ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» ΕΠΑ.Λ.
|
|
- Παρθενορή Μαυρογένης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» ΕΠΑ.Λ.
2 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ 1ο ίνεται ο πίνακας συχνοτήτων x i Συχνότητα (v i ) v i x i Αθροίσµατα Σχετική Συχνότητα (f i ) Σχετική Συχνότητα % (f i %) α. Να γράψετε στο τετράδιό σας τον παραπάνω πίνακα και να τον συµπληρώσετε. Μονάδες 19 β. Να βρείτε τη µέση τιµή. Μονάδες 6 ΘΕΜΑ 2ο ίνεται ο πίνακας Α= α. Να υπολογίσετε τον πίνακα Α 2 Mονάδες 8 β. Να βρείτε τον πίνακα Β=xΑ+yΙ, όπου x,y πραγµατικοί 1 0 αριθµοί και Ι= 0 1 Mονάδες 7 ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ
3 ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ γ. Να βρεθούν οι πραγµατικοί αριθµοί x,y ώστε Α 2 =Β. Μονάδες 10 ΘΕΜΑ 3ο ίνεται η συνάρτηση f: R R, µε f(x) = 2x 3 3x 2 +12x+ 2 α. Να υπολογίσετε την παράγωγο της συνάρτησης f. β. Να µελετήσετε τη συνάρτηση f ως προς τη µονοτονία. Μονάδες 10 γ. Να βρείτε τα σηµεία στα οποία η συνάρτηση f παρουσιάζει τοπικά ακρότατα. δ. Να υπολογίσετε τα τοπικά ακρότατα της συνάρτησης f. ΘΕΜΑ 4ο ίνεται η συνάρτηση f µε τύπο: f(x)= x 2 λ x 2 2 5x + 6, x 3 + 3λx + 1, x > 3 x 3 όπου λ πραγµατικός αριθµός. Να βρείτε: ΤΕΛΟΣ 2ΗΣ ΣΕΛΙ ΑΣ
4 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ α. f(x) lim + x 3 Μονάδες 8 β. f(x) lim x 3 γ. Να βρείτε τις τιµές του πραγµατικού αριθµού λ για τις οποίες η συνάρτηση f είναι συνεχής στο x o =3. Μονάδες 12 Ο ΗΓΙΕΣ (για τους εξεταζόµενους) 1. Στο τετράδιο να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, εξεταζόµενο µάθηµα). Τα θέµατα να µην τα αντιγράψετε στο τετράδιο. 2. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων αµέσως µόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καµιά άλλη σηµείωση. Κατά την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα. 4. Κάθε απάντηση επιστηµονικά τεκµηριωµένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης : Μία (1) ώρα µετά τη διανοµή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ
5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 12 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ 1ο Οι βαθµοί των 11 µαθητών µιας τάξης ενός Τ.Ε.Ε. σε ένα µάθηµα είναι: Για τα δεδοµένα αυτά: 12, 12, 9, 15, 12, 16, 17, 7, 19, 18, 17. α. Να κατασκευάσετε τον πίνακα συχνοτήτων. β. Να βρείτε τη µέση τιµή. γ. Να βρείτε την επικρατούσα τιµή. δ. Να βρείτε τη διάµεσο. ε. Να βρείτε τη διακύµανση. ΘΕΜΑ 2ο ίνεται η συνάρτηση f: IR IR, µ ε f(x) = x x + ln α. Να υπολογίσετε την παράγωγο της συνάρτησης f. β. Να βρείτε τις τιµές f (0) και f (1). Μονάδες 8 γ. Να µελετήσετε τη συνάρτηση f ως προς τη µονοτονία. Μονάδες 12 ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ
6 ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 3ο ίνεται η συνάρτηση f µε τύπο: 2 λx 1, x 1 f(x) = x + 2, x < 1 όπου λ πραγµατικός αριθµός. α. Να βρείτε το όριο lim f(x) x 1+ β. Να βρείτε το όριο lim f(x) x 1 Μονάδες 10 Μονάδες 10 γ. Να υπολογίσετε το λ ώστε η συνάρτηση να είναι συνεχής στο x 0 = 1. ΘΕΜΑ 4ο ίνεται η συνάρτηση f: IR IR µε f(x)=λx 3 -x όπου λ πραγµατικός αριθµός, για την οποία ισχύει ότι lim f(x) = 1. x 1 α. Να βρείτε την τιµή του λ. Μονάδες 10 β. Για την τιµή του λ που βρήκατε, να υπολογίσετε την παράγωγο της συνάρτησης f. Μονάδες 8 γ. Να υπολογίσετε το ολοκλήρωµα 1 f(x) dx. 0 Μονάδες 7 ΤΕΛΟΣ 2ΗΣ ΣΕΛΙ ΑΣ
7 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Ο ΗΓΙΕΣ (για τους εξεταζόµενους) 1. Στο τετράδιο να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, εξεταζόµενο µάθηµα). Τα θέµατα να µην τα αντιγράψετε στο τετράδιο. 2. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων αµέσως µόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καµιά άλλη σηµείωση. Κατά την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα. 4. Κάθε απάντηση επιστηµονικά τεκµηριωµένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: Μία (1) ώρα µετά τη διανοµή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ
8 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 11 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ 1ο Μια µεταβλητή παίρνει τις τιµές : 5, 3, 3ω, 3, 2ω, 3, 3ω, ω µε ω>0 α) Αν η µέση τιµή τους είναι x= 4, να αποδείξετε ότι ω=2. Μονάδες 7 β) Για ω=2 να βρείτε : i) Το εύρος των τιµών. ii) Την επικρατούσα τιµή. iii) Την τυπική απόκλιση. Μονάδες 8 ΘΕΜΑ 2ο ίνεται η συνάρτηση f(x) = αν x 1 x 2+ 6x 7 x 1 λ 2,, αν x= 1 ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ
9 ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ όπου λ IR. α) Να βρείτε το f(0) και το f(2). 6 Μονάδες β) Να βρείτε το lim x 1 x 2 + 6x 7 x 1. Μονάδες 10 γ) Να βρείτε το λ, ώστε η συνάρτηση f να είναι συνεχής στο x 0 =1. Μονάδες 9 ΘΕΜΑ 3ο ίνεται η συνάρτηση f(x)= lnx+x-1 µε x>0 α) Να βρείτε το f(1). Μονάδες 4 β) Να βρείτε την f (x) και την f (x). Μονάδες 14 γ) Να δείξετε ότι η συνάρτηση f είναι γνησίως αύξουσα για κάθε x>0. Μονάδες 7 ΘΕΜΑ 4ο Το ύψος (σε m) που βρίσκεται ένα τηλεκατευθυνόµενο µοντέλο αεροπλάνου, µετά ΤΕΛΟΣ 2ΗΣ ΣΕΛΙ ΑΣ
10 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ από χρόνο πτήσης t (sec) δίνεται από τη συνάρτηση: f(t) =-3t t, όπου 0 t 10 α) Σε ποιο ύψος βρίσκεται το αεροπλάνο τη χρονική στιγµή t=0; 5 ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ Μονάδες β) Να βρείτε το ρυθµό µεταβολής του ύψους του αεροπλάνου µετά από χρόνο t. Μονάδες 7 γ) Να βρείτε το χρονικό διάστηµα κατά το οποίο το αεροπλάνο ανεβαίνει, καθώς και το χρονικό διάστηµα κατά το οποίο κατεβαίνει. Μονάδες 7 δ) Να βρείτε τη χρονική στιγµή t κατά την οποία το αεροπλάνο βρίσκεται στο µέγιστο ύψος, καθώς και το ύψος αυτό. Μονάδες 6 Ο ΗΓΙΕΣ (για τους εξεταζόµενους) 1. Στο τετράδιο να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, εξεταζόµενο µάθηµα). Τα θέµατα να µην τα αντιγράψετε στο τετράδιο. 2. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων αµέσως µόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καµιά άλλη σηµείωση. Κατά την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα.
11 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ 4. Κάθε απάντηση επιστηµονικά τεκµηριωµένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης : Μία (1) ώρα µετά τη διανοµή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ
12 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 09 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ 1 ο Εξετάσαµε δείγµα 25 οικογενειών µιας πόλης, ως προς τον αριθµό των παιδιών τους. Τα αποτελέσµατα φαίνονται στον παρακάτω πίνακα: Αριθµός παιδιών x i Συχνότητα v i Αθροίσµατα Αθροιστική Συχνότητα Σχ. Συχνότητα (%) f i % α) Να µεταφέρετε τον παραπάνω πίνακα στο τετράδιό σας και να τον συµπληρώσετε. β) Να βρείτε την επικρατούσα τιµή. γ) Να βρείτε τη διάµεσο. δ) Τι ποσοστό οικογενειών έχει τρία παιδιά; ε) Πόσες οικογένειες έχουν µέχρι και δύο παιδιά; ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ
13 ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 2 ο ίνεται η συνάρτηση f(x)= 2x 18 x 3 λx + 3,, x > 9 x 9 όπου λ IR. α) Να βρείτε το β) Να βρείτε το limf(x) Μονάδες 12 x 9+ limf(x) x 9 γ) Να βρείτε το λ, ώστε η συνάρτηση f να είναι συνεχής στο x 0 =9. Μονάδες 8 ΘΕΜΑ 3 ο ίνεται η συνάρτηση f:ir IR µε f(x)=2x 3-9x 2 +αx+β µε α,β IR α) Να υπολογίσετε την παράγωγο της συνάρτησης f. β)αν f (1)=0 και f(2)=5, να βρείτε τα α και β. Μονάδες 10 γ)για τις τιµές των α και β που βρήκατε στο ερώτηµα (β), να µελετήσετε τη συνάρτηση f ως προς τη µονοτονία. Μονάδες 10 ΘΕΜΑ 4 ο Το άθροισµα του µήκους και του πλάτους ενός οικοπέδου, σχήµατος ορθογωνίου παραλληλογράµµου, είναι 200 µέτρα. Αν το µήκος του είναι x µέτρα: ΤΕΛΟΣ 2ΗΣ ΣΕΛΙ ΑΣ
14 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ α) Να αποδείξετε ότι το εµβαδόν του οικοπέδου ως συνάρτηση του x δίνεται από τον τύπο Ε(x)= -x x. β) Για ποια τιµή του x το εµβαδόν του οικοπέδου γίνεται µέγιστο; Μονάδες 10 γ) Να υπολογίσετε τη µέγιστη τιµή του εµβαδού του οικοπέδου. Μονάδες 10 Ο ΗΓΙΕΣ (για τους εξεταζόµενους) 1. Στο τετράδιο να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, εξεταζόµενο µάθηµα). Τα θέµατα να µην τα αντιγράψετε στο τετράδιο. 2. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων αµέσως µόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καµιά άλλη σηµείωση. Κατά την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα. 4. Κάθε απάντηση επιστηµονικά τεκµηριωµένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης : Μία (1) ώρα µετά τη διανοµή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ
15 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΡΙΤΗ 14 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Ερωτήθηκαν 50 μαθητές ενός σχολείου για τον αριθμό των βιβλίων που διάβασαν στις διακοπές. Τα αποτελέσματα της έρευνας φαίνονται στον παρακάτω πίνακα. Τιμές x i Συχνότητα v i Αθροιστική Συχνότητα Αθροίσματα x i v i α) Να μεταφέρετε τον παραπάνω πίνακα στο τετράδιό σας και να τον συμπληρώσετε. Μονάδες 8 β) Να βρείτε τη μέση τιμή των παρατηρήσεων. Μονάδες 8 γ) Να βρείτε τη διάμεσο των παρατηρήσεων. δ) Να βρείτε το εύρος των τιμών. Μονάδες 4 ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ
16 ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 2ο ίνεται η συνάρτηση f με τύπο: x 2 1, x < 1 x 1 f(x)=, κx + μ 1 x 1 2 x + 2x ln x, x > 1 όπου κ,μ πραγματικοί αριθμοί α) Να βρείτε το β) Να βρείτε το lim f(x) Μονάδες 4 x 1 lim f(x) Μονάδες 4 x 1 + γ) Να βρείτε το lim f(x) Μονάδες 4 x 1 δ) Να βρείτε το lim f(x) Μονάδες 4 x 1 + ε) Να βρείτε τα κ και μ, ώστε να υπάρχουν ταυτόχρονα τα lim f(x) και lim f(x) Μονάδες 9 x 1 x 1 ΘΕΜΑ 3ο ίνεται η συνάρτηση f : IR IR, της οποίας η πρώτη παράγωγος έχει τύπο: f (x) = x 2 2x. α) Να δείξετε ότι f (0) = 0 και f (2) =0. Μονάδες 4 ΤΕΛΟΣ 2ΗΣ ΣΕΛΙ ΑΣ
17 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ β) Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία. Μονάδες 6 γ) Να βρείτε την f (x). Μονάδες 6 δ) Για ποιες τιμές του x η f παρουσιάζει ακρότατα και ποιο είναι το είδος των ακρότατων; Μονάδες 4 ε) Αν f(0) = 2005, να βρείτε τον τύπο της συνάρτησης f. ΘΕΜΑ 4ο Μια ομάδα βιολόγων προτείνει να ληφθούν μέτρα για τη διάσωση ενός είδους δελφινιών. Μετά την εφαρμογή των μέτρων εκτιμάται ότι ο αριθμός των δελφινιών εκφράζεται από τη συνάρτηση N(t) = 2t 3 t 2 + 5t , 0 t 10, όπου t ο χρόνος σε έτη. α) Πόσα δελφίνια υπάρχουν κατά την έναρξη εφαρμογής των μέτρων (t = 0); β) Να βρείτε το ρυθμό αύξησης του πληθυσμού των δελφινιών. Μονάδες 8 γ) Να βρείτε το ρυθμό αύξησης του πληθυσμού των δελφινιών το δεύτερο έτος. δ) Πόσα δελφίνια θα υπάρχουν σε δέκα (10) έτη; Μονάδες 7 ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ
18 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ 1. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Τα θέματα να μην τα αντιγράψετε στο τετράδιο. 2. Να γράψετε το ονοματεπώνυμό σας στο επάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καμιά άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: Μία (1) ώρα μετά τη διανομή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ
19 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ TETAΡΤΗ 14 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο ίνονται 5 παρατηρήσεις μιας ποσοτικής μεταβλητής X: 16, 14, 22, 18, 20 + α, όπου α IR. Αν ο συντελεστής μεταβλητότητας (CV) των παρατηρήσεων αυτών είναι 20% και η τυπική απόκλισή τους (s) είναι 4, τότε: α) Να δείξετε ότι η μέση τιμή των παρατηρήσεων είναι x= 20. Μονάδες 7 β) Να υπολογίσετε την τιμή του πραγματικού αριθμού α. Μονάδες 10 γ) Για την τιμή του α που υπολογίσατε στο ερώτημα β, να βρείτε τη διάμεσο του δείγματος. δ) Είναι το δείγμα ομοιογενές ή όχι και γιατί. Μονάδες 3 ΘΕΜΑ 2ο ίνεται η συνάρτηση f με τύπο: f(x) = 4x 3 12x+2006, x IR. α) Να βρεθεί η παράγουσα της f. Μονάδες 8 β) Να βρεθεί ο ρυθμός μεταβολής της f για κάθε x IR. Μονάδες 8 γ) Να εξεταστεί η συνάρτηση f ως προς τη μονοτονία. Μονάδες 9 ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ
20 ΘΕΜΑ 3ο ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Έστω α, β πραγματικοί αριθμοί και συνάρτηση f με τύπο: f(x)= x 2 4 α, x 2 4, αx + β, αν x > 2 αν x = 2 αν x < 2. α) Να βρείτε το lim f(x). x 2 + lim f(x) β) Να βρείτε το. x 2 Μονάδες 8 γ) Να υπολογίσετε τα α, β ώστε η f να είναι συνεχής στο x 0 = 2. Μονάδες 8 δ) Για τις τιμές των α και β που βρήκατε στο ερώτημα γ, να υπολογίσετε τις τιμές f(0) και f(3). Μονάδες 4 ΤΕΛΟΣ 2ΗΣ ΣΕΛΙ ΑΣ
21 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 4ο Μια βιοτεχνία, μεταξύ άλλων, κατασκευάζει κεραμικά πλακίδια σε σχήμα τριγώνου. Σε κάθε πλακίδιο το άθροισμα της βάσης x και του ύψους που αντιστοιχεί στη βάση αυτή είναι σταθερό και ισούται με 50cm. α) Να δείξετε ότι το εμβαδό Ε της επιφάνειας κάθε τριγωνικού πλακιδίου δίνεται συναρτήσει του x από τον τύπο 1 E (x) = x(50 x), 0 < x < Μονάδες 8 β) Για ποια τιμή του x το εμβαδό Ε(x) γίνεται μέγιστο. γ) Να υπολογίσετε τη μέγιστη τιμή του Ε(x). Μονάδες 12 Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ 1. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Τα θέματα να μην τα αντιγράψετε στο τετράδιο. 2. Να γράψετε το ονοματεπώνυμό σας στο επάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καμμία άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ
22 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ 5. ιάρκεια εξέτασης: Τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: Μία (1) ώρα μετά τη διανομή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ
23 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΡΙΤΗ 12 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Οι χρόνοι καθυστερήσεων που παρατηρήθηκαν σε 25 δρομολόγια ενός οργανισμού σιδηροδρόμων δίνονται από το παρακάτω ιστόγραμμα συχνοτήτων: α. Να μεταφέρετε τον παρακάτω πίνακα στο τετράδιό σας και να τον συμπληρώσετε με τη βοήθεια του παραπάνω ιστογράμματος συχνοτήτων. ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ
24 ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ ιάστημα Συχνότητα ν i Μέσο διαστήματος Κ i ν i K i Σχετική συχνότητα f i % Σχετική αθροιστική συχνότητα % [ 2, 4) [ 4, 6) [ 6, 8) [ 8, 10) [10,12) Αθροίσματα Μονάδες 10 β. Να βρείτε το μέσο χρόνο καθυστερήσεων των δρομολογίων. γ. Πόσα δρομολόγια είχαν καθυστέρηση τουλάχιστον 6 λεπτά; δ. Ποιο είναι το ποσοστό των δρομολογίων που είχαν καθυστέρηση λιγότερο από 8 λεπτά; ΘΕΜΑ 2ο ίνεται η συνάρτηση f με: f(x) = 3 2 x 4x + 3x 2 x x 3 + β x e α,,, αν αν αν x x x < 0 = 0 > 0 όπου α,β Ι R. ΤΕΛΟΣ 2ΗΣ ΣΕΛΙ ΑΣ
25 α. Να βρείτε το lim f(x) x 0 β. Να βρείτε το lim f(x) ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ x 0+ Μονάδες 8 Μονάδες 4 γ. Να βρείτε την τιμή του α, ώστε να υπάρχει το f(x). lim x 0 Μονάδες 8 δ. Για την τιμή α=4 να υπολογίσετε τον πραγματικό αριθμό β, ώστε η f να είναι συνεχής στο x=0. ΘΕΜΑ 3ο ίνεται η συνάρτηση f : IR Ι R με f(x) = x 2 +kx+λ, k,λ Ι R. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 =1 και το σημείο Α (1,0) ανήκει στη γραφική της παράσταση, α. να δείξετε ότι k= 2 και λ=1. β. να υπολογίσετε τη δεύτερη παράγωγο f της f. γ. να δείξετε ότι για κάθε x IR ισχύει: f(x)+f (x) + f (x)>0. Μονάδες 12 Μονάδες 8 ΘΕΜΑ 4ο ίνεται η συνάρτηση f με τύπο f(x)=10 lnx 5x 2, x>0. α. Να βρείτε την παράγωγο f της f. ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ
26 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ β. Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία. Μονάδες 8 γ. Για ποια τιμή του x η f παρουσιάζει ακρότατο. Να προσδιορίσετε το είδος του ακροτάτου και να το υπολογίσετε. δ. Να δείξετε ότι f(x) 5, για κάθε x>0. Μονάδες 8 Μονάδες 4 Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ 1. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Τα θέματα να μην τα αντιγράψετε στο τετράδιο. 2. Να γράψετε το ονοματεπώνυμό σας στο επάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καμμία άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: Μία (1) ώρα μετά τη διανομή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ
27 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΠΕΜΠΤΗ 12 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ 1ο Οι βαθμοί ενός μαθητή σε πέντε μαθήματα ήταν: 8, 14, 20, 12, 16 α. Να υπολογισθεί η μέση βαθμολογία του μαθητή. β. Να προσδιορισθεί η διάμεσος. γ. Να υπολογισθεί η τυπική απόκλιση. δ. Να υπολογισθεί το εύρος. Μονάδες 4 Μονάδες 3 Μονάδες 6 Μονάδες 3 ε. Να υπολογισθεί ο συντελεστής μεταβλητότητας και στη συνέχεια να εξεταστεί αν το δείγμα είναι ομοιογενές. ΘΕΜΑ 2ο ίνεται η συνάρτηση f με: f (x) x 1 λ(x 1) = 1, 3x 1 όπου λ 0., αν αν 0 x < 1 x 1 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙ ΕΣ Μονάδες 9
28 ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ α. Να υπολογισθεί το lim f(x) x 1 Μονάδες 10 β. Να υπολογισθεί το lim f(x) x 1+ Μονάδες 6 γ. Να υπολογισθεί η τιμή του λ έτσι ώστε η f να είναι συνεχής στη θέση x 0 =1. ΘΕΜΑ 3ο Μονάδες 9 ίνεται η συνάρτηση f με f(x)=e λx, όπου λ πραγματικός αριθμός. α. Να βρεθούν οι f (x) και f (x). Μονάδες 6 β. Να προσδιορισθούν οι τιμές του λ, ώστε για κάθε πραγματικό αριθμό x να ισχύει: f (x) f (x) 2f(x) = 0 Μονάδες 9 γ. Να μελετηθεί η συνάρτηση f ως προς τη μονοτονία όταν i) λ = 2, ii) λ = 1. Μονάδες 10 ΘΕΜΑ 4ο ίνεται η συνάρτηση f με τύπο f (x) = x 2x + 3x , 3 όπου x. α. Να βρεθεί η πρώτη παράγωγος f της f. Μονάδες 6 ΤΕΛΟΣ 2ΗΣ ΑΠΟ 3 ΣΕΛΙ ΕΣ
29 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ β. Να εξεταστεί η συνάρτηση f ως προς τη μονοτονία και τα ακρότατα. ΤΕΛΟΣ 3ΗΣ ΑΠΟ 3 ΣΕΛΙ ΕΣ Μονάδες 12 γ. Να δειχθεί ότι f(x) 2008 για κάθε πραγματικό αριθμό x, όπου x [1,+ ). Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ Μονάδες 7 1. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Τα θέματα να μην τα αντιγράψετε στο τετράδιο. 2. Να γράψετε το ονοματεπώνυμό σας στο επάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καμιά άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: Μία (1) ώρα μετά τη διανομή των φωτοαντιγράφων και όχι πριν τις π.μ. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ
30 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 28 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1ο Α) ίνεται συνάρτηση f:α (Α ) και x0 A. Πότε λέμε ότι η f είναι συνεχής στο x 0 ; Μονάδες 7 Β) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή ή τη λέξη Λάθος, αν η πρόταση είναι λανθασμένη. α) Αν η τιμή του συντελεστή μεταβλητότητας (μεταβολής) ενός δείγματος παρατηρήσεων είναι μικρότερη του 10%, τότε ο πληθυσμός του δείγματος θεωρείται ομοιογενής. Μονάδες 3 β) (συνx) =ημx Μονάδες 3 γ) Έστω η παραγωγίσιμη συνάρτηση f:(α,β). Αν f (x)<0 για κάθε x (α,β), τότε η f είναι γνησίως αύξουσα στο διάστημα (α,β). Μονάδες 3 β α δ) cdx = c( β α ), όπου c σταθερά. Μονάδες 3 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
31 ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ) Αν οι συναρτήσεις f,g:α είναι παραγωγίσιμες στο πεδίο ορισμού τους A, τότε να μεταφέρετε στο τετράδιό σας τις παρακάτω ισότητες και να τις συμπληρώσετε: α) ( f g) (x)=... Μονάδες 2 β) ( c f ) (x)=..., όπου c σταθερά. Μονάδες 2 β 1 γ) dx x α =... με β>α>0 Μονάδες 2 ΘΕΜΑ 2ο Ρωτήθηκαν 25 μαθητές μιας τάξης ενός Λυκείου πόσα λογοτεχνικά βιβλία διάβασαν την περσινή χρονιά. Οι απαντήσεις τους φαίνονται στον παρακάτω πίνακα: Βιβλία x i Μαθητές ν i Σχετική Συχνότητα f i % Αθροιστική Συχνότητα Αθροιστική Σχετική Συχνότητα % x i ν i Αθροίσματα ΤΕΛΟΣ 2ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
32 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Α) Να μεταφέρετε στο τετράδιό σας τον πίνακα και να τον συμπληρώσετε. Μονάδες 10 Β) Να υπολογίσετε τη διάμεσο. Γ) Να υπολογίσετε τη μέση τιμή. ) Ποιο είναι το ποσοστό των μαθητών που διάβασε τουλάχιστον δύο (2) βιβλία; ΘΕΜΑ 3ο ίνεται η συνάρτηση f: με τύπο f(x)= x 2 +6x+8 Α) Να υπολογίσετε την f (x) Μονάδες 4 B) Να μελετήσετε την f ως προς την μονοτονία. Μονάδες 8 Γ) Για ποια τιμή του x η f παρουσιάζει τοπικό ακρότατο; Να βρείτε το είδος του ακροτάτου. Μονάδες 6 ) Να υπολογίσετε το 3 f (x)dx 0 Μονάδες 7 ΤΕΛΟΣ 3ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
33 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 4ο ίνεται η συνάρτηση f: με τύπο f(x) = x 3 +4x+2αe x, x όπου α = lim x x + 2 x + 1 Α) Να υπολογίσετε την τιμή του πραγματικού αριθμού α. Β) Για α=1 α) Nα υπολογίσετε την f (x) β) Nα αποδείξετε ότι η f είναι γνησίως αύξουσα στο γ) Να αποδείξετε ότι το εμβαδόν του χωρίου, που περικλείεται από τη γραφική παράσταση της f, τον άξονα x x και τις ευθείες x=2 και x=4, είναι ίσο με 84+2e 4 2e 2 τ.μ. Μονάδες 10 ΤΕΛΟΣ 4ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
34 ΑΡΧΗ 5ΗΣ ΣΕΛΙ ΑΣ Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ 1. Στο τετράδιο να γράψετε μόνον τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο. 2. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. Καμιά άλλη σημείωση δεν επιτρέπεται να γράψετε. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνον με μπλε ή μόνον με μαύρο στυλό διαρκείας ανεξίτηλης μελάνης. 5. Κάθε απάντηση τεκμηριωμένη είναι αποδεκτή. 6. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 7. Χρόνος δυνατής αποχώρησης: π.μ. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 5ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
35 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 27 ΜΑΪΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α. Α1. Πότε μια συνάρτηση f λέγεται παραγωγίσιμη σε ένα σημείο x 0 του πεδίου ορισμού της; Α2. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή ή τη λέξη Λάθος, αν η πρόταση είναι λανθασμένη. α) Η μέση τιμή δεν επηρεάζεται από τις ακραίες τιμές της μεταβλητής. β) Αν υπάρχει το limf (x) και είναι, τότε x x lim f (x) =. x x 0 0 γ) Αν μια συνάρτηση f δεν είναι συνεχής σε ένα σημείο x 0 του πεδίου ορισμού της, τότε δεν είναι παραγωγίσιμη στο x 0. α δ) Ισχύει ότι: f (x)dx = α, για κάθε α α. Μονάδες 12 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
36 ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Α3. Να μεταφέρετε στο τετράδιό σας τις παρακάτω ισότητες και να τις συμπληρώσετε: f α) (x) = g..., με g(x) 0 β) ( x) =..., με x > 0 γ) ( e x ) =... δ) ( συν x) =... ΘΕΜΑ B. ΤΕΛΟΣ 2ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ Μονάδες 8 Οι ημέρες απουσίας 50 υπαλλήλων μιας εταιρείας από την εργασία τους, τον περασμένο μήνα, φαίνονται στον παρακάτω πίνακα: Ημέρες απουσίας x i Υπάλληλοι ν i Αθροίσματα Σχετική Συχνότητα f i % Αθροιστική Συχνότητα Αθροιστική Σχετική Συχνότητα % x i ν i B1. Να μεταφέρετε στο τετράδιό σας τον πίνακα και να τον συμπληρώσετε. Β2. Να υπολογίσετε τη μέση τιμή της μεταβλητής x. Μονάδες 10
37 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Β3. Να υπολογίσετε τη διάμεσο της μεταβλητής x. ΤΕΛΟΣ 3ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ Β4. Να βρείτε το πλήθος και το ποσοστό των υπαλλήλων που απουσίασαν από 2 έως και 4 ημέρες. ΘΕΜΑ Γ. ίνεται η συνάρτηση x 4x f (x) = x 1 x α 2 Γ1. Να υπολογίσετε το Γ2. Να υπολογίσετε το,, x < 1, x 1, x 1 όπου α.,. limf (x) x 1 limf (x) x 1 + Μονάδες 7 Μονάδες 7 Γ3. Να υπολογίσετε τον πραγματικό αριθμό α, ώστε η f να είναι συνεχής στο x 0 =1. Γ4. Για α = 3, να υπολογίσετε την τιμή της παράστασης A = 3f (0) + 2f (6). Μονάδες 6 ΘΕΜΑ ίνεται η συνάρτηση f (x) = x x + α x + β, με α, β. 3 2 Αν η f παρουσιάζει τοπικό ακρότατο στο σημείο x 0 =2 και η γραφική της παράσταση διέρχεται από το σημείο Α(0,1), τότε:
38 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ 1. Να βρείτε τις τιμές των πραγματικών αριθμών α και β. ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ Μονάδες 8 2. Για α=6 και β=1, να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία. Μονάδες 6 3. Για α=6 και β=1, να βρείτε τις θέσεις, το είδος και τις τιμές των τοπικών ακροτάτων της συνάρτησης f. Μονάδες 6 4. Για α=6 και β=1, να υπολογίσετε το ολοκλήρωμα 2 f (x)dx. 1 Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ 1. Στο τετράδιο να γράψετε μόνον τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο. 2. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καμιά άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνον με μπλε ή μόνον με μαύρο στυλό ανεξίτηλης μελάνης. 5. Κάθε απάντηση τεκμηριωμένη επιστημονικά είναι αποδεκτή. 6. Να μη χρησιμοποιήσετε το χαρτί μιλιμετρέ. 7. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 8. Χρόνος δυνατής αποχώρησης: π.μ. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ
39 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 24 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α1. Τι ονομάζεται εύρος μιας μεταβλητής; ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ Μονάδες 6 Α2. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή ή τη λέξη Λάθος, αν η πρόταση είναι λανθασμένη. α) Η μέση τιμή (μέσος όρος) υπολογίζεται μόνο σε ποσοτικές μεταβλητές. (Μονάδες 2) limg(x) l 1, l2 β) Αν υπάρχουν τα limf (x), και είναι x x x x 0 0 αντίστοιχα, τότε lim [ f (x) g(x) ] = l1 l2 x x 0 (Μονάδες 2) γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x β (Μονάδες 2) δ) Ισχύει ότι ημx dx = συνβ - συνα (Μονάδες 2) α
40 ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ε) Αν η συνάρτηση f είναι παραγωγίσιμη στο (α,β) και f (x)>0 για κάθε x (α,β), τότε η f είναι γνησίως αύξουσα στο (α,β). (Μονάδες 2) Μονάδες 10 Α3. Να μεταφέρετε στο τετράδιό σας τις παρακάτω ισότητες και να τις συμπληρώσετε: α) ln x..., με x > 0 (Μονάδες 3) ( ) = β) (ημx) =... (Μονάδες 3) γ)αν f συνεχής στο με α, τότε f (x) dx =... ΘΕΜΑ B ίνεται η συνάρτηση f: με τύπο: f (x) = 2 x 7x + 12, x 4 α, x 4 3, x 2 αν αν αν x < 4 x = 4 x > 4 α α (Μονάδες 3) Μονάδες 9 Β1. Να βρείτε το f(x) Μονάδες 10 4 lim x Β2. Να βρείτε το lim f(x) Μονάδες 10 + x 4 Β3. Να βρείτε για ποια τιμή του α η f είναι συνεχής στο x 0 =4. ΤΕΛΟΣ 2ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
41 ΘΕΜΑ Γ ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ίνεται το παρακάτω ιστόγραμμα, που αφορά τις ηλικίες 40 εργαζομένων σε μια επιχείρηση. Συχνότητα ν i Ηλικίες σε έτη Γ1. Να μεταφέρετε στο τετράδιό σας τον πίνακα που ακολουθεί και να τον συμπληρώσετε με βάση το παραπάνω ιστόγραμμα. Ηλικίες [, ) [25,35) [35,45) [45,55) [55,65) Σύνολα Μέσο διαστήματος K i Συχνότητα v i K i v i Αθροιστική Συχνότητα N i Σχετική Συχνότητα f i % Μονάδες 10 Γ2. Να υπολογίσετε τη μέση τιμή των ηλικιών των εργαζομένων. Γ3. Πόσοι εργαζόμενοι έχουν ηλικία τουλάχιστον 45 ετών; Γ4. Τί ποσοστό εργαζομένων έχουν ηλικία κάτω των 35 ετών; ΤΕΛΟΣ 3ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
42 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ ίνεται η συνάρτηση f (x) = x 3 6x 2 + 9x + 1 με x. 1. Να μελετηθεί η συνάρτηση f ως προς τη μονοτονία στο πεδίο ορισμού της. Μονάδες 6 2. Να βρεθούν τα τοπικά ακρότατα της συνάρτησης f. 3. Να υπολογιστεί το ολοκλήρωμα I = ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ 1 3 f (x)dx Μονάδες 6 4. Αν g(x) = 3x 2 12x + 9 με x, να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης g, τον άξονα x x και τις ευθείες με εξισώσεις x=0 και x=3. Μονάδες 8 Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ 1. Στο τετράδιο να γράψετε μόνον τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο. 2. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καμιά άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνον με μπλε ή μόνον με μαύρο στυλό ανεξίτηλης μελάνης. 5. Κάθε απάντηση τεκμηριωμένη επιστημονικά είναι αποδεκτή. 6. Να μη χρησιμοποιήσετε το χαρτί μιλιμετρέ. 7. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 8. Χρόνος δυνατής αποχώρησης: π.μ. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ
43 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 24 ΜΑΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά; Μονάδες 6 Α2. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή ή τη λέξη Λάθος, αν η πρόταση είναι λανθασμένη. α) Αν μια συνάρτηση f δεν είναι συνεχής σε ένα σημείο x 0 του πεδίου ορισμού της, τότε δεν είναι παραγωγίσιμη στο x 0. (Μονάδες 2) β) Το εύρος ως παράμετρος διασποράς εξαρτάται μόνο από τις ακραίες τιμές της μεταβλητής. (Μονάδες 2) γ) Έστω συνάρτηση f συνεχής στο [α,β]. Τότε ισχύει η ακόλουθη ιδιότητα για το ορισμένο ολοκλήρωμα: γ f (x)dx + f (x)dx = α β γ β α f (x)dx, με α<γ<β. (Μονάδες 2) δ) Ισχύει ότι: (x α ) =αx α-1, α *, x>0 (Μονάδες 2) ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
44 ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ε) Έστω δύο συνεχείς συναρτήσεις f, g: [α, β] με συνεχείς παραγώγους f, g. Τότε ισχύει ότι: β β f '(x)g(x)dx = [f (x)g(x)] α α β α f (x)g'(x)dx (Μονάδες 2) Μονάδες 10 Α3. Να μεταφέρετε και να συμπληρώσετε στο τετράδιό σας τις παρακάτω ισότητες: 1 α) dx β =... με β>α>0 (Μονάδες 3) α x β) Έστω συναρτήσεις f: Α και g: Β με f(a) B. Αν η f είναι παραγωγίσιμη σε κάθε x Α και η g παραγωγίσιμη σε κάθε f(x) B, τότε η σύνθεσή τους gof: Α είναι παραγωγίσιμη στο Α και ισχύει ότι: (gof) (x)=... (Μονάδες 3) γ) =... με c σταθερά και β cdx α,β (Μονάδες 3) α Μονάδες 9 ΘΕΜΑ B Στον παρακάτω πίνακα δίνονται οι ημερήσιες ώρες διαβάσματος 25 μαθητών μιας τάξης ενός ΕΠΑ.Λ. Ημερήσιες ώρες διαβάσματος x i Μαθητές ν i Αθροιστική Συχνότητα N i Σχετική συχνότητα (%) f i % κ 5 2κ+1 Σύνολα ν= x i ν i ΤΕΛΟΣ 2ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
45 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ Β1. Να υπολογίσετε τον αριθμό κ Μονάδες 4 Β2. Για κ=3 να μεταφέρετε και να συμπληρώσετε στο τετράδιό σας τον παραπάνω πίνακα. Μονάδες 8 Β3. Για κ=3 να υπολογίσετε τη μέση τιμή x και να βρείτε τη διάμεσο δ των παρατηρήσεων. Μονάδες 10 Β4. Για κ=3 να υπολογίσετε το ποσοστό των μαθητών που διαβάζουν τουλάχιστον 3 ώρες ημερησίως. ΘΕΜΑ Γ ίνεται η συνάρτηση f: με τύπο: Μονάδες 3 f (x) = x -1, x αx 2 + βx, αν αν x > 1 x 1 Γ1. Να υπολογίσετε το lim f(x) x Γ2. Να υπολογίσετε το lim f(x) 1 - x 1 + α, β ΤΕΛΟΣ 3ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ Μονάδες 10 Γ3. Να υπολογίσετε τα α και β, ώστε η f να είναι συνεχής στο x 0 =1 και η γραφική παράσταση της f να διέρχεται από το σημείο Α(-1,2). ΘΕΜΑ ίνεται η συνάρτηση f: με τύπο: f(x) = 3x 2-2x-1 Μονάδες 10
46 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ 1. Να βρείτε την παράγουσα F της f, αν F(0)=1. ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ 2. Αν F(x)=x 3 -x 2 -x+1, x να μελετήσετε τη μονοτονία και να βρείτε τα τοπικά ακρότατα της F. Μονάδες 8 3. Να συγκρίνετε τις τιμές F(2011) και F(2012) και να αιτιολογήσετε την απάντησή σας. 4. Να υπολογίσετε το εμβαδόν του χωρίου Ω που περικλείεται από τη γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες με εξισώσεις x=0 και x=1. Μονάδες 7 Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ 1. Στο τετράδιο να γράψετε μόνον τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο. 2. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καμιά άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνον με μπλε ή μόνον με μαύρο στυλό ανεξίτηλης μελάνης. 5. Κάθε απάντηση τεκμηριωμένη επιστημονικά είναι αποδεκτή. 6. Να μη χρησιμοποιήσετε το χαρτί μιλιμετρέ. 7. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 8. Χρόνος δυνατής αποχώρησης: π.μ. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. v i x i. Σχετική Συχνότητα (f i )
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ
Διαβάστε περισσότεραβ) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 24 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚA Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΕ 2002 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚA Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΕ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Οι βαθμοί των 11 μαθητών μιας τάξης ενός Τ.Ε.Ε. σε ένα μάθημα είναι: 1, 1, 9, 15, 1, 16, 17, 7, 19, 18, 17. Για τα δεδομένα αυτά: α. Να κατασκευάσετε
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. Σχετική Συχνότητα (f i ) v i x
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΙΔΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙΔΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΘΕΜΑ 1ο Δίνεται ο πίνακας συχνοτήτων
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Α =, Β = α. Να υπολογίσετε τον πίνακα 3Α - 4Β. Μονάδες 5. β. Να υπολογίσετε τον πίνακα Χ έτσι ώστε να ισχύει: 2Α + Χ = 3Β Μονάδες 10
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΕΣΠΕΡΙΝΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ
Διαβάστε περισσότεραβ) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 4 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΕΜΠΤΗ 19 ΜΑΪOY 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α1. Να αποδείξετε
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. x 100% = s. lim. x x. γ) Αν οι συναρτήσεις f, g: A είναι παραγωγίσιμες στο πεδίο ορισμού τους Α, τότε ισχύει:
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 7 ΜΑΪΟΥ 010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. f i % v i. x i. α) Να µεταφέρετε τον παραπάνω πίνακα στο τετράδιό σας και να τον συµπληρώσετε. Μονάδες 5
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 09 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΕΜΠΤΗ 19 ΜΑΪOY 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α1. Να αποδείξετε
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. α. Να μεταφέρετε τον παρακάτω πίνακα στο τετράδιό σας και να τον συμπληρώσετε με τη βοήθεια του παραπάνω ιστογράμματος συχνοτήτων.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΡΙΤΗ 12 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 21 ΜΑΪOY 2015 ΕΞΕΤΑΖΟΜΕΝΟ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ , Β =
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΙΔΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΕΣΠΕΡΙΝΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙΔΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 0 ΙΟΥΝΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ 1ο
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ
Διαβάστε περισσότεραΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 18 MAΪΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ HMEΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΥΤΟΤΕΛΩΝ ΤΜΗΜΑΤΩΝ & ΤΜΗΜΑΤΩΝ ΣΥΝ Ι ΑΣΚΑΛΙΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Σχετική Συχνότητα (f i ) v i x i
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ HMEΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΥΤΟΤΕΛΩΝ ΤΜΗΜΑΤΩΝ & ΤΜΗΜΑΤΩΝ ΣΥΝ Ι ΑΣΚΑΛΙΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραx, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 23 ΜΑΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΣε ποια ηλικία οι πνεύµονες του ανθρώπου έχουν τη µέγιστη χωρητικότητα;
. ίνεται η συνάρτηση f : R --> R, µε f (x) = x 4x + 4 α) Να υπολογίσετε την παράγωγο της συνάρτησης f (Μονάδες 0) β) Να εξετάσετε ως προς τη µονοτονία τη συνάρτηση f (Μονάδες 0) γ) Να βρείτε το σηµείο
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΕΜΠΤΗ 20 ΣΕΠΤΕΜΒΡΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Α1.
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 1 ΜΑΪOY 015 ΕΞΕΤΑΖΟΜΕΝΟ
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α. Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα. Αν η f είναι συνεχής στο και για κάθε εσωτερικό σημείο x του ισχύει f (x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν
ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 o A.1 Να
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Μονάδες 9 B. Έστω μια συνάρτηση f και x o ένα σημείο του πεδίου ορισμού της. Πότε θα λέμε ότι η f είναι συνεχής στο x o ; Μονάδες 6
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΛΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1. Να αποδείξετε
Διαβάστε περισσότερα(f(x) + g(x)) = f (x) + g (x).
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΛΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραA. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 7 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΡΙΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ
Διαβάστε περισσότεραΕ π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 7 MAΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΕΜΠΤΗ 19 ΜΑΪOY 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α1. Να αποδείξετε ότι η παράγωγος
Διαβάστε περισσότεραΕ π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Θ2. Δίνεται η συνάρτηση f: με f(x) = x 2 4x + 4. α. Να υπολογίσετε την παράγωγο της συνάρτησης f. β. Να μελετήσετε ως προς την μονοτονία
Διαβάστε περισσότεραγ. H εικόνα f( ) ενός διαστήματος μέσω μιας συνεχούς και μη σταθερής συνάρτησης f είναι διάστημα. Μονάδες 2 Μονάδες 2 ε.
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 7 ΜΑΪΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ o A. Έστω
Διαβάστε περισσότεραΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 12 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
Διαβάστε περισσότεραP(A ) = 1 P(A). Μονάδες 7
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Διαβάστε περισσότεραΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ)
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ) ΘΕΜΑ 1ο Α. Ας υποθέσουμε ότι x 1, x 2,..., x κ είναι οι
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 o A.1 Αν
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΦροντιστήρια ΠΡΟΟΠΤΙΚΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 7 ΙΟΥΛΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΡΙΤΗ 7 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ)
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ) ΘΕΜΑ 1ο Α. Ας υποθέσουμε ότι x 1, x 2,..., x κ είναι οι
Διαβάστε περισσότεραc f(x) = c f (x), για κάθε x R
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Διαβάστε περισσότεραΘΕΜΑ Α. α) Αν x>0, τότε ( x ) = x
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
Διαβάστε περισσότεραγ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα τότε είναι και 1-1 στο διάστημα αυτό.
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΣΥΝΟΛΟ
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ
ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΓΓΕΛΜΑΤΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ (1) ΚΥΡΙΑΚΗ, 2 ΑΠΡΙΛΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1. Να αποδείξετε
Διαβάστε περισσότεραx του Δ». ΘΕΜΑ Α Α1. Έστω μία συνάρτηση f και x Αν η πρόταση είναι αληθής να το αποδείξετε, ενώ αν είναι ψευδής να δώσετε κατάλληλο αντιπαράδειγμα.
ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ (2) ΠΑΡΑΣΚΕΥΗ, 18 ΜΑΪΟΥ 218 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ
Διαβάστε περισσότεραA1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 211 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΘΕΜΑ 1ο. Στήλη ΙΙ Παράγωγος f (x) 1. -ημx. 2. x ρ-1 3. συνx 4. 1 Γ. x ρ, x > 0 και ρ ρητός. Β. x, x > ρ x ρ-1. Δ. ημx. Ε. συνx. 8.
ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ(4)
Διαβάστε περισσότεραf(x ) 0 O) = 0, τότε το x
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 5 ΣΕΠΤΕΜΒΡΙΟΥ 07 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
Διαβάστε περισσότεραΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1.i. Να διατυπώσετε το θεώρημα ενδιαμέσων τιμών (Μονάδες 2) και στη
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ () ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότεραΘΕΜΑ 1ο Α. α) Να αποδείξετε ότι, αν z 1 =α+βi και. είναι δύο μιγαδικοί αριθμοί, τότε
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΛΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ
Διαβάστε περισσότεραg είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ, 4 ΜΑΡΤΙΟΥ 206 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότεραΑ4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΑΠΡΙΛΙΟΥ 203 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Α. Για δυο ασυµβίβαστα ενδεχόµενα
Διαβάστε περισσότεραg( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΕΜΠΤΗ, 24 ΑΠΡΙΛΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Διαβάστε περισσότεραα) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 6 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Διαβάστε περισσότεραΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 4 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1. Να αποδείξετε
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΡΙΤΗ 7 ΣΕΠΤΕΜΒΡΙΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Διαβάστε περισσότεραf ( x) 0 για κάθε εσωτερικό σημείο x του Δ,
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 1 ΑΠΡΙΛΙΟΥ 13 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ
Διαβάστε περισσότεραΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ
Διαβάστε περισσότεραΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 4 ΠΑΡΑΣΚΕΥΗ, 22 ΑΠΡΙΛΙΟΥ 216 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραα) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 6 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΤΕΤΑΡΤΗ, 8 ΑΠΡΙΛΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΤΕΤΑΡΤΗ ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Διαβάστε περισσότεραΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ ο A. Αν z, z
Διαβάστε περισσότεραA ένα σημείο της C. Τι
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΤΕΤΑΡΤΗ, 5 ΑΠΡΙΛΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ
Διαβάστε περισσότεραα) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ΕΥΤΕΡΑ 6 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Διαβάστε περισσότεραστο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 208 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
Διαβάστε περισσότεραΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ
Διαβάστε περισσότεραΩ ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ () ΠΑΡΑΣΚΕΥΗ, 24 ΜΑΡΤΙΟΥ 207 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Α. Να αποδείξετε
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ(3)
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΡΙΤΗ 7 ΣΕΠΤΕΜΒΡΙΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Διαβάστε περισσότεραδεδομένων με συντελεστές στάθμισης (βαρύτητας)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ-1 ΠΑΡΑΣΚΕΥΗ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΓΕΝΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΕΤΟΣ 216 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 Ο : ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 Ο : ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Usus est magister optimus (η χρήση είναι ο καλύτερο δάσκαλο ) y M(,f()) C f A( 0,f( 0 )) M ε O 0 (α) ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ
Διαβάστε περισσότεραΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ (3) A. Έστω μια συνάρτηση
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 20 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 ΠΑΡΑΣΚΕΥΗ, 6 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ. MyΤeachers.gr ΘΕΜΑΤΑ
MyΤeachers.gr ΟΝΟΜΑ : ΗΜΕΡΟΜΗΝΙΑ:./../.. ΒΑΘΜΟΣ : /100 ΔΙΑΡΚΕΙΑ : 180 ΛΕΠΤΑ ΘΕΜΑ Α ΘΕΜΑΤΑ Α1. Έστω μια συνάρτηση η οποία είναι συνεχής σε ένα διάστημα. Αν σε κάθε εσωτερικό σημείο του, τότε να δείξετε
Διαβάστε περισσότεραΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ A. Έστω μια συνάρτηση
Διαβάστε περισσότερα= 1-3 i, να γράψετε στο τετράδιό
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1o A.1. ίνονται
Διαβάστε περισσότεραf(x ) 0 O) = 0, τότε το x
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 5 ΣΕΠΤΕΜΒΡΙΟΥ 017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
Διαβάστε περισσότεραβ) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 8 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Διαβάστε περισσότεραΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( 2001 2011 ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( 2003 2011 )
ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( & ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( Επιμέλεια Συρραφή Θεμάτων Ζαχαριάδης Λάζαρος - Μαθηματικός ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΑΠΟ ΕΩΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Διαβάστε περισσότεραf (x) g (x) για κάθε εσωτερικό σημείο x του Δ,
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ (2) ΚΥΡΙΑΚΗ, 30 ΑΠΡΙΛΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότερα