παρόν, μπορείτε να τους σκέφτεστε ως λέξεις, αλλά στην ορολογία της ανάκτησης πληροφοριών ονομάζονται όροι επειδή κάποιους από αυτούς, όπως τους Ε9 ή Χονγκ Κονγκ, συνήθως δεν τους θεωρούμε λέξεις. Τώρα, ανάλογα με το αν εξετάζουμε τις γραμμές ή τις στήλες της μήτρας, μπορούμε να ορίσουμε ένα διάνυσμα για κάθε όρο το οποίο θα δείχνει τα έγγραφα όπου εμφανίζεται ο όρος, ή ένα διάνυσμα για κάθε έγγραφο που θα δείχνει τους όρους που περιλαμβάνονται στο έγγραφο. Για να απαντήσουμε στο ερώτημα Brutus Caesar Calpurnia, παίρνουμε τα διανύσματα Brutus, Caesar και Calpurnia, βρίσκουμε το συμπλήρωμα του τελευταίου, και εκτελούμε την πράξη στα δυαδικά ψηφία: = B Επομένως, οι απαντήσεις στο ερώτημα είναι Αντώνιος και Κλεοπάτρα και Άμλετ (Σχήμα 1.2). Το μοντέλο ανάκτησης Boole είναι ένα μοντέλο ανάκτησης πληροφοριών το οποίο μας επιτρέπει να υποβάλλουμε ερωτήματα που έχουν τη μορφή λογικών 2 Η καθιερωμένη πρακτική είναι να χρησιμοποιούμε την ανάστροφη μήτρα για να παίρνουμε τους όρους ως διανύσματα-στήλες.

13 1.1 Παράδειγμα προβλήματος ανάκτησης πληροφοριών 25 Αντώνιος και Ιούλιος Η Άμλετ Οθέλος Μάκβεθ Κλεοπάτρα Καίσαρ Τρικυμία Antony Brutus Caesar Calpurnia Cleopatra mercy worser Σχήμα 1.1 Μήτρα σύμπτωσης όρων-εγγράφων. Το στοιχείο (t, d) της μήτρας είναι 1 αν το θεατρικό έργο στη στήλη d περιλαμβάνει τη λέξη της γραμμής t, διαφορετικά είναι 0. Αντώνιος και Κλεοπάτρα, Πράξη III, Σκηνή ii Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus, When Antony found Julius Caesar dead, He cried almost to roaring and he wept When at Philippi he found Brutus slain. Άμλετ, Πράξη III, Σκηνή ii Lord Polonius: I did enact Julius Caesar: I was killed i the Capitol Brutus killed me. Σχήμα 1.2 Αποτελέσματα για το ερώτημα Brutus Caesar Calpurnia στα θεατρικά έργα του Σαίξπηρ. εκφράσεων όρων, δηλαδή ερωτήματα στα οποία οι όροι συνδυάζονται με τους τελεστές (και), (ή), και (όχι). Το μοντέλο θεωρεί κάθε έγγραφο απλώς ως ένα σύνολο λέξεων. Ας θεωρήσουμε τώρα ένα πιο ρεαλιστικό σενάριο, που θα το χρησιμοποιήσουμε και ως αφορμή για να παρουσιάσουμε μερικούς ακόμη όρους και τους αντίστοιχους συμβολισμούς. Υποθέστε ότι έχουμε N = 1 εκατομμύριο έγγραφα. Με τον όρο έγγραφο (document) εννοούμε την όποια μονάδα έχουμε επιλέξει ως βάση για το σύστημα ανάκτησης. Θα μπορούσαν να είναι μεμονωμένα εταιρικά υπομνήματα ή κεφάλαια κάποιου βιβλίου (δείτε την Ενότητα (σελίδα 43) για περαιτέρω ανάλυση). Αναφερόμαστε στο σύνολο των εγγράφων στα οποία πραγματοποιούμε την ανάκτηση με τον όρο συλλογή (εγγράφων document collection). Συχνά καλείται και σώμα εγγράφων (corpus). Υποθέστε ότι κάθε έγγραφο περιλαμβάνει περίπου λέξεις (2 3 σελίδες βιβλίου). Αν θεωρήσουμε ότι κάθε λέξη έχει μέγεθος 6 byte κατά μέσο όρο, συμπεριλαμβανομένων των κενών διαστημάτων και της στίξης, τότε αυτή η συλλογή εγγράφων έχει μέγεθος περίπου 6 gigabyte (GB). Τυπικά, θα μπορούσαν να υπάρχουν M = διακριτοί όροι σε αυτά τα έγγραφα. Δεν υπάρχει τίποτα το ιδιαίτερο στους αριθμούς που επιλέξαμε, και θα μπορούσαν να διαφέρουν κατά μία τάξη μεγέθους ή και περισσότερο, αλλά μας δίνουν μια ιδέα για τις διαστάσεις του είδους των προβλημάτων που καλούμαστε να χειριστούμε. Εξετάζουμε και αιτιολογούμε αυτές τις εκτιμήσεις μεγεθών στην Ενότητα 5.1 (σελίδα 113).

14 26 Ανάκτηση Boole Σκοπός μας είναι να αναπτύξουμε ένα σύστημα που θα καλύπτει την περιστα- σιακή ανάκτηση (ad hoc retrieval), η οποία είναι η πιο συνηθισμένη «αποστολή» της ΑΠ. Σε αυτήν, στόχος του συστήματος είναι να παρέχει έγγραφα της συλλογής συναφή με κάποια αυθαίρετη ανάγκη πληροφόρησης του χρήστη, η οποία γνωστοποιείται στο σύστημα μέσω ενός ερωτήματος που υποβάλλει ο χρήστης μία μόνο φορά. Ανάγκη πληροφόρησης (information need) είναι το θέμα για το οποίο ο χρήστης θέλει πράγματι να μάθει περισσότερα, και διαφέρει από το ε- ρώτημα (query), δηλαδή από αυτό που ο χρήστης μεταβιβάζει στον υπολογιστή στην προσπάθειά του να δείξει στη μηχανή ποια είναι η ανάγκη πληροφόρησής του. Ένα έγγραφο είναι συναφές (relevant) όταν ο χρήστης θεωρεί ότι περιέχει πολύτιμες γι αυτόν πληροφορίες, σε σχέση με την προσωπική του ανάγκη πληροφόρησης. Το παράδειγμα που δώσαμε παραπάνω ήταν μάλλον τεχνητό, με την έννοια ότι η ανάγκη πληροφόρησης οριζόταν με βάση συγκεκριμένες λέξεις ενώ, συνήθως, όταν οι χρήστες ενδιαφέρονται για θέματα όπως «διαρροές σωληνώσεων», θα ήθελαν να εντοπίζουν τα συναφή έγγραφα ανεξάρτητα από το αν περιέχουν ακριβώς αυτές τις λέξεις ή αν εκφράζουν την ίδια έννοια με άλλες λέξεις, όπως για παράδειγμα διάτρηση σωληνώσεων. Για να αξιολογήσουν - την αποτελεσματικότητα (effectiveness) ενός συστήματος ΑΠ, δηλαδή την ποιό- τητα των αποτελεσμάτων του, οι χρήστες εξετάζουν συνήθως δύο βασικά στατιστικά στοιχεία για τα αποτελέσματα που επιστρέφει το σύστημα στα ερωτήματά τους: Ακρίβεια (precision): ποιο ποσοστό των επιστρεφόμενων αποτελεσμάτων είναι συναφές προς την ανάγκη πληροφόρησης; Ανάκληση (recall): ποιο ποσοστό των συναφών εγγράφων της συλλογής επιστρέφονται από το σύστημα; Τα μέτρα που χρησιμοποιούνται για την εκτίμηση της συνάφειας και την αξιολόγηση των συστημάτων ανάκτησης, συμπεριλαμβανομένης της ακρίβειας και της ανάκλησης, τα αναλύουμε λεπτομερώς στο Κεφάλαιο 8. Δεν μπορούμε πλέον να δημιουργήσουμε μια μήτρα όρων-εγγράφων με τόσο απλοϊκό τρόπο. Μια μήτρα διαστάσεων 500K 1M περιέχει μισό τρισεκατομμύριο ψηφία 0 και 1 πάρα πολλά για να χωρέσουν στη μνήμη ενός υπολογιστή. Η καίρια παρατήρηση όμως είναι ότι η μήτρα είναι εξαιρετικά αραιή, δηλαδή έχει ελάχιστες μη μηδενικές καταχωρίσεις. Αφού το μήκος κάθε εγγράφου είναι περίπου λέξεις, η μήτρα δεν περιέχει περισσότερα από ένα δισεκατομμύριο 1, επομένως, τουλάχιστον το 99,8% των τιμών της είναι μηδενικά. Μια πολύ καλύτερη αναπαράσταση θα ήταν να καταγράφουμε μόνο ό,τι πραγματικά υπάρχει, δηλαδή, τις τιμές 1. Αυτή η ιδέα αποτελεί το επίκεντρο μιας από τις κυριότερες έννοιες στην ανάκτηση πληροφοριών, του αντεστραμμένου ευρετηρίου (inverted index). Το όνομα είναι ουσιαστικά πλεοναστικό: ένα ευρετήριο πάντα αντιστοιχίζει τους όρους πίσω στα σημεία του εγγράφου όπου εμφανίζονται αυτοί οι όροι. Παρόλα αυτά,

