Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα"

Transcript

1 Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε «ποιο είδος βιβλίων προτιμάτε να διαβάζετε στον ελεύθερο χρόνο σας;» Λογοτεχνικά (Λ) Αστυνομικά (Α) Επιστημονικά / Ιστορικά (Ε) Κανένα ή άλλο (Κ) Η περιγραφή των δεδομένων γίνεται με βάση τις συχνότητες Πόσα άτομα από το δείγμα μας βρίσκονται σε κάθε κατηγορία (ομάδα) της μεταβλητής που εξετάζουμε ; Δεν μας ενδιαφέρει η απάντηση του κάθε ατόμου ξεχωριστά, αλλά πόσα άτομα βρίσκονται σε καθεμία από τις 4 κατηγορίες Έστω ότι βρήκαμε τις συχνότητες 8 Λ 11 Α 4 Ε 2 Κ 1 2

2 Κατασκευάζουμε τον πίνακα με τις συχνότητες και τις σχετικές συχνότητες Είδος Απόλυτες Σχετικές Ποσοστά βιβλίων συχνότητες συχνότητες (%) f i f i /n f i *100/n Λογοτεχνικά 8 0,32 32 Αστυνομικά 11 0,44 44 Επιστημονικά 4 0,16 16 Κανένα 2 0,08 8 Σύνολο 25 1, Κάποιοι βασικοί κανόνες κατάρτισης στατιστικών πινάκων Να είναι ξεκάθαρο τι περιέχει κάθε γραμμή στήλη Για δεδομένα μιας μεταβλητής, οι γραμμές συνήθως παριστάνουν τις τιμές (κατηγορίες) της μεταβλητής που εξετάζουμε Να αποφεύγονται, κατά το δυνατόν, κενά πεδία Να αποφεύγονται τα πολλά δεκαδικά ψηφία 3 4

3 Σε περίπτωση παρουσίασης πολλών πινάκων, να υπάρχει σαφής αρίθμηση Στο τέλος του πίνακα αναφέρουμε την πηγή των στατιστικών στοιχείων Υποσημειώσεις χρησιμοποιούνται όταν είναι απαραίτητη κάποια επεξήγηση για τα στοιχεία του πίνακα ή για τον τρόπο της έρευνας o Π.χ. μονάδες μέτρησης o Τρόπος δειγματοληψίας Παράδειγμα (από το βιβλίο) ΠΙΝΑΚΑΣ Απασχολούμενοι ανά φύλο και περιοχή συνήθους διαμονής (1989) Περιοχές Άνδρες Γυναίκες Άνδρες (%) Γυναίκες (%) Αστικές ,27 56,30 Ημιαστικές ,55 10,28 Αγροτικές ,18 33,42 Σύνολο ,00 100,00 Παράδειγμα ενός πίνακα που δίνει στοιχεία για δύο μεταβλητές (περιοχή φύλο) Οι περιοχές (αστικές/ημιαστικές/αγροτικές) παριστάνουν τις γραμμές του πίνακα, το φύλο τις στήλες του πίνακα. 5 6

4 Κάποιοι κανόνες για την παρουσίαση στατιστικών στοιχείων με διαγράμματα Πριν επιλέξουμε το είδος του διαγράμματος, καλό θα είναι να σκεφτούμε: Τι από τα παραπάνω δεν είναι το διάγραμμα αυτό, που αναφέρεται στα δεδομένα του παραδείγματος (είδος βιβλίων που διαβάζει το δείγμα των 25 ατόμων); 1. Τι ακριβώς θέλουμε να παρουσιάσουμε με το διάγραμμα; 2. Τι είδους είναι η μεταβλητή που εξετάζουμε; 3. Τι είδους είναι τα δεδομένα μας (π.χ. χρονολογικά, διαστρωμματικά, μεικτά); Ένα διάγραμμα θα πρέπει να είναι παραστατικό να διευκολύνει την κατανόηση και να παρουσιάζει τα βασικά χαρακτηριστικά της μεταβλητής σαφές να μη δημιουργεί σύγχυση ακριβές να μην παραπλανά τον αναγνώστη

5 Μία άλλη μορφή κυκλικού διαγράμματος Όταν τα δεδομένα που μελετάμε είναι ποιοτικά (ονομαστικά) δεδομένα, ή διακριτά δεδομένα, τότε τα δύο κυριότερα είδη διαγραμμάτων που χρησιμοποιούμε είναι κυκλικά διαγράμματα ραβδογράμματα Και τα δύο απεικονίζουν συχνότητες (ή σχετικές συχνότητες) που αντιστοιχούν στις τιμές (κατηγορίες) της μεταβλητής Τρισδιάστατα διαγράμματα είναι στα αλήθεια χρήσιμα ; ιδιαίτερα για μονοδιάστατα δεδομένα ; ικανοποιούν τα παραπάνω χαρακτηριστικά (σαφήνεια, ακρίβεια κλπ) ; o Στην πρώτη περίπτωση οι συχνότητες παριστάνονται με κυκλικούς τομείς o Στη δεύτερη με κατακόρυφες γραμμές (ή ορθογώνια) 9 10

6 Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο όταν υπάρχουν αποκλίσεις στις συχνότητες της μεταβλητής από τη μία κατηγορία στην άλλη o ένα κυκλικό διάγραμμα με 7 κατηγορίες που έχουν περίπου την ίδια συχνότητα δε μας είναι χρήσιμο ο αριθμός των κατηγοριών δε θα πρέπει να είναι πολύ μεγάλος Επίσης, σε ένα κυκλικό διάγραμμα καλό είναι να αναφέρονται και οι σχετικές συχνότητες μαζί με τα ονόματα των κατηγοριών Διαφορετικά το διάγραμμα παρέχει πληροφορίες μόνο για την ποιοτική (όχι την ποσοτική) σχέση μεταξύ των κατηγοριών Όταν τα δεδομένα μας είναι διατάξιμα, καλό είναι οι γειτονικές κατηγορίες να εμφανίζονται συνεχόμενα Όταν θέλουμε να δώσουμε έμφαση σε κάποια κατηγορία, μπορούμε να αποκόψουμε τον αντίστοιχο τομέα από το διάγραμμα (υπάρχει τέτοια επιλογή στο Excel) 11 12

7 Οδηγίες κατασκευής ραβδογραμμάτων 1. Σε ένα σύστημα ορθογωνίων συντεταγμένων, εργαζόμαστε στο πρώτο τεταρτημόριο. 2. Στον άξονα των Χ απεικονίζουμε τις κατηγορίες της μεταβλητής Τα διαστήματα που αντιστοιχούν σε κάθε κατηγορία έχουν ίσο μήκος και ισαπέχουν μεταξύ τους. 3. Στον άξονα των Y απεικονίζουμε τις συχνότητες. 4. Για κάθε κατηγορία, σχεδιάζουμε ένα παραλληλόγραμμο με ύψος ανάλογο με τη συχνότητα της αντίστοιχης κατηγορίας. Πλεονεκτήματα ενός ραβδογράμματος έναντι ενός κυκλικού διαγράμματος 1. Το ραβδόγραμμα κατασκευάζεται εύκολα με το χέρι 2. Με ένα ραβδόγραμμα μπορούμε να διακρίνουμε εύκολα και μικρές διαφορές μεταξύ συχνοτήτων o σε ένα κυκλικό διάγραμμα, ανάμεσα σε δύο κατηγορίες με σχ. συχνότητες 15,1% και 14,9% δεν είναι εύκολο να εντοπίσουμε τη μεγαλύτερη 3. Το ραβδόγραμμα μπορεί να χρησιμοποιηθεί όταν έχουμε πολλές κατηγορίες της μεταβλητής 13 14

8 4. Με το ραβδόγραμμα μπορούμε εύκολα να μελετήσουμε περισσότερα από ένα χαρακτηριστικά του πληθυσμού ταυτόχρονα 5. Με το ραβδόγραμμα είναι ευκολότερο να κάνουμε συγκρίσεις ανάμεσα σε δύο ή περισσότερα διαγράμματα. Ένα πλεονέκτημα που έχει το κυκλικό διάγραμμα είναι ότι μας δίνει μια καλύτερη εικόνα για τη σχέση που έχει μία συχνότητα με το άθροισμα όλων των συχνοτήτων στο δείγμα Π.χ. είναι εύκολο να διακρίνουμε αν σε μια κατηγορία αντιστοιχεί περισσότερο από το 50% των συχνοτήτων

9 Μέθοδοι για συνεχή δεδομένα Παραδείγματα συνεχών μεταβλητών: o Ύψος, βάρος, μήκος, θερμοκρασία, μηνιαίος μισθός, μηνιαία έξοδα (μιας οικογένειας) κλπ. Πώς θα απεικονίσουμε γραφικά τα δεδομένα, π.χ. το βάρος που αντιστοιχεί σε ένα δείγμα 30 ατόμων; Το πιθανότερο είναι πως στο δείγμα υπάρχουν 30 διαφορετικές τιμές Παράδειγμα (από το βιβλίο Κ. Τσίμπου Φ. Γεωργιακώδη, Πίνακας 4.1) Βάρος 30 ατόμων σε κιλά 79,6 72,3 86,1 75,0 67,3 74,1 76,7 79,9 89,9 76,2 78,6 73,0 85,8 78,0 80,8 81,4 65,1 81,8 76,5 66,8 79,6 77,1 80,1 72,3 78,3 67,9 76,5 73,0 83,9 70,0 Αναζητάμε τη μέγιστη και ελάχιστη τιμή διατάσσουμε τα δεδομένα Άρα δεν έχει νόημα να χρησιμοποιήσουμε συχνότητες για τα ακατέργαστα δεδομένα Αντί γι αυτό, χωρίζουμε τα δεδομένα σε ομάδες και απεικονίζουμε γραφικά τις συχνότητες αυτών των ομάδων 65,1 66,8 67,3 67,9 70,0 72,3 72,3 73,0 73,0 74,1 75,0 76,2 76,5 76,5 76,7 77,1 78,0 78,3 78,6 79,6 79,6 79,6 80,1 80,8 81,4 81,8 83,9 85,8 86,1 89,9 Μέγιστη τιμή 89,9 κιλά Ελάχιστη τιμή 65,1 κιλά Το εύρος των τιμών στο δείγμα = 24,8 κιλά = R 17 18

10 Στρογγυλοποιούμε (προς τα κάτω) την ελάχιστη τιμή 65,1 65 κιλά Στρογγυλοποιούμε (προς τα πάνω) τη μέγιστη τιμή 89,9 90 κιλά Οπότε το αντίστοιχο εύρος είναι = 25 κιλά Χωρίζουμε το εύρος αυτό σε κλάσεις ή διαστήματα Πόσα διαστήματα επιλέγουμε; o Σπάνια λιγότερα από 5 ή περισσότερα από 15 Πολύ λίγα διαστήματα ελάχιστη πληροφορία για την κατανομή των τιμών του δείγματος (άρα και του πληθυσμού) Π.χ. είναι αυτή η κατανομή συμμετρική; Πόσο συγκεντρωμένες είναι οι τιμές του δείγματος γύρω από τη μέση τους τιμή; Πάρα πολλά διαστήματα πιθανόν κάποια, ή και πολλά, από αυτά, να είναι κενά (χωρίς παρατηρήσεις) Το διάγραμμα που προκύπτει είναι συνήθως ασαφές και προκαλεί σύγχυση Πλάτος διαστήματος τάξεων δ = R k επιθυμητό πλήθος διαστημάτων Ένας τρόπος επιλογής του k είναι ο εμπειρικός τύπος του Sturges k = ο μικρότερος ακέραιος που είναι μεγαλύτερος ή ίσος από 1 + log(n) / log (2) = 1 + 3,322 log(n) o Ο λογάριθμος εδώ είναι με βάση το 10, και o n είναι το πλήθος των παρατηρήσεων 19 20

11 Ο τύπος δίνει n k Επιλέγοντας k = 5 στο παράδειγμα, έχουμε Κλάση Απόλυτες συχνότητες Σχετικές συχνότητες Κεντρική τιμή τάξης ,13 67, ,20 72, ,40 77, ,17 82, ,10 87,5 Για τα δεδομένα του παραδείγματος (n = 30), αν επιλέξουμε 6 κλάσεις, τότε το πλάτος κάθε κλάσης θα είναι R 25 δ = = = k 6 4,167, δηλαδή δεκαδικός αριθμός (καλύτερα να αποφεύγεται)

12 Παρατηρήσεις Επιλογή διαστάσεων στο σχεδιάγραμμα 1. Η 1 η κλάση περιλαμβάνει όλες τις τιμές στο διάστημα [65,70), η 2 η στο διάστημα [70,75) κοκ. Οπότε αντί του συμβολισμού 65-69, κλπ, θα μπορούσαμε να είχαμε χρησιμοποιήσει το συμβολισμό 65-70, κλπ, με τη σύμβαση ότι τα διαστήματα είναι ανοιχτά προς τα πάνω. Αν a,b είναι τα μήκη των αξόνων x,y αντίστοιχα που απεικονίζονται στο διάγραμμα, τότε επιλέγουμε τα a,b έτσι ώστε 1 2 b a Στην ουσία για ομαδοποιημένα δεδομένα θεωρούμε ότι όλες οι παρατηρήσεις που ανήκουν σε ένα διάστημα είναι συγκεντρωμένες στην κεντρική τιμή αυτού του διαστήματος. Αυτό δημιουργεί πρόβλημα όταν το πλάτος κάθε διαστήματος είναι μεγάλο. Συνήθως το ανώτερο σημείο του κατακόρυφου άξονα είναι μία τιμή λίγο μεγαλύτερη από τη μέγιστη συχνότητα των κλάσεων 23 24

13 Εδώ ο άξονας των x έχει μήκος μικρότερο από αυτό του άξονα των συχνοτήτων Ένα καλύτερο διάγραμμα είναι το παρακάτω 25 26

14 Πολύγωνο συχνοτήτων Το πολύγωνο συχνοτήτων για το παράδειγμα με Χρήσιμο για συγκρίσεις δύο ή περισσοτέρων τα βάρη 30 ατόμων κατανομών Προκύπτει από το ιστόγραμμα ενώνοντας τα μέσα των άνω πλευρών των ορθογωνίων Κλείνουμε την πολυγωνική γραμμή ξεκινώντας από το μέσο του διαστήματος αριστερά από το πρώτο ορθογώνιο και καταλήγοντας στο μέσο του διαστήματος δεξιά από το τελευταίο ορθογώνιο Για να μπορούν να γίνουν συγκρίσεις θα πρέπει τα ιστογράμματα να αναφέρονται σε σχετικές συχνότητες Συχνότητα Histogram ,5 72,5 77,5 82,5 87,5 Βάρος Frequency 27 28

15 Καμπύλη συχνοτήτων Είδη κατανομών Τι γίνεται όταν το πλήθος των παρατηρήσεων είναι πολύ μεγάλο; Γενικά έχουμε 4 είδη κατανομών ανάλογα με το σχήμα τους : Καθώς το μέγεθος του δείγματος αυξάνει, μεγαλώνει και ο αριθμός των διαστημάτων στη γραφική παράσταση (ιστόγραμμα, αντίστοιχα πολύγωνο συχνοτήτων) Για πολύ μεγάλο πλήθος διαστημάτων, το πολύγωνο συχνοτήτων προσεγγίζει μία ομαλή καμπύλη, την καμπύλη συχνοτήτων. Αυτή με τη σειρά της προσεγγίζει τη θεωρητική κατανομή του πληθυσμού από τον οποίο προήλθε το δείγμα. o Μονοκόρυφες κατανομές o Κατανομές σχήματος U o Κατανομές σχήματος J o Άλλες κατανομές Οι μονοκόρυφες κατανομές διακρίνονται σε : Συμμετρικές κατανομές Κατανομές με θετική ασυμμετρία Κατανομές με αρνητική ασυμμετρία (βλ. Σχήμα 4.5 στο βιβλίο) Παράδειγμα συμμετρικής κατανομής είναι η κανονική κατανομή 29 30

16 Μία γραφική παράσταση, αντίστοιχη με το ιστόγραμμα, που χρησιμοποιείται (κυρίως) για διακριτά δεδομένα, είναι το φυλλογράφημα (stem and leaf diagram) Παράδειγμα καμπύλης συχνοτήτων από συμμετρική κατανομή Παράδειγμα Έστω ότι έχουμε τα παρακάτω δεδομένα, τα οποία έχουν διαταχθεί κατ αύξουσα τιμή : 8, 13, 16, 25, 26, 29, 30, 32, 37, 38, 40, 41, 44, 47, 49, 51, 54, 55, 58, 61, 63, 67, 75, 78, 82, 86, 95 Εδώ τα διακριτά δεδομένα είναι διψήφιοι αριθμοί. Το ψηφίο των δεκάδων είναι ο μίσχος (ή κορμός) Το ψηφίο των μονάδων είναι το φύλλο Παράδειγμα καμπύλης συχνοτήτων από θετικά ασύμμετρη (αριστερά στο σχήμα) και αρνητικά ασύμμετρη (δεξιά στο σχήμα) κατανομή 31 32

17 Το σχήμα μοιάζει με ένα ιστόγραμμα που έχει περιστραφεί κατά 90 ο. Εδώ π.χ. υπάρχει ένδειξη ότι η κατανομή είναι συμμετρική. Πλεονεκτήματα Μπορεί πολύ εύκολα να κατασκευαστεί με το χέρι Σε αντίθεση με το ιστόγραμμα, το φυλλογράφημα χρησιμοποιεί τις ακριβείς τιμές όλων των παρατηρήσεων Μας δείχνει τη μορφή της κατανομής (π.χ. αν είναι μονοκόρυφη, αν έχει θετική ή αρνητική ασυμμετρία κλπ) Μπορούν εύκολα να εντοπιστούν ακραίες (έκτροπες) παρατηρήσεις Τι γίνεται όταν τα δεδομένα έχουν περισσότερα από δύο ψηφία; 33 34

18 Παράδειγμα (από το βιβλίο Κ. Τσίμπου - Φ. Γεωργιακώδη) Τα δεδομένα αφορούν την επίδοση 20 ατόμων σε ένα ψυχολογικό τεστ Επιλέγω το ψηφίο των εκατοντάδων σαν μίσχο, τα άλλα δύο ψηφία είναι τα φύλλα στο διάγραμμα Εύκολα διαπιστώνουμε ότι οι τιμές 855, 872, 873, 928 εμφανίζονται δύο φορές (επικρατούσα τιμή) υπάρχει ένδειξη για θετική ασυμμετρία στην κατανομή Το φυλλογράφημα μπορεί να χρησιμοποιηθεί και για συνεχή δεδομένα Αυτό μπορεί να γίνει είτε απευθείας (π.χ. όταν υπάρχει ένα ακέραιο και ένα δεκαδικό ψηφίο) είτε με αποκοπή των δεκαδικών ψηφίων

19 Παράδειγμα Χρησιμοποιούμε τα δεδομένα από προηγούμενο παράδειγμα (βάρος 30 ατόμων σε κιλά) διατεταγμένο δείγμα 65,1 66,8 67,3 67,9 70,0 72,3 72,3 73,0 73,0 74,1 75,0 76,2 76,5 76,5 76,7 77,1 78,0 78,3 78,6 79,6 79,6 79,6 80,1 80,8 81,4 81,8 83,9 85,8 86,1 89,9 Εδώ ο μίσχος αντιστοιχεί σε μία πεντάδα (όχι δεκάδα) 6* * * (πρβλ. το ιστόγραμμα προηγουμένως) Διώχνουμε τα δεκαδικά ψηφία, οπότε ο πίνακας γίνεται Εδώ Η επικρατούσα τιμή είναι 76 Η διάμεσος είναι 76,5 (ο μέσος όρος της 15 ης και 16 ης παρατήρησης) Υπάρχει ένδειξη για τη συμμετρία της κατανομής

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΛΗΘΥΣΜΟΙ ΔΕΙΓΜΑΤΑ ΠΑΡΟΥΣΙΑΣΗ ΔΕΔΟΜΕΝΩΝ Περιγραφική Στατιστική Με τις στατιστικές μεθόδους επιδιώκεται: - η συνοπτική αλλά πλήρης και κατατοπιστική παρουσίαση των ευρημάτων μιας

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ ΣΤΑΤΙΣΤΙΚΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ 2. Ο αριθμός των ανθρώπων που παρακολουθούν μια συγκεκριμένη τηλεοπτική εκπομπή είναι διακριτή

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ.

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ. Σ Τ Α Τ Ι Σ Τ Ι Κ Η Στατιστική έρευνα : Πρόκειται για ένα σύνολο αρχών και μεθοδολογιών με αντικείμενο : 1) το σχεδιασμό της διαδικασίας συλλογής δεδομένων. Κλάδος της στατιστικής που ασχολείται : Σχεδιασμός

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) Α. Ερωτήσεις πολλαπλών επιλογών.(11 βαθµοί) (1:3 βαθµοί, 2-9:8 βαθµοί) 1. ίνεται ο πίνακας: Χ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες: Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 2o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική)

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική) Στατιστική Ι 9 η Διάλεξη (Περιγραφική Στατιστική) 1 2 Πληθυσμός ή στατιστικός πληθυσμός Ονομάζεται η κατανομή των τιμών μιας τ.μ., δηλαδή η κατανομή των τιμών που παίρνει ένα χαρακτηριστικό μιας ομάδας

Διαβάστε περισσότερα

4.4 ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

4.4 ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΜΕΡΟΣ Α. ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ 177. ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΟΡΙΣΜΟΙ Αν οι παρατηρήσεις είναι πολλές τότε κάνουμε ομαδοποίηση των παρατηρήσεων χωρίζοντας το διάστημα που ανήκουν οι παρατηρήσεις σε υποδιαστήματα.

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης Περιγραφική Στατιστική Ακαδ. Έτος 2012-2013 1 ο εξάμηνο Κ. Πολίτης 1 2 Η στατιστική ασχολείται με τη συλλογή, οργάνωση, παρουσίαση και ανάλυση πληροφοριών. Οι πληροφορίες αυτές, πολύ συχνά αριθμητικές,

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Στατιστικοί πίνακες. Δημιουργία κλάσεων

Στατιστικοί πίνακες. Δημιουργία κλάσεων Στατιστικοί πίνακες Δημιουργία κλάσεων Τι είναι οι κλάσεις; Κλάσεις είναι ημιανοικτά διαστήματα της μορφής [α i, b i ), τα οποία είναι ταυτόχρονα και διαδοχικά, έτσι ώστε να μην υπάρχει κάποια τιμή του

Διαβάστε περισσότερα

Περιγραφική Στατιστική

Περιγραφική Στατιστική Περιγραφική Στατιστική Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Περιγραφική Στατιστική τεχνικές 3 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 3 / 0 / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

Δρ. Ευστρατία Μούρτου

Δρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ : 2009-2010 ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΑΣΚΗΣΕΙΣ Δρ. Ευστρατία Μούρτου Δρ.

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 2 Περιγραφικές Τεχνικές

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 2 Περιγραφικές Τεχνικές ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Περιγραφική Στατιστική

Περιγραφική Στατιστική Περιγραφική Στατιστική Σε αυτή την ενότητα, όπως και στις επόμενες, όταν θα αναφερόμαστε σε δεδομένα από έναν πληθυσμό, θα θεωρούμε ότι έχουμε στη διάθεσή μας τιμές, x, x,, x, μιας τυχαίας μεταβλητής Χ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

Κεφάλαιο Δύο Γραφήματα και Πίνακες Περιγραφικές Τεχνικές

Κεφάλαιο Δύο Γραφήματα και Πίνακες Περιγραφικές Τεχνικές Κεφάλαιο Δύο Γραφήματα και Πίνακες Περιγραφικές Τεχνικές Copyright 2009 Cengage Learning 2.1 Εισαγωγή & Ανασκόπηση Η περιγραφική στατιστική ασχολείται με την αναδιάταξη, τη σύνοψη, και την παρουσίαση ενός

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής

Διαβάστε περισσότερα

Στατιστική. Βασικές έννοιες

Στατιστική. Βασικές έννοιες Στατιστική Βασικές έννοιες Τι είναι Στατιστική; ή μήπως είναι: Στατιστική είναι ο κλάδος των εφαρμοσμένων επιστημών, η οποία βασίζεται σ ένα σύνολο αρχών και μεθοδολογιών που έχουν σκοπό: Το σχεδιασμό

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

Στατιστική. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Στατιστική. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Στατιστική Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 1 7 / 5 / 2 0 1 6 Γενικής κεφάλαιο 2 154 ασκήσεις και τεχνικές σε 24 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για

Διαβάστε περισσότερα

2.5. Τα 16 τµήµατα ενός Λυκείου έχουν τους Οι αποστάσεις (σε Km) των Σε ένα κυκλικό διάγραµµα παριστάνονται

2.5. Τα 16 τµήµατα ενός Λυκείου έχουν τους Οι αποστάσεις (σε Km) των Σε ένα κυκλικό διάγραµµα παριστάνονται .1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών, στη Στατιστική στο τέλος του β τριµήνου. Πήραµε τις επόµενες βαθµολογίες: 15, 11, 10, 10, 14, 16, 19, 18, 13, 17. Να βρείτε: α) Ποιος είναι

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Κεφάλαιο 3 Περιγραφή Γεωγραφικών Δεδομένων Βασικοί Γεωστατιστικοί Δείκτες

Κεφάλαιο 3 Περιγραφή Γεωγραφικών Δεδομένων Βασικοί Γεωστατιστικοί Δείκτες Κεφάλαιο 3 Περιγραφή Γεωγραφικών Δεδομένων Βασικοί Γεωστατιστικοί Δείκτες Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται οι βασικότερες μέθοδοι περιγραφής των δεδομένων με πίνακες, διαγράμματα και χάρτες. Παρουσιάζονται:

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 1: Εισαγωγή στη Στατιστική Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος ΚΕΦΑΛΑΙΟ ο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των μαθηματικών ο οποίος ως έργο έχει την συγκέντρωση

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ Μέτρα Περιγραφικής Στατιστικής Πληθυσμιακοί παράμετροι: τα αριθμητικά μεγέθη που εκφράζουν τις στατιστικές ιδιότητες ενός πληθυσμού (που προσδιορίζουν / περιγράφουν τη φυσιογνωμία και τη δομή του) Στατιστικά

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Λογιστικής & Χρηματοοικονομικής Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Εισαγωγή Στο Κεφάλαιο 8 υπολογίζονται και συγκρίνονται τα ποσοστά επιλογής του µαθήµατος στους ετήσιους πληθυσµούς, ανά φύλο και κατεύθυνση. Υπολογίζεται

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι. της απαντήσεις τους κατασκευάστηκε το παρακάτω ραβδόγραμμα. κανάλι α i. συχνότητα ν i.

Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι. της απαντήσεις τους κατασκευάστηκε το παρακάτω ραβδόγραμμα. κανάλι α i. συχνότητα ν i. Γ. ΛΥΚ. ΘΡΑΚΟΜΑΚΕΔΟΝΩΝ (2014-15) Λ. Γρίλλιας Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι 1) Σε ένα σχολείο ρωτήθηκαν 70 μαθητές για την προτίμησή τους σε ποδοσφαιρικές ομάδες. Από της απαντήσεις

Διαβάστε περισσότερα

Συλλογή και παρουσίαση στατιστικών δεδομένων

Συλλογή και παρουσίαση στατιστικών δεδομένων Συλλογή και παρουσίαση στατιστικών δεδομένων Απογραφή Δειγματοληψία Συνεχής καταγραφή Πίνακες Διαγράμματα Στατιστικές εκθέσεις Τρόποι συλλογής δεδομένων Οι μέθοδοι συλλογής δεδομένων ποικίλουν και κυρίως

Διαβάστε περισσότερα

SPSS. Βασικά στοιχεία

SPSS. Βασικά στοιχεία SPSS Βασικά στοιχεία Εισαγωγικά Στοιχεία SPSS (Statistical Package for Social Sciences) Χρησιμοποιείται σε έρευνες των Κοινωνικών Επιστημών ημιουργήθηκε στο Πανεπιστήμιο του Stanford Το 1975 ιδρύεται η

Διαβάστε περισσότερα

Η γραφική απεικόνιση µιας κατανοµής συχνότητας µπορεί να γίνει µε δύο τρόπους, µε ιστόγραµµα και µε πολυγωνική γραµµή.

Η γραφική απεικόνιση µιας κατανοµής συχνότητας µπορεί να γίνει µε δύο τρόπους, µε ιστόγραµµα και µε πολυγωνική γραµµή. ΠΕΜΠΤΟ ΠΑΚΕΤΟ ΣΗΜΕΙΩΣΕΩΝ ΣΤΑΤΙΣΤΙΚΑ ΙΑΓΡΑΜΜΑΤΑ Χρησιµότητα των διαγραµµάτων Η παρουσίαση των στατιστικών στοιχείων µπορεί να γίνει όχι µόνο µε πίνακες, αλλά και µε διαγράµµατα ή γραφικές απεικονίσεις.

Διαβάστε περισσότερα

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $) Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή

Διαβάστε περισσότερα

15, 11, 10, 10, 14, 16, 19, 18, 13, 17

15, 11, 10, 10, 14, 16, 19, 18, 13, 17 ΜΕΡΟΣ 1 0 Α Σ Κ Η Σ Ε Ι Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ 1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών στο µάθηµα της Στατιστικής στο τέλος του β τετραµήνου. Πήραµε τις ακόλουθες βαθµολογίες: 15,

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική Επιμέλεια: ΑΝΔΡΕΑΣ ΓΚΟΥΡΤΖΟΥΝΗΣ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1) Να

Διαβάστε περισσότερα

2) Περιγραφή ιακριτών Ποσοτικών εδοµένων

2) Περιγραφή ιακριτών Ποσοτικών εδοµένων ) Περιγραφή ιακριτών Ποσοτικών εδοµένων Για να περιγράψουµε διακριτά ποσοτικά δεδοµένα µε λίγες τιµές ( σε περίπτωση πολλών τιµών τα θεωρούµε ως συνεχή) κάνουµε: Πίνακας συχνοτήτων Ραβδόγραµµα, Κυκλικό

Διαβάστε περισσότερα

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ .5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων

Διαβάστε περισσότερα

επ. Κωνσταντίνος Π. Χρήστου

επ. Κωνσταντίνος Π. Χρήστου 1 2 3 1 2 2 0 3 3 4 6 5 10 6 11 7 7 8 6 9 3 10 2 4 Εάν έχουµε οµαδοποιηµένη µεταβλητή τότε είναι το σηµείο τοµής των ευθυγράµµων τµηµάτων τα οποία ορίζονται από α) ΑΒ, όπου Α το άνω δεξί άκρο της κλάσης

Διαβάστε περισσότερα

Μαθηματικός Περιηγητής σχ. έτος

Μαθηματικός Περιηγητής σχ. έτος =================================================================== ΛΥΣΕΙΣ ΤΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 06 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

Περιγραφική Στατιστική. Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσεων"

Περιγραφική Στατιστική. Π.Μ.Σ. Μαθηματικά των Υπολογιστών και των Αποφάσεων Περιγραφική Στατιστική Παράδειγμα Γίνεται μια μελέτη για τους τραυματισμούς στο μάτι (σοβαροί ή όχι τόσο σοβαροί) κατά τη διάρκεια αγώνων τέννις, squash, badminton και ρακέτας. Σοβαρός Τραυματισμός Επιπόλαιος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Copyright 2009 Cengage Learning 4.1 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Δείκτες Κεντρικής Θέσης [Αριθμητικός] Μέσος, Διάμεσος, Επικρατούσα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ

ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ Εισαγωγή Όπως αναφέρθηκε στο Κεφάλαιο 1 υπάρχουν 154 υποψήφιοι που έχουν συµµετάσχει στις εξετάσεις των ετών 01 και 02. Για αυτούς γίνεται στο Κεφάλαιο 6 ξεχωριστή συγκριτική

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 04 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 015-016 1 . Διερευνητική Ανάλυση Μέτρα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ...

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ... ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...2

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

Αριθμητικά περιγραφικά μέτρα II. Μέτρα κεντρικής θέσης

Αριθμητικά περιγραφικά μέτρα II. Μέτρα κεντρικής θέσης Αριθμητικά περιγραφικά μέτρα II Μέτρα κεντρικής θέσης Τεταρτημόρια Τα τεταρτημόρια μιας κατανομής είναι τρία και χωρίζουν την κατανομή με τέτοιο τρόπο ώστε: Μεταξύ ελάχιστης παρατήρησης και 1 ου τεταρτημορίου

Διαβάστε περισσότερα

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o ΙΩΑΝΝΗΣ Κ. ΔΗΜΗΤΡΙΟΥ Εφαρμογές Ποσοτικές Ανάλυσης με το Excel 141 ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Ανάλυση Δεδομένων Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ). Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι

Διαβάστε περισσότερα

Το άθροισµα των σχετικών συχνοτήτων ισούται µε 100. ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ

Το άθροισµα των σχετικών συχνοτήτων ισούται µε 100. ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΜΕΡΟΣ Α 4.3 ΚΑΤΑΝΟΜΗ ΣΥΧΝΟΤΗΤΩΝ ΚΑΙ ΣΧΕΤΙΚΩΝ ΣΥΧΝΟΤΗΤΩΝ 161 4.3 ΚΑΤΑΝΟΜΗ ΣΥΧΝΟΤΗΤΩΝ ΚΑΙ ΣΧΕΤΙΚΩΝ ΣΥΧΝΟΤΗΤΩΝ Συχνότητες Σχετικές συχνότητες Για να βρούμε τη σχετική συχνότητα µιας τιµής, διαιρούµε τη συχνότητα

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 Ηλίας Αθανασιάδης Αναπληρωτής καθηγητής Π.Τ..Ε. Παν. Αιγαίου 1.8. Αθροιστική κα τα νο μή Σε ορισμένες κατανομές παρουσιάζει ενδιαφέρον να παρακολουθούμε πώς

Διαβάστε περισσότερα

Οµάδα (I): Οµάδα (II): Οµάδα (III):

Οµάδα (I): Οµάδα (II): Οµάδα (III): I Α) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό (Σ) ή Λάθος (Λ), δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση ίνονται τρείς οµάδες τιµών Οµάδα (I): 0

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ ΠΑΡΑΓΡΑΦΟΥ 2.6, Σελ , ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, Δ. ΙΩΑΝΝΙΔΗ, Εκδόσεις Ζήτη (Μέτρα θέσης ή Κεντρικής τάσης)

ΠΕΡΙΛΗΨΗ ΠΑΡΑΓΡΑΦΟΥ 2.6, Σελ , ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, Δ. ΙΩΑΝΝΙΔΗ, Εκδόσεις Ζήτη (Μέτρα θέσης ή Κεντρικής τάσης) ΠΕΡΙΛΗΨΗ ΠΑΡΑΓΡΑΦΟΥ 6, Σελ 30-39, ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, Δ ΙΩΑΝΝΙΔΗ, Εκδόσεις Ζήτη (Μέτρα θέσης ή Κεντρικής τάσης) ΑΡΙΘΜΗΤΙΚΟΙ ΤΡΟΠΟΙ ΠΑΡΟΥΣΙΑΣΗΣ ΤΩΝ ΔΕΔΟΜΕΝΩΝ Είναι πολύ χρήσιμο όταν γίνεται μια έρευνα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 1: ΑΣΚΗΣΕΙΣ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το παρόν

Διαβάστε περισσότερα