15 1.2 Μια πρώτη ματιά στη δημιουργία αντεστραμμένων ευρετηρίων 27 Brutus Caesar Calpurnia Λεξικό Καταχωρίσεις Σχήμα 1.3 Τα δύο μέρη ενός αντεστραμμένου ευρετηρίου. Το λεξικό συνήθως διατηρείται στη μνήμη μαζί με δείκτες προς κάθε λίστα καταχωρίσεων. Οι λίστες καταχωρίσεων βρίσκονται αποθηκευμένες στον δίσκο. αντεστραμμένο ευρετήριο, ή μερικές φορές αντεστραμμένο αρχείο, είναι ο όρος που έχει καθιερωθεί στην ΑΠ. Η βασική ιδέα του αντεστραμμένου ευρετηρίου παρουσιάζεται στο Σχήμα 1.3. Διατηρούμε ένα λεξικό όρων το λεξικό συχνά καλείται και λεξιλόγιο, αλλά σε αυτό το βιβλίο χρησιμοποιούμε τον όρο λεξικό (dictionary) για τη δομή δεδομένων και τον όρο λεξιλόγιο (vocabulary) για το σύνολο των όρων. Στη συνέχεια, για κάθε όρο έχουμε μια λίστα στην οποία καταγράφονται τα έγγραφα που περιέχουν αυτόν τον όρο. Κάθε στοιχείο της λίστας το οποίο δείχνει ότι ένας όρος βρίσκεται σε ένα έγγραφο (και μερικές φορές, όπως θα δούμε παρακάτω, και τις θέσεις του στο έγγραφο) ονομάζεται καταχώριση (posting).⁴ Η λίστα ονομάζεται λίστα καταχωρίσεων (postings list) ή αντεστραμμένη λίστα, ενώ όλες οι λίστες καταχωρίσεων μαζί καλούνται καταχωρίσεις. Το λεξικό στο Σχήμα 1.3 έχει διαταχθεί αλφαβητικά και κάθε λίστα καταχωρίσεων είναι διατεταγμένη κατά αναγνωριστικό εγγράφου (docid). Στην Ενότητα 1.3 εξηγούμε γιατί αυτό είναι χρήσιμο ενώ παρακάτω εξετάζουμε εναλλακτικές μεθόδους (Ενότητα 7.1.5). 1.2 Μια πρώτη ματιά στη δημιουργία αντεστραμμένων ευρετηρίων Για να αξιοποιήσουμε κατά το χρόνο ανάκτησης τα οφέλη της επιτάχυνσης που προσφέρει η χρήση ευρετηρίου, πρέπει να έχουμε δημιουργήσει το ευρετήριο εκ των προτέρων. Τα βασικά βήματα είναι: 1. Συλλέγουμε τα έγγραφα που θα συμπεριληφθούν στο ευρετήριο: 3 Μερικοί ερευνητές της ΑΠ προτιμούν τον όρο αντεστραμμένο αρχείο (inverted file), αλλά εκφράσεις όπως δημιουργία ευρετηρίου και συμπίεση ευρετηρίου είναι πολύ πιο συνηθισμένες από τις δημιουργία αντεστραμμένου αρχείου και συμπίεση αντεστραμμένου αρχείου. Για λόγους συνέπειας, χρησιμοποιούμε τον όρο (αντεστραμμένο) ευρετήριο σε όλο το βιβλίο. 4 Σε ένα αντεστραμμένο ευρετήριο (χωρίς πληροφορίες θέσεων) μια καταχώριση είναι απλώς το αναγνωριστικό ενός εγγράφου (document ID ή docid), αλλά συσχετίζεται εγγενώς με έναν όρο μέσω της λίστας καταχωρίσεων στην οποία βρίσκεται γι αυτό μερικές φορές θεωρούμε ως καταχώριση και ένα ζεύγος της μορφής (όρος, docid).

16 28 Ανάκτηση Boole Friends, Romans, countrymen. So let it be with Caesar 2. Χωρίζουμε το κείμενο σε σύμβολα (tokens), μετατρέποντας κάθε έγγραφο σε μια λίστα συμβόλων: Friends Romans countrymen So 3. Προχωράμε σε γλωσσολογική προεπεξεργασία, παράγοντας μια λίστα κανονικοποιημένων συμβόλων τα οποία θα αποτελέσουν τους όρους του ευρετηρίου: friend roman countryman so 4. Δεικτοδοτούμε τα έγγραφα στα οποία εμφανίζεται κάθε όρος, δημιουργώντας ένα αντεστραμμένο ευρετήριο αποτελούμενο από ένα λεξικό και καταχωρίσεις. ID Ορίζουμε και αναλύουμε τα πρώτα στάδια επεξεργασίας, δηλαδή τα βήματα 1 3, στην Ενότητα 2.2. Μέχρι τότε, μπορείτε να θεωρείτε τα σύμβολα και τα κανονικοποιημένα σύμβολα ως περίπου ισοδύναμα με λέξεις. Εδώ υποθέτουμε ότι τα πρώτα τρία βήματα έχουν ήδη πραγματοποιηθεί και εξετάζουμε την κατασκευή ενός απλού αντεστραμμένου ευρετηρίου ακολουθώντας μεθόδους ευρετηρίασης βάσει διάταξης (sort-based indexing). Μέσα σε μια συλλογή εγγράφων, θεωρούμε ότι κάθε έγγραφο έχει έναν μοναδικό σειριακό αριθμό που είναι γνωστός ως αναγνωριστικό εγγράφου (document identifier ή docid). Κατά τη δημιουργία του ευρετηρίου, μπορούμε απλώς να αναθέτουμε διαδοχικούς ακεραίους σε κάθε έγγραφο την πρώτη φορά που το συναντάμε. Τα δεδομένα εισόδου (input) για τη δημιουργία του ευρετηρίου είναι μια λίστα με τα κανονικοποιημένα σύμβολα κάθε εγγράφου, την οποία μπορούμε να θεωρούμε και ως μια λίστα από ζεύγη όρων και αναγνωριστικών εγγράφων, ό- πως στο Σχήμα 1.4. Το κύριο βήμα στη δημιουργία του ευρετηρίου είναι η διάταξη αυτής της λίστας ώστε οι όροι να είναι σε αλφαβητική σειρά, όπως στη μεσαία στήλη του Σχήματος 1.4. Έπειτα, προχωράμε στη συγχώνευση των εμφανίσεων κάθε όρου στο ίδιο έγγραφο.⁵ Στη συνέχεια, οι εμφανίσεις (τα «στιγμιότυπα») του ίδιου όρου ομαδοποιούνται και το αποτέλεσμα χωρίζεται στο λεξικό και τις καταχωρίσεις, όπως φαίνεται στη δεξιά στήλη του Σχήματος 1.4. Επειδή, γενικά, κάθε όρος εμφανίζεται σε πολλά έγγραφα, αυτή η μέθοδος οργάνωσης των δεδομένων βοηθά στη μείωση των απαιτήσεων του ευρετηρίου σε αποθηκευτικό χώρο. Στο λεξικό καταγράφονται επίσης κάποια στατιστικά στοιχεία, όπως το πλήθος των εγγράφων που περιέχουν κάθε όρο (η συχνότητα εγγράφων document frequency η οποία εδώ αντιπροσωπεύει και το μήκος κάθε λίστας καταχωρίσεων). Αυτή η πληροφορία δεν είναι απαραίτητη για μια βασική μηχανή αναζήτησης Boole, αλλά μας επιτρέπει να βελτιώσουμε την απόδοση της μηχανής αναζήτησης κατά το χρόνο επεξεργασίας του ερωτήματος, ενώ είναι και ένα στατιστικό στοιχείο που χρησιμοποιείται σε πολλά μοντέλα καταταγμένης αναζήτησης. Οι καταχωρίσεις είναι διατεταγμένες σε δεύτερο επίπεδο κατά αναγνωριστικό εγγράφου, πράγμα που αποτελεί τη βάση για την αποδοτική επεξεργασία 5 Οι χρήστες Unix ίσως προσέξουν ότι αυτά τα βήματα μοιάζουν με τη χρήση της ακολουθίας εντολών sort και uniq.

17 1.2 Μια πρώτη ματιά στη δημιουργία αντεστραμμένων ευρετηρίων 29 Έγγραφο 1 Έγγραφο 2 I did enact Julius Caesar: I was killed i the Capitol; Brutus killed me. So let it be with Caesar. e noble Brutus hath told you Caesar was ambitious: όρος docid όρος docid I 1 did 1 enact 1 julius 1 caesar 1 I 1 was 1 killed 1 i 1 the 1 capitol 1 brutus 1 killed 1 me 1 so 2 let 2 it 2 be 2 with 2 caesar 2 the 2 noble 2 brutus 2 hath 2 told 2 you 2 caesar 2 was 2 ambitious 2 ambitious 2 be 2 brutus 1 brutus 2 capitol 1 caesar 1 caesar 2 caesar 2 did 1 enact 1 hath 1 I 1 I 1 i 1 it 2 julius 1 killed 1 killed 1 let 2 me 1 noble 2 so 2 the 1 the 2 told 2 you 2 was 1 was 2 with 2 όρος συχν. εγγρ. λίστες καταχωρίσεων ambitious 1 2 be 1 2 brutus capitol 1 1 caesar did 1 1 enact 1 1 hath 1 2 I 1 1 i 1 1 it 1 2 julius 1 1 killed 1 1 let 1 2 me 1 1 noble 1 2 so 1 2 the told 1 2 you 1 2 was with 1 2 Σχήμα 1.4 Δημιουργία ευρετηρίου με διάταξη και ομαδοποίηση. Οι όροι κάθε εγγράφου, επισημασμένοι με τα αναγνωριστικά εγγράφων τους (αριστερά), διατάσσονται αλφαβητικά (μέσο). Στη συνέχεια, οι εμφανίσεις του κάθε όρου ομαδοποιούνται ανά λέξη και μετά ανά αναγνωριστικό εγγράφου (docid). Έπειτα, χωρίζονται οι όροι και τα αναγνωριστικά εγγράφων (δεξιά). Το λεξικό περιλαμβάνει τους όρους καθώς και ένα δείκτη προς τη λίστα καταχωρίσεων κάθε όρου. Συνήθως περιλαμβάνει και άλλες συνοπτικές πληροφορίες όπως, εδώ, τη συχνότητα εγγράφων για κάθε όρο. Χρησιμοποιούμε αυτές τις πληροφορίες για να βελτιώσουμε την απόδοση κατά το χρόνο επεξεργασίας των ερωτημάτων και, όπως θα δούμε στα επόμενα, για τον προσδιορισμό συντελεστών στάθμισης στα μοντέλα καταταγμένης ανάκτησης. Κάθε λίστα καταχωρίσεων περιέχει τη λίστα των εγγράφων στα οποία βρίσκεται ένας όρος, ενώ μπορεί να αποθηκεύει και άλλες πληροφορίες, όπως τη συχνότητα του όρου (τη συχνότητα κάθε όρου σε κάθε έγγραφο) ή τις θέσεις του όρου σε κάθε έγγραφο.

18 30 Ανάκτηση Boole? Άσκηση των ερωτημάτων αναζήτησης. Αυτή η δομή αντεστραμμένου ευρετηρίου είναι η απολύτως επικρατέστερη ως η πλέον αποδοτική για την υποστήριξη περιστασιακών αναζητήσεων κειμένου. Στο προκύπτον ευρετήριο έχουμε να αντιμετωπίσουμε το αποθηκευτικό κόστος τόσο για το λεξικό όσο και για τις λίστες καταχωρίσεων. Οι τελευταίες είναι πολύ μεγαλύτερες, αλλά το λεξικό συνήθως διατηρείται στη μνήμη ενώ οι λίστες καταχωρίσεων αποθηκεύονται στο δίσκο, οπότε και τα δύο μεγέθη είναι σημαντικά. Στο Κεφάλαιο 5 εξετάζουμε πώς μπορούμε να βελτιστοποιήσουμε και τα δύο ώστε να έχουμε την καλύτερη δυνατή απόδοση, τόσο στις απαιτήσεις αποθήκευσης όσο και στην προσπέλαση. Ποια δομή δεδομένων είναι καταλληλότερη για τις λίστες καταχωρίσεων; Οι πίνακες σταθερού μήκους θα ήταν σπατάλη κάποιες λέξεις εμφανίζονται σε πολλά έγγραφα ενώ άλλες σε πολύ λίγα. Για λίστες καταχωρίσεων που διατηρούνται στη μνήμη, δύο καλές εναλλακτικές λύσεις είναι οι απλά συνδεδεμένες λίστες (singly linked lists) ή οι πίνακες μεταβλητού μήκους (variable length arrays). Οι απλά συνδεδεμένες λίστες επιτρέπουν την «ανέξοδη» παρεμβολή εγγράφων στις λίστες καταχωρίσεων (έπειτα από ενημερώσεις, όπως μετά την επανασταχυολόγηση του Ιστού για ενημερωμένα έγγραφα), και μπορούν να επεκταθούν εύκολα σε πιο σύνθετες στρατηγικές ευρετηρίασης, όπως οι λίστες παράβλεψης (skip lists, Ενότητα 2.3), για τις οποίες απαιτούνται περισσότεροι δείκτες. Οι πίνακες μεταβλητού μήκους «κερδίζουν» σε απαιτήσεις χώρου, αποφεύγοντας την επιβάρυνση των δεικτών, αλλά και χρόνου, επειδή χρησιμοποιούν συνεχείς περιοχές μνήμης βελτιώνοντας την ταχύτητα επεξεργασίας στους σύγχρονους επεξεργαστές με ενσωματωμένη κρυφή μνήμη (cache). Στην πράξη, πρόσθετοι δείκτες μπορούν να κωδικοποιηθούν στις λίστες με τη μορφή σχετικών αποστάσεων (ή μετατοπίσεων, offset). Αν οι ενημερώσεις είναι σχετικά σπάνιες, οι πίνακες μεταβλητού μήκους είναι πιο συμπαγείς και επιτρέπουν ταχύτερη διάσχιση. Μπορούμε επίσης να χρησιμοποιήσουμε μια υβριδική μέθοδο, με μια συνδεδεμένη λίστα πινάκων σταθερού μήκους για κάθε όρο. Όταν οι λίστες καταχωρίσεων διατηρούνται στο δίσκο, αποθηκεύονται (πιθανώς συμπιεσμένες) ως συνεχόμενες ακολουθίες καταχωρίσεων χωρίς ενδιάμεσους δείκτες (όπως στο Σχήμα 1.3), ώστε να ελαχιστοποιηθεί το μέγεθός τους αλλά και ο αριθμός των απαιτούμενων αναζητήσεων στο δίσκο για την ανάγνωση μιας λίστας καταχωρίσεων και τη φόρτωσή της στη μνήμη. 1.1 [ ] Καταστρώστε το αντεστραμμένο ευρετήριο για την παρακάτω συλλογή εγγράφων. (Δείτε ως παράδειγμα το Σχήμα 1.3.) Έγγραφο 1 Έγγραφο 2 Έγγραφο 3 Έγγραφο 4 new home sales top forecasts home sales rise in july increase in home sales in july july new home sales rise Άσκηση 1.2 [ ] Δίνονται τα εξής έγγραφα: Έγγραφο 1 breakthrough drug for schizophrenia Έγγραφο 2 new schizophrenia drug

19 1.3 Επεξεργασία ερωτημάτων Boole 31 Brutus Calpurnia Τομή 2 31 Σχήμα 1.5 Τομή των λιστών καταχωρίσεων για τα ονόματα Brutus και Calpurnia από το Σχήμα 1.3. Έγγραφο 3 Έγγραφο 4 new approach for treatment of schizophrenia new hopes for schizophrenia patients α. Καταστρώστε τη μήτρα σύμπτωσης όρων-εγγράφων γι αυτήν τη συλλογή εγγράφων. β. Καταστρώστε το αντεστραμμένο ευρετήριο της συλλογής, στη μορφή του Σχήματος 1.3 (σελίδα 27). Άσκηση 1.3 [ ] Στη συλλογή εγγράφων της Άσκησης 1.2, ποια είναι τα αποτελέσματα που επιστρέφουν τα παρακάτω ερωτήματα; α. schizophrenia drug β. for (drug approach) 1.3 Επεξεργασία ερωτημάτων Boole Πώς επεξεργαζόμαστε ένα ερώτημα χρησιμοποιώντας ένα αντεστραμμένο ευρετήριο και το βασικό μοντέλο ανάκτησης Boole; Ας θεωρήσουμε την επεξεργασία του απλού συζευκτικού ερωτήματος: (1.1) Brutus Calpurnia στο αντεστραμμένο ευρετήριο που φαίνεται εν μέρει στο Σχήμα 1.3 (σελίδα 27): 1. Εντοπίζουμε το όνομα Brutus στο λεξικό. 2. Βρίσκουμε τις καταχωρίσεις του. 3. Εντοπίζουμε το όνομα Calpurnia στο λεξικό. 4. Βρίσκουμε τις καταχωρίσεις του. 5. Βρίσκουμε την τομή των δύο λιστών καταχωρίσεων, όπως φαίνεται στο Σχήμα 1.5. Η πράξη της τομής είναι η πιο κρίσιμη: θέλουμε να υπολογίσουμε την τομή των λιστών καταχωρίσεων όσο πιο αποδοτικά γίνεται, ώστε να εντοπίσουμε γρήγορα τα έγγραφα που περιέχουν και τους δύο όρους. (Αυτή η πράξη ονομάζεται μερικές φορές και συγχώνευση λιστών καταχωρίσεων, ένα όχι και τόσο σαφές όνομα το οποίο παραπέμπει στη χρήση του όρου αλγόριθμος συγχώνευσης (merge algorithm) που χρησιμοποιείται στην ονομασία μιας γενικής οικογένειας αλγορίθμων οι οποίοι μπορούν να συνδυάζουν πολλές διατεταγμένες λίστες διατρέχοντάς τις παράλληλα μέσω δεικτών εδώ συγχωνεύουμε τις λίστες με τη λογική πράξη.)

20 32 Ανάκτηση Boole I (p 1, p 2 ) 1 απάντηση 2 while p 1 and p 2 3 do if docid(p 1 ) = docid(p 2 ) 4 then A (απάντηση, docid(p 1 )) 5 p 1 επόμενη(p 1 ) 6 p 2 επόμενη(p 2 ) 7 else if docid(p 1 ) < docid(p 2 ) 8 then p 1 επόμενη(p 1 ) 9 else p 2 επόμενη(p 2 ) 10 return απάντηση Σχήμα 1.6 Αλγόριθμος για την εύρεση της τομής δύο λιστών καταχωρίσεων p 1 και p 2. Υπάρχει μια απλή και αποτελεσματική μέθοδος για τον υπολογισμό της τομής λιστών καταχωρίσεων με χρήση του αλγορίθμου συγχώνευσης (δείτε το Σχήμα 1.6): διατηρούμε δείκτες στο εσωτερικό και των δύο λιστών και τις διατρέχουμε ταυτόχρονα, σε χρόνο γραμμικά ανάλογο προς το συνολικό πλήθος των καταχωρίσεών τους. Σε κάθε βήμα, συγκρίνουμε τα αναγνωριστικά εγγράφων (docid) στα οποία δείχνουν οι δύο δείκτες. Αν είναι τα ίδια, τοποθετούμε το αναγνωριστικό στη λίστα αποτελεσμάτων και αυξάνουμε και τους δύο δείκτες. Διαφορετικά, αυξάνουμε το δείκτη που δείχνει στο μικρότερο docid. Αν τα μήκη των λιστών καταχωρίσεων είναι x και y, για να ολοκληρωθεί ο υπολογισμός της τομής απαιτούνται O(x + y) πράξεις. Τυπικά, η πολυπλοκότητα της εκτέλεσης του ερωτήματος είναι Θ(N), όπου N είναι το πλήθος των εγγράφων της συλλογής.⁶ Οι μέθοδοι ευρετηρίασης που χρησιμοποιούμε μας αποφέρουν κέρδος κατά μία σταθερά, όχι κάποια διαφορά στην πολυπλοκότητα χρόνου Θ σε σχέση με τη γραμμική σάρωση στην πράξη, όμως, η σταθερά αυτή είναι τεράστια. Για να χρησιμοποιήσουμε αυτόν τον αλγόριθμο, είναι κρίσιμο οι καταχωρίσεις να είναι διατεταγμένες με τον ίδιο ακριβώς τρόπο σε όλες τις λίστες. Η αριθμητική διάταξη κατά αναγνωριστικό εγγράφου (docid) είναι ένας απλός τρόπος για να πετύχουμε αυτόν τον σκοπό. Μπορούμε να επεκτείνουμε την πράξη υπολογισμού τομής ώστε να επεξεργάζεται πιο περίπλοκα ερωτήματα, όπως: (1.2) (Brutus Caesar) Calpurnia Βελτιστοποίηση ερωτήματος (query optimization) είναι η διαδικασία με την οποία επιλέγουμε πώς θα οργανώσουμε την εργασία της απάντησης σε ένα ερώτημα, ώστε να ελαχιστοποιηθεί ο φόρτος του έργου που χρειάζεται να πραγματοποιηθεί από το σύστημα. Ιδιαίτερα σημαντική για τη βελτιστοποίηση ερωτημάτων 6 Ο συμβολισμός Θ( ) εκφράζει ένα ασυμπτωτικά σφιχτό φράγμα για την πολυπλοκότητα του αλγορίθμου. Συχνά γράφεται και ως O( ), αλλά αυτός ο συμβολισμός εκφράζει στην πραγματικότητα ένα ασυμπτωτικό άνω φράγμα που δεν είναι απαραίτητα σφιχτό. (Cormen κ.ά. 1990).

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 1: Εισαγωγή. Ανάκτηση Boole Κεφ. 1.1 Τι είναι η «Ανάκτηση Πληροφορίας»; Ανάγκη πληροφόρησης Βάση

Διαβάστε περισσότερα

Ανάκληση Πληπουοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληπουοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληπουοπίαρ Information Retrieval Διδάζκων Δημήηριος Καηζαρός Γιάλεξη 2η: 23/02/2016 1 Μεγάλες συλλογές (corpora) Έστωσαν N = 1M έγγραφα, το κάθε ένα με περίπου 1K όρους Avg 6 bytes/term, συμπεριλαμβανόμενων

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #04 Εισαγωγή στα Μοντέλα Ανάκτησης Πληροφορίας Boolean Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Πληροφορική 2. Δομές δεδομένων και αρχείων

Πληροφορική 2. Δομές δεδομένων και αρχείων Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 1: Εισαγωγή. Ανάκτηση Boole Κεφ. 1.1 Τι είναι η «Ανάκτηση Πληροφορίας»; Ανάγκη πληροφόρησης Βάση

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Information Retrieval Διδάζκων Δημήηριος Καηζαρός Διάλεξη 7η: 21/03/2016 1 Ch. 4 Κατασκευή του ευρετηρίου Πώς κατασκευάζουμε το ευρετήριο; Ποιες στρατηγικές μπορούμε ν ακολουθήσουμε

Διαβάστε περισσότερα

Περιεχόμενα. Μέρος 1: Βασικές έννοιες Πληροφορικής και επικοινωνιών Μέρος 2: Χρήση υπολογιστή και διαχείριση αρχείων Πρόλογος...

Περιεχόμενα. Μέρος 1: Βασικές έννοιες Πληροφορικής και επικοινωνιών Μέρος 2: Χρήση υπολογιστή και διαχείριση αρχείων Πρόλογος... Περιεχόμενα Πρόλογος...11 Μέρος 1: Βασικές έννοιες Πληροφορικής και επικοινωνιών... 13 1.1 Εισαγωγή στους υπολογιστές... 15 1.2 Μονάδες μέτρησης... 27 1.3 Οι βασικές λειτουργίες ενός ηλεκτρονικού υπολογιστή...

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Εισαγωγή Η τακτοποίηση των δεδομένων με ιδιαίτερη σειρά είναι πολύ σημαντική λειτουργία που ονομάζεται

Διαβάστε περισσότερα

Οδηγός γρήγορης εκκίνησης του PowerSuite

Οδηγός γρήγορης εκκίνησης του PowerSuite Το PowerSuite είναι η ολοκληρωμένη λύση απόδοσης για τον υπολογιστή σας. Ενσωματώνοντας το RegistryBooster, το DriverScanner και το SpeedUpMyPC σε ένα ενιαίο περιβάλλον εργασίας σάρωσης, το PowerSuite

Διαβάστε περισσότερα

A ΕΠΑ.Λ ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 5 η ΕΝΟΤΗΤΑ: ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Εκπαιδευτικοί: ΓΑΛΑΝΟΣ ΓΕΩΡΓΙΟΣ ΜΠΟΥΣΟΥΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ

A ΕΠΑ.Λ ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 5 η ΕΝΟΤΗΤΑ: ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Εκπαιδευτικοί: ΓΑΛΑΝΟΣ ΓΕΩΡΓΙΟΣ ΜΠΟΥΣΟΥΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ A ΕΠΑ.Λ ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 5 η ΕΝΟΤΗΤΑ: ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Εκπαιδευτικοί: ΓΑΛΑΝΟΣ ΓΕΩΡΓΙΟΣ ΜΠΟΥΣΟΥΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ 1 Βάση Δεδομένων: Με το όρο Βάση Δεδομένων εννοούμε ένα σύνολο δεδομένων που είναι οργανωμένο

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

1 Συστήματα Αυτοματισμού Βιβλιοθηκών

1 Συστήματα Αυτοματισμού Βιβλιοθηκών 1 Συστήματα Αυτοματισμού Βιβλιοθηκών Τα Συστήματα Αυτοματισμού Βιβλιοθηκών χρησιμοποιούνται για τη διαχείριση καταχωρήσεων βιβλιοθηκών. Τα περιεχόμενα των βιβλιοθηκών αυτών είναι έντυπα έγγραφα, όπως βιβλία

Διαβάστε περισσότερα

Ανάκτηση πληροφορίας

Ανάκτηση πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ανάκτηση πληροφορίας Ενότητα 6: Ο Αντεστραμμένος Κατάλογος Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης)

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών ΗΥ463 Συστήματα Ανάκτησης Πληροφοριών 28-29 Εαρινό Εξάμηνο Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης &

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 6 ΟΥ ΚΕΦΑΛΑΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 6.1 Τι ονοµάζουµε πρόγραµµα υπολογιστή; Ένα πρόγραµµα

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Επεξεργασία πινάκων

Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Επεξεργασία πινάκων Ενότητα 4 Επεξεργασία πινάκων 36 37 4.1 Προσθήκη πεδίων Για να εισάγετε ένα πεδίο σε ένα πίνακα που υπάρχει ήδη στη βάση δεδομένων σας, βάζετε τον κέρσορα του ποντικιού στο πεδίο πάνω από το οποίο θέλετε

Διαβάστε περισσότερα

Κεφάλαιο 4: Λογισμικό Συστήματος

Κεφάλαιο 4: Λογισμικό Συστήματος Κεφάλαιο 4: Λογισμικό Συστήματος Ερωτήσεις 1. Να αναφέρετε συνοπτικά τις κατηγορίες στις οποίες διακρίνεται το λογισμικό συστήματος. Σε ποια ευρύτερη κατηγορία εντάσσεται αυτό; Το λογισμικό συστήματος

Διαβάστε περισσότερα

Δυναμική Διατήρηση Γραμμικής Διάταξης

Δυναμική Διατήρηση Γραμμικής Διάταξης Διατηρεί μια γραμμική διάταξη δυναμικά μεταβαλλόμενης συλλογής στοιχείων. Υποστηρίζει τις λειτουργίες: Εισαγωγή νέου στοιχείου y αμέσως μετά από το στοιχείο x. x y Διαγραφή στοιχείου y. y Έλεγχος της σειράς

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

Περιεχόμενα. Μέρος 1: Βασικές έννοιες της πληροφορικής... 13. Πρόλογος... 11

Περιεχόμενα. Μέρος 1: Βασικές έννοιες της πληροφορικής... 13. Πρόλογος... 11 Περιεχόμενα Πρόλογος... 11 Μέρος 1: Βασικές έννοιες της πληροφορικής... 13 1.1 Windows XP... 15 1.2 Επιφάνεια εργασίας... 19 1.3 Γραμμή εργασιών... 24 1.4 Χειρισμός παραθύρων... 30 1.5 Μενού... 36 1.6

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Λίγα λόγια από το συγγραφέα... 7. 91 Βάσεις δεδομένων και Microsoft Access... 9. 92 Microsoft Access... 22

Λίγα λόγια από το συγγραφέα... 7. 91 Βάσεις δεδομένων και Microsoft Access... 9. 92 Microsoft Access... 22 ΕΝΟΤΗΤΑ 5 Περιεχόμενα Λίγα λόγια από το συγγραφέα... 7 91 Βάσεις δεδομένων και Microsoft Access... 9 92 Microsoft Access... 22 93 Το σύστημα Βοήθειας του Microsoft Office... 32 94 Σχεδιασμός βάσης δεδομένων

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου

Διαβάστε περισσότερα

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Ευρετήρια Ευαγγελία Πιτουρά 1 τιμή γνωρίσματος Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Κεφάλαιο 7. ΕΠΑΛ Σύμης Εφαρμογές πληροφορικής Ερωτήσεις επανάληψης

Κεφάλαιο 7. ΕΠΑΛ Σύμης Εφαρμογές πληροφορικής Ερωτήσεις επανάληψης ΕΠΑΛ Σύμης Εφαρμογές πληροφορικής Ερωτήσεις επανάληψης Κεφάλαιο 7 1. Σε τι διαφέρει ο Η/Υ από τις υπόλοιπες ηλεκτρικές και ηλεκτρονικές συσκευές; Που οφείλεται η δυνατότητά του να κάνει τόσο διαφορετικές

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

ΕΠΛ 002: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Μηχανές αναζήτησης

ΕΠΛ 002: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Μηχανές αναζήτησης ΕΠΛ 002: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Μηχανές αναζήτησης Στόχοι 1 Να εξηγήσουμε για ποιον λόγο μας είναι απαραίτητες οι μηχανές αναζήτησης στον Παγκόσμιο Ιστό. Να περιγράψουμε κάποιους από τους

Διαβάστε περισσότερα

Παραθέσεις Μελετητή Google

Παραθέσεις Μελετητή Google Παραθέσεις Μελετητή Google http://scholar.google.gr/intl/el/scholar/citations.html Οι Παραθέσεις Μελετητή Google παρέχουν στους συγγραφείς έναν απλό τρόπο για να παρακολουθούν τις παραθέσεις που περιέχονται

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

Κεφάλαιο 4 ο. Ο Προσωπικός Υπολογιστής

Κεφάλαιο 4 ο. Ο Προσωπικός Υπολογιστής Κεφάλαιο 4 ο Ο Προσωπικός Υπολογιστής Μάθημα 4.3 Ο Επεξεργαστής - Εισαγωγή - Συχνότητα λειτουργίας - Εύρος διαδρόμου δεδομένων - Εύρος διαδρόμου διευθύνσεων - Εύρος καταχωρητών Όταν ολοκληρώσεις το μάθημα

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 Τμήμα θεωρίας: Α.Μ. 8, 9 Κάθε Πέμπτη, 11πμ-2μμ, ΑΜΦ23. Διδάσκων: Ντίνος Φερεντίνος Γραφείο 118 email: kpf3@cornell.edu Μάθημα: Θεωρία + προαιρετικό

Διαβάστε περισσότερα

Οι πράξεις της συνένωσης. Μ.Χατζόπουλος 1

Οι πράξεις της συνένωσης. Μ.Χατζόπουλος 1 Οι πράξεις της συνένωσης Μ.Χατζόπουλος 1 ΠΡΟΜΗΘΕΥΤΗΣ (ΠΡΜ) Κ_Προμ Π_Ονομα Είδος Πόλη 22 Ανδρέου 7 Αθήνα 31 Πέτρου 8 Πάτρα 28 Δέδες 12 Λάρισα 58 Παππάς 7 Αθήνα ΠΡΟΙΟΝ (ΠΡ) Κ_Πρ Πρ_Ονομα Χρώμα Βάρος Π35

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ

ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ Θέματα μελέτης Ορθότητα και απόδοση αλγορίθμων Παρουσίαση και ανάλυση αλγορίθμου για πρόσθεση Al Khwarizmi Αλγόριθμοι Το δεκαδικό σύστημα εφευρέθηκε στην Ινδία περίπου το

Διαβάστε περισσότερα

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Η Μέθοδος «Διαίρει & Βασίλευε» Η Μέθοδος

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Τυπικές χρήσεις της Matlab

Τυπικές χρήσεις της Matlab Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #4 2 Γενικά Στο Τετράδιο #4 του Εργαστηρίου θα αναφερθούμε σε θέματα διαχείρισης πινάκων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 2: Εκφράσεις, πίνακες και βρόχοι 14 Απριλίου 2016 Το σημερινό εργαστήριο

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

Οδηγός γρήγορης εκκίνησης

Οδηγός γρήγορης εκκίνησης Οδηγός γρήγορης εκκίνησης Το Microsoft Excel 2013 έχει διαφορετική εμφάνιση από προηγούμενες εκδόσεις. Γι αυτό το λόγο, δημιουργήσαμε αυτόν τον οδηγό για να ελαχιστοποιήσουμε την καμπύλη εκμάθησης. Προσθήκη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Χειρισµός εδοµένων

ΚΕΦΑΛΑΙΟ 2: Χειρισµός εδοµένων ΚΕΦΑΛΑΙΟ 2: Χειρισµός εδοµένων 2.1 Αρχιτεκτονική Υπολογιστών 2.1 Αρχιτεκτονική Υπολογιστών 2.2 Γλώσσα Μηχανής 2.3 Εκτέλεση προγράµµατος 2.4 Αριθµητικές και λογικές εντολές 2.5 Επικοινωνία µε άλλες συσκευές

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

- Εισαγωγή - Επίπεδα μνήμης - Ολοκληρωμένα κυκλώματα μνήμης - Συσκευασίες μνήμης προσωπικών υπολογιστών

- Εισαγωγή - Επίπεδα μνήμης - Ολοκληρωμένα κυκλώματα μνήμης - Συσκευασίες μνήμης προσωπικών υπολογιστών Μάθημα 4.5 Η Μνήμη - Εισαγωγή - Επίπεδα μνήμης - Ολοκληρωμένα κυκλώματα μνήμης - Συσκευασίες μνήμης προσωπικών υπολογιστών Όταν ολοκληρώσεις το μάθημα αυτό θα μπορείς: Να αναφέρεις τα κυριότερα είδη μνήμης

Διαβάστε περισσότερα

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013 Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013 27 Μαρτίου 2013 Περίληψη Σκοπός της παρούσας εργασίας είναι η εξοικείωσή σας με τις θεμελιώδεις θεωρητικές και πρακτικές πτυχές

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος

Διαβάστε περισσότερα

Λίγα λόγια από το συγγραφέα...7

Λίγα λόγια από το συγγραφέα...7 Περιεχόμενα Λίγα λόγια από το συγγραφέα...7 Κεφάλαιο 1: Σχεδιασμός βάσης δεδομένων και δημιουργία πίνακα...9 Κεφάλαιο 2: Περαιτέρω τροποποίηση δομής πίνακα...41 Κεφάλαιο 3: Σχέσεις...84 Κεφάλαιο 4: Ερωτήματα...105

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: GoNToggle: ΕΞΥΠΝΗ ΜΗΧΑΝΗ ΑΝΑΖΗΤΗΣΗΣ ΜΕ ΧΡΗΣΗ ΟΝΤΟΛΟΓΙΩΝ ΠΕΡΙΟΧΗ ΕΡΕΥΝΑΣ: ΣΥΓΓΡΑΦΕΑΣ:

ΤΙΤΛΟΣ ΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: GoNToggle: ΕΞΥΠΝΗ ΜΗΧΑΝΗ ΑΝΑΖΗΤΗΣΗΣ ΜΕ ΧΡΗΣΗ ΟΝΤΟΛΟΓΙΩΝ ΠΕΡΙΟΧΗ ΕΡΕΥΝΑΣ: ΣΥΓΓΡΑΦΕΑΣ: ΤΙΤΛΟΣ ΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: GoNToggle: ΕΞΥΠΝΗ ΜΗΧΑΝΗ ΑΝΑΖΗΤΗΣΗΣ ΜΕ ΧΡΗΣΗ ΟΝΤΟΛΟΓΙΩΝ ΠΕΡΙΟΧΗ ΕΡΕΥΝΑΣ: Υπολογιστικά Συστήµατα & Τεχνολογίες Πληροφορικής ΣΥΓΓΡΑΦΕΑΣ: Γιώργος Γιαννόπουλος, διδακτορικός φοιτητής

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Τίτλος Πακέτου Certified Computer Expert-ACTA

Τίτλος Πακέτου Certified Computer Expert-ACTA Κωδικός Πακέτου ACTA - CCE - 002 Τίτλος Πακέτου Certified Computer Expert-ACTA Εκπαιδευτικές Ενότητες Επεξεργασία Κειμένου - Word Δημιουργία Εγγράφου Προχωρημένες τεχνικές επεξεργασίας κειμένου & αρχείων

Διαβάστε περισσότερα

Εισαγωγικό Μάθημα Βασικές Έννοιες - Ανάλυση Απαιτήσεων

Εισαγωγικό Μάθημα Βασικές Έννοιες - Ανάλυση Απαιτήσεων ..?????? Εργαστήριο ΒΑΣΕΙΣ????????? ΔΕΔΟΜΕΝΩΝ Βάσεων Δεδομένων?? ΙΙ Εισαγωγικό Μάθημα Βασικές Έννοιες - . Γενικά Τρόπος Διεξαγωγής Ορισμός: Βάση Δεδομένων (ΒΔ) είναι μια συλλογή από σχετιζόμενα αντικείμενα

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Ενημέρωση σε Windows 8.1 από τα Windows 8

Ενημέρωση σε Windows 8.1 από τα Windows 8 Ενημέρωση σε Windows 8.1 από τα Windows 8 Τα Windows 8.1 και τα Windows RT 8.1 είναι βασισμένα στα Windows 8 και στα Windows RT, για να σας προσφέρουν βελτιώσεις στην εξατομίκευση, την αναζήτηση, τις εφαρμογές,

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα

Περιεχόμενα. Περιεχόμενα Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Τύποι δεδομένων και εμφάνιση στοιχείων...33

ΚΕΦΑΛΑΙΟ 2: Τύποι δεδομένων και εμφάνιση στοιχείων...33 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος του συγγραφέα... 13 Πρόλογος του καθηγητή Τιμολέοντα Σελλή... 15 ΚΕΦΑΛΑΙΟ 1: Εργαλεία γλωσσών προγραμματισμού...17 1.1 Γλώσσες προγραμματισμού τρίτης γεννεάς... 18 τι είναι η γλώσσα

Διαβάστε περισσότερα

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

Ενότητα 3: Διαχείριση πληροφοριακών πόρων με τη χρήση βάσεων δεδομένων

Ενότητα 3: Διαχείριση πληροφοριακών πόρων με τη χρήση βάσεων δεδομένων Ενότητα 3: Διαχείριση πληροφοριακών πόρων με τη χρήση βάσεων δεδομένων YouTube Ιδρύθηκε το 2005 Στόχος του ήταν να δημιουργήσει μία παγκόσμια κοινότητα Βάση δεδομένων βίντεο Μέσα σε ένα χρόνο από τη δημιουργία

Διαβάστε περισσότερα

Συγχώνευση αλληλογραφίας και συγχώνευση μιας πηγής δεδομένων με ένα κύριο έγγραφο όπως ένα γράμμα ή ένα έγγραφο ετικετών

Συγχώνευση αλληλογραφίας και συγχώνευση μιας πηγής δεδομένων με ένα κύριο έγγραφο όπως ένα γράμμα ή ένα έγγραφο ετικετών 3.5.1.1 Συγχώνευση αλληλογραφίας και συγχώνευση μιας πηγής δεδομένων με ένα κύριο έγγραφο όπως ένα γράμμα ή ένα έγγραφο ετικετών Ένα σύνηθες πρόβλημα που υπάρχει, είναι η ανάγκη αποστολής επιστολών ή πληροφοριών

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος εδοµένα οµές δεδοµένων και αλγόριθµοι Τα δεδοµένα είναι ακατέργαστα γεγονότα. Η συλλογή των ακατέργαστων δεδοµένων και ο συσχετισµός τους δίνει ως αποτέλεσµα την πληροφορία. Η µέτρηση, η κωδικοποίηση,

Διαβάστε περισσότερα

SilverPlatter WebSPIRS 4.1.

SilverPlatter WebSPIRS 4.1. WebSPIRS 4.1. Η υπηρεσία WebSPIRS από τη SilverPlatter αποτελεί ένα φιλικό εργαλείο πρόσβασης και αναζήτησης σε περιεχόμενα βάσεων δεδομένων. Η Βιβλιοθήκη και Κέντρο Πληροφόρησης του Πανεπιστημίου Θεσσαλίας

Διαβάστε περισσότερα

Δομή Ηλεκτρονικού υπολογιστή

Δομή Ηλεκτρονικού υπολογιστή Δομή Ηλεκτρονικού υπολογιστή Η κλασσική δομή του μοντέλου που πρότεινε το 1948 ο Von Neumann Κεντρική Μονάδα Επεξεργασίας Είσοδος Αποθήκη Αποθήκη - Έξοδος Εντολών Δεδομένων Κλασσικό μοντέλο Von Neumann

Διαβάστε περισσότερα

Οδηγός χρήσης ηλεκτρονικού καταλόγου (Sierra)

Οδηγός χρήσης ηλεκτρονικού καταλόγου (Sierra) Οδηγός χρήσης ηλεκτρονικού καταλόγου (Sierra) Οκτώβριος 2016 ΠΕΡΙΕΧΟΜΕΝΑ 1. Σύνδεση... 2 2. Αναζήτηση... 4 2.1. Απλή αναζήτηση... 4 2.2. Σύνθετη αναζήτηση... 6 2.3. Αποθήκευση αναζητήσεων (προτιμώμενες

Διαβάστε περισσότερα

Η πρώτη παράμετρος είναι ένα αλφαριθμητικό μορφοποίησης

Η πρώτη παράμετρος είναι ένα αλφαριθμητικό μορφοποίησης Η συνάρτηση printf() Η συνάρτηση printf() χρησιμοποιείται για την εμφάνιση δεδομένων στο αρχείο εξόδου stdout (standard output stream), το οποίο εξ ορισμού συνδέεται με την οθόνη Η συνάρτηση printf() δέχεται

Διαβάστε περισσότερα

Ενότητα 12 (κεφάλαιο 28) Αρχιτεκτονικές Εφαρμογών

Ενότητα 12 (κεφάλαιο 28) Αρχιτεκτονικές Εφαρμογών ΕΠΛ362: Τεχνολογία Λογισμικού ΙΙ (μετάφραση στα ελληνικά των διαφανειών του βιβλίου Software Engineering, 9/E, Ian Sommerville, 2011) Ενότητα 12 (κεφάλαιο 28) Αρχιτεκτονικές Εφαρμογών Οι διαφάνειες αυτές

Διαβάστε περισσότερα

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω:

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: 1ο ΓΕΛ Καστοριάς Βασικές Έννοιες Αλγορίθμων Δομή Ακολουθίας (κεφ. 2 και 7 σχολικού βιβλίου) 1. Οι μεταβλητές αντιστοιχίζονται από τον μεταγλωττιστή κάθε

Διαβάστε περισσότερα

Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη

Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη Ευρετήρια 1 Αρχεία Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη µνήµη. Η µεταφορά δεδοµένων από το δίσκο στη µνήµη και από τη

Διαβάστε περισσότερα

4.1 Άνοιγμα υπάρχοντος βιβλίου εργασίας

4.1 Άνοιγμα υπάρχοντος βιβλίου εργασίας 4.1 Άνοιγμα υπάρχοντος βιβλίου εργασίας 4.1.1 Άνοιγμα υπάρχοντος βιβλίου εργασίας από βάση δεδομένων Όταν εκκινήσουμε τον Discoverer εμφανίζεται στην οθόνη μας το παράθυρο διαλόγου του βοηθητικού προγράμματος

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Φροντιστήριο 3

Ανάκτηση Πληροφορίας. Φροντιστήριο 3 Ανάκτηση Πληροφορίας Φροντιστήριο 3 Τσιράκης Νίκος Νοέμβριος 2007 2 Περιεχόμενα Ανεστραμμένα Αρχεία Εισαγωγή Δημιουργία Συμπίεση Πιθανοτικά Μοντέλα 3 Ανεστραμμένα Αρχεία 4 Εισαγωγή Με ποιους τρόπους μπορούμε

Διαβάστε περισσότερα

Βασικά ζητήματα μιας βάσης δεδομένων

Βασικά ζητήματα μιας βάσης δεδομένων Τριαντάφυλλος Πριμηκύρης* Βασικά ζητήματα μιας βάσης δεδομένων Τι είναι μια βάση δεδομένων; Ας ξεκινήσουμε με κάτι πολύ απλό! Όλοι έχετε έναν τηλεφωνικό κατάλογο. Ο κατάλογος αυτός είναι μια χειροκίνητη

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

TEC610 Δυναμικές Εφαρμογές Διαδικτύου (ΣΤ εξάμηνο)

TEC610 Δυναμικές Εφαρμογές Διαδικτύου (ΣΤ εξάμηνο) TEC610 (ΣΤ εξάμηνο) Διδάσκων: Ανδρέας Γιαννακουλόπουλος Εαρινό εξάμηνο Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 3: Συστήματα πολυμέσων Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 3: Συστήματα πολυμέσων Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 3: Συστήματα πολυμέσων Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του

Διαβάστε περισσότερα

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL)

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Pascal- Εισαγωγή Η έννοια του προγράμματος Η επίλυση ενός προβλήματος με τον υπολογιστή περιλαμβάνει, όπως έχει ήδη αναφερθεί, τρία εξίσου

Διαβάστε περισσότερα

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας

Διαβάστε περισσότερα

ΗΥ460 Συστήµατα Διαχείρισης Βάσεων Δεδοµένων Χειµερινό Εξάµηνο 2016 Διδάσκοντες: Βασίλης Χριστοφίδης

ΗΥ460 Συστήµατα Διαχείρισης Βάσεων Δεδοµένων Χειµερινό Εξάµηνο 2016 Διδάσκοντες: Βασίλης Χριστοφίδης ΗΥ460 Συστήµατα Διαχείρισης Βάσεων Δεδοµένων Χειµερινό Εξάµηνο 2016 Διδάσκοντες: Βασίλης Χριστοφίδης 2 η Σειρά Ασκήσεων Ηµεροµηνία Παράδοσης: 14/11/2016 Άσκηση 1 (10 µονάδες) Εξωτερική Ταξινόµηση Θεωρείστε

Διαβάστε περισσότερα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1 Windows 8.1 1.1 Βασικές Έννοιες Πληροφορικής και Επικοινωνιών Εισαγωγή 19 Τι είναι ο Ηλεκτρονικός Υπολογιστής 20 Κατηγορίες Υπολογιστών 21 Κύρια μέρη ενός Προσωπικού Υπολογιστή

Διαβάστε περισσότερα

Κατάλογος Βιβλιοθήκης ΤΕΙ Ηπείρου Ιδρυματικό αποθετήριο ΤΕΙ Ηπείρου Ερευνητικό αποθετήριο ΤΕΙ Ηπείρου:

Κατάλογος Βιβλιοθήκης ΤΕΙ Ηπείρου Ιδρυματικό αποθετήριο ΤΕΙ Ηπείρου Ερευνητικό αποθετήριο ΤΕΙ Ηπείρου: Κατάλογος Βιβλιοθήκης ΤΕΙ Ηπείρου Ιδρυματικό αποθετήριο ΤΕΙ Ηπείρου Ερευνητικό αποθετήριο ΤΕΙ Ηπείρου: Περιγραφή και οδηγός χρήσης για φοιτητές και ερευνητές Βιβλιοθήκη ΤΕΙ Ηπείρου Οκτώβριος 2015 Ο κατάλογος

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Εισαγωγή στον προγραµµατισµό Η έννοια του προγράµµατος Ο προγραµµατισµός ασχολείται µε τη δηµιουργία του προγράµµατος, δηλαδή του συνόλου εντολών που πρέπει να δοθούν στον υπολογιστή ώστε να υλοποιηθεί

Διαβάστε περισσότερα

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (2/2) 1.1 Τα bits και ο τρόπος που αποθηκεύονται 1.2 Κύρια µνήµη 1.3 Αποθηκευτικά µέσα 1.4 Αναπαράσταση πληροφοριών ως σχηµάτων bits

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων

ΠΕΡΙΕΧΟΜΕΝΑ. Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων ΠΕΡΙΕΧΟΜΕΝΑ Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων Εισαγωγή Η χρήση των μεταβλητών με δείκτες στην άλγεβρα είναι ένας ιδιαίτερα

Διαβάστε περισσότερα

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ: Φιλολάου & Εκφαντίδου 26 : 210/76.01.470 210/76.00.179 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα