ΧΗΜΕΙΑ» ΜΑΓΔΑΛΗΝΗ ΜΑΘΗΜΑ: «ΓΕΝΙΚΗ. Διδάσκουσα: ΣΟΥΠΙΩΝΗ Α ΕΞΑΜΗΝΟ (ΧΕΙΜΕΡΙΝΟ)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΧΗΜΕΙΑ» ΜΑΓΔΑΛΗΝΗ ΜΑΘΗΜΑ: «ΓΕΝΙΚΗ. Διδάσκουσα: ΣΟΥΠΙΩΝΗ Α ΕΞΑΜΗΝΟ (ΧΕΙΜΕΡΙΝΟ)"

Transcript

1 ΜΑΘΗΜΑ: «ΓΕΝΙΚΗ ΧΗΜΕΙΑ» Α ΕΞΑΜΗΝΟ (ΧΕΙΜΕΡΙΝΟ) Διδάσκουσα: ΣΟΥΠΙΩΝΗ ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. Αναφορά-Μη-Εμπορική Χρήση-Παρόμοια Διανομή

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

4 4. Η κβαντική θεωρία του ατόμου ΠΕΡΙΕΧΟΜΕΝΑ: Η κυματική φύση του φωτός Κβαντικά φαινόμενα και φωτόνια Η θεωρία του Bohr για το άτομο του υδρογόνο Κβαντομηχανική Κβαντικοί αριθμοί και ατομικά τροχιακά

5 Η πορεία του ατομικού προτύπου Dalton (1803) Thomson (1904) (Θετικά και αρνητικά φορτία) Bohr (1913) (Επίπεδα ενέργειας) Schrödinger (1926) (Ηλεκτρονικά νέφη) Rutherford (1911) (Tο πυρηνικό άτομο) Από την εποχή του Dalton μέχρι τον Schrödinger, το ατομικό μας πρότυπο τροποποιήθηκε πολλές φορές.

6 Ατομικά Πρότυπα Ατομικό πρότυπο του Thomson («plum-pudding» model) Ατομικό πρότυπο του Rutherford («planet system» model)

7 Τα χρώματα των πυροτεχνημάτων Λίθιο Νάτριο Στρόντιο Ασβέστιο Δοκιμασίες φλόγας για στοιχεία των Ομάδων ΙΑ και ΙΙΑ Ένας δακτύλιος από σύρμα που φέρει μικρή ποσότητα δείγματος μεταλλικής ένωσης, τοποθετείται μέσα σε μια φλόγα.

8 Γραμμικά φάσματα εκπομπής Η Ηe Li Na Ca Sr Cd Οι γραμμές αντιστοιχούν σε ορατό φως που εκπέμπεται από άτομα. Ba Hg Tl nm

9 Ηλεκτρομαγνητική ακτινοβολία Η κυματική φύση του φωτός Κύμα: μια συνεχώς επαναλαμβανόμενη μεταβολή ή ταλάντωση μέσα σε ύλη ή σε ένα φυσικό πεδίο. Α Β Μήκος κύματος (λ): η απόσταση ανάμεσα σε δύο οποιαδήποτε διαδοχικά πανομοιότυπα σημεία ενός κύματος. 1 nm = m

10 Ηλεκτρομαγνητική ακτινοβολία Συχνότητα (ν): αριθμός κυμάτων ανά δευτερόλεπτο (σε s 1 = hertz, Hz) λ Α ν = 4 Ηz Α = πλάτος του κύματος λ ν = 8 Ηz Σχέσεις Αφετηρία 1 δευτερόλεπτο Χρόνος c A = c Β λ Α = 2λ Β ν Β = 2ν Α Ταχύτητα κύματος (c): c = ν λ (στο κενό c = 2, m s 1 )

11 Τι είναι το ηλεκτρομαγνητικό κύμα Ταλαντώσεις ηλεκτρικών και μαγνητικών πεδίων, οι οποίες μπορούν να διαδίδονται μέσα στο χώρο. Συνιστώσα ηλεκτρικού πεδίου Συνιστώσα μαγνητικού πεδίου Κατεύθυνση διαδόσεως κύματος

12 Άσκηση Εύρεση του μήκους κύματος από τη συχνότητά του Η συχνότητα της έντονης κόκκινης γραμμής στο φάσμα του καλίου είναι 3, /s. Πόσο είναι το μήκος κύματος αυτού του φωτός σε νανόμετρα; Λύνουμε ως προς λ την εξίσωση c = νλ, η οποία συσχετίζει το μήκος κύματος με τη συχνότητα και την ταχύτητα του φωτός (3, m/s): 8 c 3,00 10 m/s 14 3,91 10 / s 7 7 7, m = 7,67 10 m ή 767 nm

13 Το ηλεκτρομαγνητικό φάσμα Ακτίνες γάμα Ακτίνες Χ Άπω UV Εγγύς UV Ορατό Εγγύς IR Άπω IR Μικροκύματα Ραντάρ pm nm μm mm ΟΡΑΤΟ ΦΑΣΜΑ Συχνότητα (s 1 ) Ράδιο ΤV FM AM Μήκος κύματος nm Το ορατό φως αποτελεί ένα ελάχιστο τμήμα του συνολικού ηλεκτρομαγνητικού φάσματος! Τα όρια των διαφόρων περιοχών δεν καθορίζονται επακριβώς.

14 Εφαρμογές των διαφόρων τύπων ηλεκτρομαγνητικής ακτινοβολίας Hz Ορατό Ακτίνες γ Ακτίνες Χ UV Υπέρυθρο Μικροκύματα Ραδιοκύματα 10 4 Ακτίνες X Λάμπα UV Θερμαντική λάμπα Ραντάρ αστυνομίας, φούρνοι μικροκυμάτων, δορυφορικοί σταθμοί UHF,TV τηλέφωνα κυψελών Ράδιο FM VHF TV Ράδιο AM

15 Εισαγωγή στην κβαντική θεωρία Κατά την κλασική Φυσική, η ύλη μπορεί να απορροφά ή να εκπέμπει οποιαδήποτε ποσότητα ηλεκτρομαγνητικής ενέργειας. Ποια η άποψη του Planck πάνω σ αυτό; Planck: η ηλεκτρομαγνητική ενέργεια εκπέμπεται ή απορροφάται από την ύλη σε καθορισμένες στοιχειώδεις ποσότητες, τα κβάντα. Πόση είναι η ενέργεια ενός κβάντου κατά τον Planck; Ε = h ν h = 6, J s (σταθερά του Planck) Η ενέργεια εκπέμπεται ή απορροφάται σε ακέραια πολλαπλάσια του h ν (1h ν, 2h ν, 3h ν κοκ) η ενέργεια είναι κβαντισμένη (έχει καθορισμένες τιμές). Τι θα σήμαινε κβάντωση της ενέργειας ενός αυτοκινήτου;

16 Άσκηση Υπολογισμός της ενέργειας ενός φωτονίου Τα ακόλουθα μήκη κύματος είναι αντιπροσωπευτικά για τις περιοχές υπερύθρου, υπεριώδους και ακτίνων-χ του ηλεκτρομαγνητικού φάσματος, αντίστοιχα: 1, m, 1, m και 1, m. Πόση είναι η ενέργεια ενός φωτονίου καθεμιάς ακτινοβολίας; Ποια ακτινοβολία έχει το μεγαλύτερο ποσόν ενέργειας ανά φωτόνιο; Ποια το λιγότερο;

17 Άσκηση Πρώτα υπολογίζουμε τις συχνότητες χρησιμοποιώντας τη σχέση c = νλ 8 c 3,00 10 m/s 6 1,0 10 m 14 3,00 10 / s Οι άλλες δύο συχνότητες είναι 3, / s και 3, / s, αντίστοιχα. Οι ενέργειες των φωτονίων είναι: Ε = hν = 6, J s 3, /s = 1, J = 2, J (υπέρυθρο) Ε = hν = 6, J s 3, /s = 1, J = 2, J (υπεριώδες) Ε = hν = 6, J s 3, /s = 1, J = 2, J (ακτίνες Χ) Τα φωτόνια των ακτίνων-χ έχουν το μεγαλύτερο ποσόν ενέργειας (μικρότερο μήκος κύματος). Τα φωτόνια της υπέρυθρης ακτινοβολίας έχουν το μικρότερο ποσόν ενέργειας.

18 Το φωτοηλεκτρικό φαινόμενο Φωτεινές ακτίνες Τα αποσπώμενα e έλκονται από το θετικό σύρμα Θετικό σύρμα ή πλάκα Φωτοευαίσθητη μεταλλική επιφάνεια Μπαταρία Αμπερόμετρο Φως που προσπίπτει πάνω σε μια μεταλλική επιφάνεια, προκαλεί απόσπαση e. Η μεταλλική επιφάνεια βρίσκεται μέσα σε κενωμένο σωλήνα, ο οποίος επιτρέπει στα e που αποσπώνται να επιταχύνονται προς μια θετικά φορτισμένη πλάκα. Όσο το μέταλλο φωτίζεται από φως κατάλληλης συχνότητας, παράγονται ελεύθερα e και έχουμε ροή ρεύματος μέσω του σωλήνα. Όταν διακοπεί ο φωτισμός του μετάλλου, σταματά η διέλευση του ρεύματος.

19 Η ερμηνεία του φωτοηλεκτρικού φαινομένου από τον Einstein Albert Einstein ( ): Το φως αποτελείται από κβάντα (ή φωτόνια), δηλαδή σωματίδια (particles of light) των οποίων η ενέργεια Ε είναι ανάλογη της συχνότητας του φωτός: Ε = hν Το φως έχει ταυτόχρονα ιδιότητες κύματος και σωματιδίου. Μόνο του, ούτε το κύμα ούτε το σωματίδιο μπορεί να περιγράψει πλήρως το φως (δυϊσμός κύματος-σωματιδίου). Όταν ένα φωτόνιο «κτυπά» ένα μέταλλο, η ενέργεια του μεταφέρεται σε ένα ηλεκτρόνιο της μεταλλικής επιφάνειας

20 Άσκηση Φωτοηλεκτρικό φαινόμενο: Εφαρμογές Για να αποσπασθεί ένα ηλεκτρόνιο από μια γυαλιστερή επιφάνεια ψευδαργύρου, θα πρέπει το προσπίπτον φωτόνιο να έχει ελάχιστη ενέργεια Ε min = 6, J. (α) Μπορεί ένα φωτόνιο με μήκος κύματος 210 nm να προκαλέσει απόσπαση ηλεκτρονίου από ψευδάργυρο; (β) Εάν ναι, πόση είναι η μέγιστη ενέργεια του αποσπώμενου ηλεκτρονίου; (α) =, = c hc E h E = (6,63 10 J s)(3,00 10 m s ) 19 9,47 10 J > E 9 min m ναι (β) Eκιν (max) = E Emin 9,47 10 J 6,94 10 J = 2,53 10 J

21 Η θεωρία του Bohr (Ατομικά φάσματα) Ποιο φάσμα χαρακτηρίζουμε ως συνεχές; Φωτεινή πηγή Σχισμή Πρίσμα Φωτογραφικό φιλμ Ερυθρό Ιώδες Φάσμα ορατού φωτός: πού αρχίζει και πού τελειώνει το πράσινο;

22 Ποιο φάσμα χαρακτηρίζεται ως γραμμικό; 750 nm Φωτεινή πηγή Σχισμή Πρίσμα Φωτογραφικό φιλμ Το φάσμα εκπομπής του ηλίου Έξι έγχρωμες γραμμές στην ορατή περιοχή του ηλεκτρομαγνητικού φάσματος 400 nm

23 Το συνολικό φάσμα του υδρογονατόμου Πώς περιγράφεται το συνολικό φάσμα του υδρογονατόμου; 954,6 656,3 410,2 486,1 Μήκος κύματος (nm) 121,6 97,3 102,6 Υπέρυθρο Ορατό Σειρά Balmer Υπεριώδες

24 Εξίσωση Balmer και εξίσωση Rydberg Σε ποια εξίσωση υπακούουν τα μήκη κύματος, λ, των γραμμών του ορατού φάσματος του ατόμου Η; , m 2 n n = ακέραιος > Εξίσωση Balmer (1885) Ποια εξίσωση μετατρέπει τα μήκη κύματος σε συχνότητες; cr = 3, s 2 n 2 n R = σταθερά Rydberg = 1, m 1 Εξίσωση Rydberg

25 Άσκηση Επαλήθευση της εξίσωσης Balmer Πόσο είναι το μήκος κύματος της μιας οριακής γραμμής του ορατού φάσματος του ατόμου Η; , m 2 n Οι γραμμές είναι τέσσερις για τις τιμές n = 3, 4, 5, 6 για n = , m 1, m 2 n , m = 6, m = 656,3 nm Αντιστοιχεί στο κόκκινο φως

26 Η θεωρία του Bohr για το άτομο του υδρογόνου Γιατί το ατομικό πρότυπο του Rutherford δεν μπορούσε να εξηγήσει τη σταθερότητα του ατόμου; Niels Bohr ( ): Ο Bohr στήριξε τη θεωρία του στα ατομικά φάσματα και, προκειμένου να ερμηνεύσει τις γραμμές του φάσματος του υδρογονατόμου, διατύπωσε δύο βασικές συνθήκες (εκτός από τις κυκλικές τροχιές του e).

27 Οι δύο βασικές συνθήκες του Bohr 1. Συνθήκη για τα επίπεδα ενέργειας του ηλεκτρονίου στο άτομο Η E R n H 2 n 1, 2, 3,... R H (σταθερά) = 2, J n = κύριος κβαντικός αριθμός 2. Συνθήκη για τις μεταπτώσεις του ηλεκτρονίου μεταξύ των επιπέδων ενέργειας στο άτομο Η Ενέργεια εκπεμπόμενου φωτονίου Ε = E i E f = hν

28 Οι ενέργειες για το ηλεκτρόνιο στο άτομο Η (Διάγραμμα επιπέδων ενέργειας) 0 R H /9 R H /4 Ενέργεια n = n = 3 n = 2 Η ενέργεια παριστάνεται στον κάθετο άξονα (σε κλασματικά πολλαπλάσια του R H ). Το βέλος συμβολίζει μια μετάπτωση του ηλεκτρονίου από το επίπεδο n = 4 στο επίπεδο n = 2. Αυτή η μετάπτωση συνοδεύεται από εκπομπή φωτός μήκους κύματος 486 nm. (Για τον υπολογισμό αυτού του μήκους κύματος, βλ. Παράδειγμα 7.4.) R H n = 1

29 Οι ενέργειες για το ηλεκτρόνιο στο άτομο Η (Κυκλικές τροχιές) απορρόφηση ενέργειας Εκπομπή φωτός Απορρόφηση ενέργειας και εκπομπή φωτός από το άτομο Η. n=4 n=3 n=2 n =1 E = R H E = 0,254R H E = 0,11R H Επιτρεπόμενες τροχιές (ή ενεργειακά επίπεδα): ακτίνα τροχιάς: r n = n 2 α ο α ο = 53 pm (ακτίνα του Bohr) E = 0,062R H

30 Πώς ο Bohr απέδειξε τον τύπο του Balmer E και Συνθήκη 1 H H i R n E R n 2 f 2 i f R R 1 1 h Ei E f R 2 2 H 2 2 n i n f n f n i Συνθήκη 2 H H ν = c / λ 1 R H 1 1 hc n n 2 2 f i R H / h c = 1, / m, n f = , / m 2 2 n 2

31 n = 5 n = 4 n = 3 n = 2 Ενέργεια n = 1 Πώς προκύπτουν οι σειρές Lyman, Paschen, Bracket, στο φάσμα του ατόμου Η Pfund Bracket Paschen Σειρά Balmer (ορατό) Σειρά Lyman (υπεριώδες) Μεταπτώσεις του ηλεκτρονίου στο υδρογονοάτομο Το διάγραμμα δείχνει τις σειρές Lyman, Balmer και Paschen, Bracket και Pfund που αντιστοιχούν σε ηλεκτρονικές μεταπτώσεις για n f = 1, 2, 3, 4 και 5, αντίστοιχα. E R n H 2!!! Για n = πλήρης απομάκρυνση του e (ιοντισμός) n 1, 2, 3,...

32 Ερμηνεία του φάσματος του ατόμου Η n = n = 4 n = 3 Bracket (υπέρυθρο) Paschen n = 2 Balmer Ιώδες κόκκινο ορατή περιοχή λ(nm) n = 1 Lyman (υπεριώδες) Για n = πλήρης απομάκρυνση του e (ιοντισμός)

33 Ερμηνεία του φάσματος του υδρογονατόμου 954,6 656,3 410,2 486,1 Μήκος κύματος (nm) 121,6 97,3 102,6 Υπέρυθρο Σειρές Paschen, Bracket, Pfund Ορατό Σειρά Balmer Υπεριώδες Σειρά Lyman

34 Άσκηση Προσδιορισμός του μήκους κύματος ή της συχνότητας μιας μετάπτωσης του ηλεκτρονίου του ατόμου Η Υπολογίστε το μήκος κύματος του φωτός που εκπέμπεται από το υδρογονοάτομο, όταν το ηλεκτρόνιο μεταπίπτει από το επίπεδο ενέργειας n = 3 στο επίπεδο n = 1. n = 1 n = 3

35 Συνθήκη 2 του Bohr Άσκηση R H R H 1 1 h Ei E f R 2 2 H 2 2 n i n f n f n i n f = 1 και n i = h RH R 1 H 2 2 H Η συχνότητα της εκπεμπόμενης ακτινοβολίας είναι 18 8RH 8 2, J 34 8R 9h 9 6,63 10 J s , / s=2,92 10 / s λ = c/ν 8 3,00 10 m/s 15 2,92 10 / s 7 1, m (103 nm)

36 Άσκηση Εκπομπή και απορρόφηση φωτός από άτομα Προσδιορισμός της διαφοράς ενέργειας μεταξύ επιπέδων ενέργειας ενός ατόμου Πόση είναι η διαφορά των επιπέδων ενέργειας του ατόμου του νατρίου, αν φως που εκπέμπεται από νάτριο έχει μήκος κύματος 589 nm; Υπολογίζουμε τη συχνότητα από τον τύπο c = ν λ, θέτοντας 589 nm = 5, m: 8 c 3,00 10 m/s 7 5, m , /s 5,09 10 /s Για τη διαφορά ενέργειας χρησιμοποιούμε την εξίσωση Ε = hν: Ε = hν = 6, J s 5, /s = 3, J = 3, J

37 Κβαντομηχανική ή κυματομηχανική Κβαντομηχανική ή κυματομηχανική: ο κλάδος της Φυσικής που περιγράφει μαθηματικά τις κυματικές ιδιότητες των στοιχειωδών σωματιδίων. Ποια ήταν τα αναπάντητα ερωτήματα της θεωρίας του Bohr; 1. Φάσματα πολυηλεκτρονικών ατόμων 2. Κυκλικές τροχιές 3. Γιατί η ενέργεια του e είναι κβαντισμένη; Η κβαντομηχανική, ένα από τα σημαντικότερα επιτεύγματα του 20ου αιώνα, στηρίχθηκε κυρίως στις ιδέες των De Broglie (Εξίσωση του de Broglie) Heisenberg (Αρχή της αβεβαιότητας του Heisenberg) και Schrödinger (Κυματική εξίσωση του Schrödinger)

38 Κβαντομηχανική: Εξίσωση του de Broglie (Δυϊσμός κύματος-σωματιδίου) Louis de Broglie ( ): Αν τα κύματα του φωτός μπορούν να συμπεριφέρονται ως υλικά σωματίδια, μήπως και υλικά σωματίδια, όπως τα ηλεκτρόνια, μπορούν να συμπεριφέρονται ως κύματα; Εξίσωση de Broglie για το υλικό κύμα: h m h = η σταθερά του Planck, m = η μάζα και υ = η ταχύτητα του σωματιδίου

39 Άσκηση Εφαρμογή της εξίσωσης του de Broglie Υπολογίστε το μήκος κύματος (σε πικόμετρα) που σχετίζεται με ηλεκτρόνιο κινούμενο με ταχύτητα 2, m/s. Χρησιμοποιούμε την εξίσωση του de Broglie (λ = h/mυ), όπου m η μάζα του ηλεκτρονίου (9, kg) και h η σταθερά του Planck (h = 6, J s = 6, kg m 2 /s): h m ,63 10 kg m / s ,11 10 kg 2,19 10 m/s = 3, m (332 pm)!!! Συγκρίνετε: Για ένα μπαλάκι του μπέιζμπολ (m = 0,145 kg, υ = 27 m/s) λ = m

40 Πώς αποδεικνύεται ότι το ηλεκτρόνιο έχει κυματικές ιδιότητες; Πείραμα Davisson-Germer (περίθλαση e σε κρυστάλλους, 1927) Κατευθύνοντας μια δέσμη ηλεκτρονίων (που είναι σωματίδια) προς ένα κρύσταλλο νικελίου παρατήρησαν στην οθόνη ένα σύνολο ομοκεντρικών δακτυλίων, όμοιο με αυτό που έδιναν οι ακτίνες Χ, οι οποίες είναι κύματα. Αυτοί θα αναμένονταν από ηλεκτρόνια με λ που δίνεται από την εξίσωση de Broglie

41 Ηλεκτρονικό μικροσκόπιο: Μια καταπληκτική εφαρμογή της κυματικής φύσης του ηλεκτρονίου [Ruska (1933), Νόμπελ Φυσικής 1986] Η «δέσμη» του ηλεκτρονικού μικροσκοπίου αποτελείται από υψηλής ταχύτητας ηλεκτρόνια και οι «φακοί» του είναι ηλεκτρομαγνητικά πεδία. Μεγεθύνσεις > , Ανάλυση 0,5 nm

42 Κβαντομηχανική: Η αρχή της αβεβαιότητας του Heisenberg Werner Heisenberg ( , N.P. 1932): Πώς μπορεί να είναι ορισμένη η «θέση» ενός κύματος; Μπορούμε να καθορίσουμε την ακριβή θέση ενός κύματος, αφού ένα κύμα απλώνεται στο χώρο; Τι λέει η αρχή της αβεβαιότητας του Heisenberg: Είναι αδύνατο να γνωρίζουμε ταυτόχρονα και με ακρίβεια τη θέση x και την ορμή p (= mυ) ενός τόσο μικρού σωματιδίου, όπως είναι το ηλεκτρόνιο. Πώς διατυπώνεται η αρχή της αβεβαιότητας μαθηματικά; ( x)( m ) h 4 Δx, Δυ = αβεβαιότητες ως προς τη θέση και την ταχύτητα, αντίστοιχα

43 Άσκηση Εφαρμογή της αρχής της αβεβαιότητας Ένα ηλεκτρόνιο κινούμενο στην περιοχή κάποιου ατομικού πυρήνα έχει ταχύτητα ± 1% m/s. Πόση είναι η αβεβαιότητα ως προς τη θέση του; Δυ = ( m/s)(0,01) = m/s 34 2 h 6, kg m /s 9 ( x) 1 10 m m (4 3,14)(9,11 10 kg)(6 10 m/s) Δx ηλεκτρονίου ~ 10 φορές μεγαλύτερη (!!!) από τη διάμετρο του ατόμου (10 10 m) πώς μπορούμε να γνωρίζουμε πού ακριβώς βρίσκεται το e; Συγκρίνετε: Το Δx μπάλας του μπέιζ μπολ (m = 0,146 kg) που κινείται με ταχύτητα 44,7 ± 1,00% m/s είναι 8, m Δx μηδαμινό (!!!): Ισχύει για όλα τα αντικείμενα του μακρόκοσμου

44 Κβαντομηχανική: Η εξίσωση του Schrödinger Η εξίσωση του Schrödinger είναι, μια πολύπλοκη διαφορική εξίσωση η οποία εμπεριέχει τη μάζα m του ηλεκτρονίου (σωματιδιακός χαρακτήρας) και μια κυματική συνάρτηση ψ (κυματικός χαρακτήρας). Δηλαδή, μια εξίσωση που ενσωματώνει το σωματιδιακό και τον κυματικό χαρακτήρα του ηλεκτρονίου. Το ηλεκτρόνιο ως κύμα δεν διαδίδεται στο χώρο (όπως π.χ. ένα ηλεκτρομαγνητικό κύμα) αλλά είναι στάσιμο, δηλαδή περιορισμένο στο άτομο.

45 Ο Schrödinger και η εξίσωσή του Erwin Schrödinger ( , N.P. 1933) h 2 m 2 2 V = E = τελεστής Laplace= x y z Γνωστά μεγέθη: m και V Άγνωστα που μπορούν να προσδιορισθούν: Ψ και Ε (ολική ενέργεια e) Από τις άπειρες λύσεις Ψ, μερικές έχουν φυσική σημασία και θεωρούνται παραδεκτές ορισμένες οι τιμές της Ε. Ακριβείς λύσεις μόνο για το Η και τα υδρογονοειδή άτομα!!!

46 A Στάσιμα κύματα B Κόμβος: σημείο με πλάτος = 0 1 μισό μήκος κύματος 2 μισά μήκη κύματος 3 μισά μήκη κύματος L 1 2 L 2 2 L 3 2 L n 2 1 n 3 3 Απαγορευμένο Στάσιμο κύμα: όταν οι κορυφές και οι κόμβοι δεν αλλάζουν θέση (Α) Το κβάντο στη δόνηση της χορδής της κιθάρας, είναι το λ/2 επιτρεπτές δονήσεις (στάσιμα κύματα) μόνο όταν το L είναι ακέραιο πολλαπλάσιο του λ/2. (Β) Για ένα ηλεκτρόνιο στάσιμα κύματα μόνο όταν 2πr = nλ

47 Κυματικές συναρτήσεις Κιθάρα (παλλόμενη χορδή): οι επιτρεπτές μορφές των στάσιμων κυμάτων περιγράφονται από τη μαθηματική εξίσωση L = n(λ /2). Άτομο Η (ηλεκτρόνιο): οι επιτρεπτές μορφές των στάσιμων ηλεκτρονικών κυμάτων περιγράφονται από την εξίσωση του Schrödinger. Πώς ονομάζονται οι αποδεκτές λύσεις της εξίσωσης του Schrödinger; Κυματικές συναρτήσεις Ψ ή ατομικά τροχιακά. Ποια σημασία έχει η κυματική συνάρτηση Ψ ; Η κυματική συνάρτηση Ψ δεν έχει καμία φυσική σημασία!

48 Το τετράγωνο της κυματικής συνάρτησης, Ψ 2 Κυματική θεωρία: Η ένταση του φωτός είναι ανάλογη προς το τετράγωνο του πλάτους του κύματος (Ψ 2 ). Ποια φυσική σημασία αποκτά έτσι το Ψ 2 για το ηλεκτρόνιο; (α) Θεωρώντας το e ως κύμα: το Ψ 2 δίνει την ηλεκτρονική πυκνότητα στα διάφορα σημεία γύρω από τον πυρήνα του ατόμου. (β) Θεωρώντας το e ως σωματίδιο: το Ψ 2 ~ της πιθανότητας εύρεσης του e σε κάποιο συγκεκριμένο σημείο του ατόμου.

49 Ένα άτομο δεν έχει καθορισμένα όρια! Γραφική παράσταση του ψ 2 για το χαμηλότερο ενεργειακό επίπεδο του ατόμου Η Ψ r (pm) Η τιμή του ψ 2 ελαττώνεται γρήγορα καθώς η απόσταση r από τον πυρήνα μεγαλώνει, όμως το ψ 2 δεν γίνεται ποτέ μηδέν, παρόλο που η πιθανότητα γίνεται εξαιρετικά μικρή σε μεγάλες αποστάσεις από τον πυρήνα. Αυτό σημαίνει ότι ένα άτομο δεν έχει καθορισμένα όρια, αντίθετα με το ατομικό μοντέλο του Bohr.

50 Πιθανότητα εύρεσης ενός ηλεκτρονίου σε σφαιρικό φλοιό γύρω από τον πυρήνα Η περιοχή γύρω από τον πυρήνα χωρισμένη σε φλοιούς (πυκνότητα πιθανότητας) r (pm) Η γραφική παράσταση δείχνει την πιθανότητα εύρεσης του ηλεκτρονίου μέσα σε φλοιούς που απέχουν διάφορες αποστάσεις από τον πυρήνα (ακτινική πιθανότητα). Η καμπύλη παρουσιάζει ένα μέγιστο, το οποίο σημαίνει ότι η ακτινική πιθανότητα είναι μέγιστη για μια δεδομένη απόσταση από τον πυρήνα. Ακτινική πιθανότητα

51 Τρεις τρόποι παρουσίασης του Ψ 2 για το απλούστερο τροχιακό 1s Ψ 2 r Απόσταση από τον πυρήνα Η ηλεκτρονική πυκνότητα είναι μέγιστη σε σημεία πλησίον του πυρήνα Το ηλεκτρονικό νέφος είναι πολύ πυκνό κοντά στον πυρήνα και αραιό μακριά από αυτόν. Στο χώρο που περικλείεται από μια οριακή επιφάνεια η πιθανότητα εύρεσης του e είναι περίπου 90%.

52 Η ηλεκτρονική πυκνότητα για το 1s τροχιακό είναι μέγιστη στον πυρήνα. Αριθμός μήλων σε κάθε δακτύλιο Απόσταση από τον κορμό. Αυτό σημαίνει ότι πιθανόν το ηλεκτρόνιο βρίσκεται πάνω στον ίδιο τον πυρήνα; Η πυκνότητα των μήλων είναι μεν μέγιστη στον πρώτο δακτύλιο, όμως το εμβαδόν του δεύτερου δακτυλίου είναι μεγαλύτερο και έτσι αυτός περιέχει συνολικά περισσότερα μήλα. Σε αναλογία, το ηλεκτρονικό νέφος μπορεί να είναι πυκνότερο στον πυρήνα, όμως το μεγαλύτερο μέρος του νέφους βρίσκεται σε κάποια απόσταση από αυτόν.

53 Κβαντικοί αριθμοί Κβαντικοί αριθμοί (Κ.Α.): τέσσερις διαφορετικοί αριθμοί οι οποίοι, σύμφωνα με την Κβαντομηχανική, απαιτούνται για την περιγραφή κάθε e σε ένα άτομο. Οι τρεις από αυτούς (οι n, και m ) προκύπτουν από τη μαθηματική επίλυση της εξίσωσης του Schrödinger. Πώς χαρακτηρίζονται οι Κ.Α.; Κύριος κβαντικός αριθμός (n) Δευτερεύων (ή αζιμουθιακός) κβαντικός αριθμός ( ) Μαγνητικός κβαντικός αριθμός (m ) Κβαντικός αριθμός του spin (m s )

54 Ποια είναι η σημασία των Κ.Α. Κύριος κβαντικός αριθμός (n) Επιτρεπτές τιμές: 1, 2, 3, Καθορίζει την ενέργεια του e και το μέγεθος του τροχιακού. Φλοιός ή στιβάδα: τροχιακά με τον ίδιο n. Δευτερεύων (ή αζιμουθιακός) κβαντικός αριθμός ( ) Επιτρεπτές τιμές: 0, 1, 2, (n 1) Καθορίζει το σχήμα του τροχιακού. (Υποφλοιός ή υποστιβάδα): τροχιακά με τον ίδιο. Χαρακτηρισμός υποφλοιών: τιμή του χαρακτηρισμός υποφλοιού 0, 1, 2, 3, 4, 5, s, p, d, f, g, h, Μαγνητικός κβαντικός αριθμός (m ) Επιτρεπτές τιμές: από έως + Καθορίζει τον προσανατολισμό του τροχιακού στο χώρο. Κβαντικός αριθμός του spin (m s ) Δίνει τους δύο δυνατούς προσανατολισμούς του άξονα αυτοστροφής (spin) ενός ηλεκτρονίου. Επιτρεπτές τιμές: +1/2 και 1/2

55 Επιτρεπτές τιμές κβαντικών αριθμών και ατομικά τροχιακά n Υποφλοιός m Αριθμός τροχιακών σε έναν υποφλοιό Συνολικός αριθμός τροχιακών σε έναν φλοιό 1 0 1s s p -1, 0, s p -1, 0, d -2, -1, 0, +1, s p -1, 0, d -2, -1, 0, +1, f -3, -2, -1, 0, +1, +2,

56 Άσκηση Σχέση μεταξύ των τιμών των κβαντικών αριθμών Εξακριβώστε ποιες από τις παρακάτω τριάδες κβαντικών αριθμών θα ήταν επιτρεπτές και ποιες όχι για ένα ηλεκτρόνιο ατόμου. (α) n = 0, = 0, m = 0 (β) n = 1, = 1, m = 0 (γ) n = 1, = 0, m = 0 (δ) n = 2, = 1, m = 1 (α) Μη επιτρεπτή (ο n δεν παίρνει ποτέ την τιμή 0) (β) Μη επιτρεπτή (ο δεν γίνεται ποτέ ίσος με τον n) (γ) Επιτρεπτή (δ) Επιτρεπτή

57 Άσκηση Εφαρμογή των κανόνων για τους κβαντικούς αριθμούς Εξηγήστε γιατί καθεμιά από τις παρακάτω τετράδες κβαντικών αριθμών δεν είναι επιτρεπτή για ένα τροχιακό. (α) n = 0, = 1, m = 0, m s = +1/2 (β) n = 2, = 3, m = 0, m s = 1/2 (γ) n = 3, = 2, m = +3, m s = +1/2 (δ) n = 3, = 2, m = +2, m s = 0 (α) Η τιμή του n πρέπει να είναι ένας θετικός ακέραιος αριθμός (όχι μηδέν). Εξάλλου, και αν ακόμα n = 0, οι τιμές για τους κβαντικούς αριθμούς και m δεν θα ήταν επιτρεπτές. (β) Οι τιμές του κυμαίνονται από 0 έως (n 1). Εδώ ο είναι μεγαλύτερος από τον n. (γ) Οι τιμές του m κυμαίνονται από έως +. Εδώ ο m είναι μεγαλύτερος από τον. (δ) Οι τιμές του m s είναι είτε +1/2 είτε 1/2. Εδώ ο m s είναι ίσος με μηδέν.

58 Τα σχήματα των ατομικών τροχιακών Διατομές της κατανομής ηλεκτρονικής πιθανότητας για s τροχιακά Περίγραμμα 99% Περίγραμμα 99% Τροχιακό 1s Τροχιακό 2s Σε ένα τροχιακό 1s η κατανομή ηλεκτρονικής πιθανότητα είναι μέγιστη κοντά στον πυρήνα. Σε ένα τροχιακό 2s, η εν λόγω κατανομή είναι μέγιστη σε έναν σφαιρικό φλοιό γύρω από τον πυρήνα. Επιπλέον, στο 2s υπάρχει και περιοχή μηδενικής πιθανότητας (λευκός κύκλος). Παρατηρούμε το σχετικό "μέγεθος" των τροχιακών, το οποίο οριοθετείται από τα περιγράμματα 99%.

59 Διαγράμματα αποκοπής που δείχνουν το σφαιρικό σχήμα των τροχιακών s τροχιακό 1s τροχιακό 2s Τόσο από τη μία όσο και από την άλλη σφαίρα, οι οποίες παριστάνουν τα τροχιακά 1s και 2s, έχει αποκοπεί ένα τμήμα για να αποκαλυφθεί η ηλεκτρονική κατανομή του καθενός τροχιακού στο χώρο.

60 y Τα τροχιακά 2p (Α) Ηλεκτρονική κατανομή στο τροχιακό 2p x 2p x x Η κατανομή αυτή αποτελείται από δύο λοβούς προσανατολισμένους κατά μήκος του άξονα x. z z z y y y x x x 2p x 2p y 2p z (Β) Προσανατολισμοί των τριών τροχιακών 2p Τα σχήματα δίνουν τη γενική εικόνα και τον προσανατολισμό των τροχιακών, όχι όμως τη λεπτομερή ηλεκτρονική κατανομή που δίνει το (Α).

61 z Τα πέντε τροχιακά 3d z z y y y x x x d x y 2 2 z d 2 xz z d z y y d xy x Οι χαρακτηρισμοί xy, xz, yz των d τροχιακών σχετίζονται με τις τιμές του κβαντικού αριθμού m. Το τροχιακό d z2, παρόλο που δείχνει διαφορετικό, είναι ισοδύναμο με τα υπόλοιπα d τροχιακά. Τα τροχιακά 4d, 5d, έχουν παρόμοια σχήματα. d yz x

62 Τα επτά τροχιακά 4f f 3 3 f z zr 5 x xr 5 f y 3 yr f 2 2 xyz f y( x z ) f 2 2 x( z y ) f 2 2 z( x y )

63 Ενέργειες τροχιακών για το άτομο του υδρογόνου Ενέργεια τροχιακών (σε μονάδες J) 0 1 4s 4p 4d 4f s 2s 1s 3p 2p 3d Οι μικρές γραμμές για κάθε υποφλοιό παριστάνουν τα διαφορετικά τροχιακά του συγκεκριμένου υποφλοιού. Παρατηρούμε ότι όλα τα τροχιακά με τον ίδιο κύριο κβαντικό αριθμό n έχουν την ίδια ενέργεια.

64 Άσκηση Συσχέτιση χαρακτηρισμού τροχιακών με κβαντικούς αριθμούς (α) Πώς χαρακτηρίζεται το τροχιακό με τους κβαντικούς αριθμούς n = 4, = 2 και m = 0; (β) Ποιοι είναι οι τρεις κβαντικοί αριθμοί που αντιστοιχούν στο τροχιακό 5p; (γ) Πόσα τροχιακά έχουν τις τιμές n = 5 και = 2; (α) = 2 d τροχιακό n = 4 4d τροχιακό (β) 5p n = 5, p = 1 m = +1 ή 0 ή 1 (γ) Για = 2 m = + 2, +1, 0, 1, 2 5 τροχιακά

65 Αναφορά Το υλικό της παρουσίασης προέρχεται από τις Πανεπιστημιακές παραδόσεις της καθηγήτριας Μαγδαληνής Σουπιώνη Oι εικόνες που περιέχονται στην ενότητα προέρχονται από το προσωπικό αρχείο της καθηγήτριας Μαγδαληνής Σουπιώνη

66 Σημείωμα Αναφοράς Copyright, Πανεπιστήμιο Πατρών, Μαγδαληνή Σουπιώνη. «Γενική Χημεία». Έκδοση: 1.0. Πάτρα Διαθέσιμο από τη δικτυακή διεύθυνση:

67 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί

68 Τέλος Ενότητας

Κβαντομηχανική ή κυματομηχανική

Κβαντομηχανική ή κυματομηχανική Κβαντομηχανική ή κυματομηχανική Ποια ήταν τα αναπάντητα ερωτήματα της θεωρίας του Bohr; 1. Φάσματα πολυηλεκτρονικών ατόμων 2. Κυκλικές τροχιές 3. Γιατί η ενέργεια του e είναι κβαντισμένη; Κβαντομηχανική

Διαβάστε περισσότερα

Γραμμικά φάσματα εκπομπής

Γραμμικά φάσματα εκπομπής Γραμμικά φάσματα εκπομπής Η Ηe Li Na Ca Sr Cd Οι γραμμές αντιστοιχούν σε ορατό φως που εκπέμπεται από διάφορα άτομα. Ba Hg Tl 400 500 600 700 nm Ποιο φάσμα χαρακτηρίζεται ως γραμμικό; Σχισμή Πρίσμα Φωτεινή

Διαβάστε περισσότερα

Η θεωρία του Bohr (Ατομικά φάσματα)

Η θεωρία του Bohr (Ατομικά φάσματα) Η θεωρία του Bohr (Ατομικά φάσματα) Ποιο φάσμα χαρακτηρίζουμε ως συνεχές; Φωτεινή πηγή Σχισμή Πρίσμα Φωτογραφικό φιλμ Ερυθρό Ιώδες Φάσμα ορατού φωτός: πού αρχίζει και πού τελειώνει το πράσινο; Ποιο φάσμα

Διαβάστε περισσότερα

Από τι αποτελείται το Φως (1873)

Από τι αποτελείται το Φως (1873) Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός

Διαβάστε περισσότερα

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης Χημεία Γ Λυκείου Θετικής Κατεύθυνσης Κεφάλαιο 1 Ηλεκτρονιακή δομή των ατόμων 1 Εισαγωγή Δομή του ατόμου Δημόκριτος Αριστοτέλης Dalton Thomson 400 π.χ. 350π.χ. 1808 1897 Απειροελάχιστα τεμάχια ύλης (τα

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 2: Κβαντομηχανική προσέγγιση του ατόμου

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 2: Κβαντομηχανική προσέγγιση του ατόμου Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 2: Κβαντομηχανική προσέγγιση του ατόμου Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 3: Κυματική φύση σωματιδίων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 3: Κυματική φύση σωματιδίων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 3: Κυματική φύση σωματιδίων Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να κατανοηθεί η κυματική φύση των σωματιδίων καθώς και

Διαβάστε περισσότερα

H εικόνα του ατόμου έχει αλλάξει δραστικά

H εικόνα του ατόμου έχει αλλάξει δραστικά Δομή Ατόμου και Ατομικά Τροχιακά Α Τα κλασσικά πρότυπα Η ιστορία της δομής του ατόμου (1/2) ατομική θεωρία Δημόκριτου (άτομοι) ατομική θεωρία Dalton Πλανητικό πρότυπο Rutherford πρότυπο Schrodinger 460

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ III. ΤΟ ΣΥΓΧΡΟΝΟ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ

ΕΙΣΑΓΩΓΗ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ III. ΤΟ ΣΥΓΧΡΟΝΟ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ Ν. ΜΠΕΚΙΑΡΗΣ ΕΙΣΑΓΩΓΗ Η εικόνα του ατόμου που είναι τόσο γνωστή, δηλαδή ο πυρήνας και γύρω του σε τροχιές τα ηλεκτρόνια σαν πλανήτες (το πρότυπο του Ruterford

Διαβάστε περισσότερα

Σύγχρονες αντιλήψεις γύρω από το άτομο. Κβαντική θεωρία.

Σύγχρονες αντιλήψεις γύρω από το άτομο. Κβαντική θεωρία. Σύγχρονες αντιλήψεις γύρω από το άτομο. Κβαντική θεωρία. Η κβαντική θεωρία αναπτύχθηκε με τις ιδέες των ακόλουθων επιστημόνων: Κβάντωση της ενέργειας (Max Planck, 1900). Κυματική θεωρία της ύλης (De Broglie,

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 1: Ανασκόπηση Σύγχρονης Φυσικής. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 1: Ανασκόπηση Σύγχρονης Φυσικής. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 1: Ανασκόπηση Σύγχρονης Φυσικής Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να επαναληφθούν βασικές έννοιες της Σύγχρονης Φυσικής,

Διαβάστε περισσότερα

ιστοσελίδα μαθήματος

ιστοσελίδα μαθήματος ιστοσελίδα μαθήματος http://ecourses.chemeng.ntua.gr/courses/inorganic_chemistry/ Είσοδος ως χρήστης δικτύου ΕΜΠ Ανάρτηση υλικού μαθημάτων Μάζα ατόμου= 10-24 kg Πυκνότητα πυρήνα = 10 6 tn/cm 3 Μάζα πυρήνα:

Διαβάστε περισσότερα

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το ατοµικό πρότυπο του Bohr καθώς και τα µειονεκτήµατά του. Να υπολογίζει την ενέργεια που εκπέµπεται ή απορροφάται

Διαβάστε περισσότερα

3. Το πρότυπο του Bohr εξήγησε το ότι το φάσμα της ακτινοβολίας που εκπέμπει το αέριο υδρογόνο, είναι γραμμικό.

3. Το πρότυπο του Bohr εξήγησε το ότι το φάσμα της ακτινοβολίας που εκπέμπει το αέριο υδρογόνο, είναι γραμμικό. ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 16 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ-ΠΡΟΤΥΠΟ BOHR ΟΜΑΔΑ Α Να χαρακτηρίσετε τις παρακάτω προτάσεις ως Σωστές ή Λάθος και να αιτιολογήσετε αυτές που είναι λάθος : 1.

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (2): Άτομο Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ ΚΑΙ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ ΚΑΙ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ ΚΑΙ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ Απεικόνιση ηλεκτρονίων ατόμων σιδήρου ως κύματα, διατεταγμένων κυκλικά σε χάλκινη επιφάνεια, με την τεχνική μικροσκοπικής σάρωσης σήραγγας. Δημήτρης

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ II. ΤΟ ΦΩΣ ΜΟΝΤΕΛΟ ΤΟΥ BOHR Ν. ΜΠΕΚΙΑΡΗΣ

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ II. ΤΟ ΦΩΣ ΜΟΝΤΕΛΟ ΤΟΥ BOHR Ν. ΜΠΕΚΙΑΡΗΣ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ II. ΤΟ ΦΩΣ ΜΟΝΤΕΛΟ ΤΟΥ BOHR Ν. ΜΠΕΚΙΑΡΗΣ ΕΙΣΑΓΩΓΗ Κλειδί στην παραπέρα διερεύνηση της δομής του ατόμου είναι η ερμηνεία της φύσης του φωτός και ιδιαίτερα

Διαβάστε περισσότερα

Πώς θα μπορούσαμε να μετρήσουμε τη θερμότητα μιας αντίδρασης; Θα πρέπει να βρούμε τη θερμότητα που απελευθερώνεται ή απορροφάται από μια ουσία

Πώς θα μπορούσαμε να μετρήσουμε τη θερμότητα μιας αντίδρασης; Θα πρέπει να βρούμε τη θερμότητα που απελευθερώνεται ή απορροφάται από μια ουσία Πώς θα μπορούσαμε να μετρήσουμε τη θερμότητα μιας αντίδρασης; Η μέτρηση των ποσοτήτων θερμότητας που υπεισέρχονται στα διάφορα φυσικοχημικά φαινόμενα ονομάζεται θερμιδομετρία και το όργανο που χρησιμοποιείται

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα Αδυναμίες της Κλασικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Ο Σείριος, ένα από τα θερμότερα γνωστά άστρα

Διαβάστε περισσότερα

ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης

ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης Επικ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών. Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr Τις προσεχείς ώρες θα συζητήσουμε τα πέντε πρώτα

Διαβάστε περισσότερα

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κινούμενα ηλεκτρόνια συμπεριφέρονται σαν κύματα (κύματα de Broglie)

Διαβάστε περισσότερα

Ατομικός αριθμός = Αριθμός πρωτονίων. Μαζικός αριθμός = Αριθμός πρωτονίων + Αριθμός νετρονίων (nucleon number)

Ατομικός αριθμός = Αριθμός πρωτονίων. Μαζικός αριθμός = Αριθμός πρωτονίων + Αριθμός νετρονίων (nucleon number) Δομή Ατόμου και Ατομικά Τροχιακά Ατομικός και μαζικός αριθμός Ατομικός αριθμός = Αριθμός πρωτονίων (proton number) Μαζικός αριθμός = Αριθμός πρωτονίων + Αριθμός νετρονίων (nucleon number) 2 Ισότοπα Ισοβαρή

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 3 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α. Στις

Διαβάστε περισσότερα

Κβαντομηχανική εικόνα του ατομικού μοντέλου

Κβαντομηχανική εικόνα του ατομικού μοντέλου Κβαντομηχανική εικόνα του ατομικού μοντέλου 1. Ερώτηση: Τι είναι η κβαντομηχανική; H κβαντομηχανική, είναι η σύγχρονη αντίληψη μιας νέας μηχανικής που μπορεί να εφαρμοστεί στο μικρόκοσμο του ατόμου. Σήμερα

Διαβάστε περισσότερα

Κύριος κβαντικός αριθμός (n)

Κύριος κβαντικός αριθμός (n) Κύριος κβαντικός αριθμός (n) Επιτρεπτές τιμές: n = 1, 2, 3, Καθορίζει: το μέγεθος του ηλεκτρονιακού νέφους κατά μεγάλο μέρος, την ενέργεια του τροχιακού τη στιβάδα στην οποία κινείται το ηλεκτρόνιο Όσομεγαλύτερηείναιητιμήτουn

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η σύντομη παρουσίαση μελέτης της

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Να υπολογιστεί η πιθανότερη ακτίνα, *, στην οποία θα βρίσκεται

Διαβάστε περισσότερα

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Διαβάστε περισσότερα

Κβαντικοί αριθμοί τρεις κβαντικοί αριθμοί

Κβαντικοί αριθμοί τρεις κβαντικοί αριθμοί Κβαντικοί αριθμοί Στην κβαντομηχανική εισάγονται τρεις κβαντικοί αριθμοί για τον καθορισμό της κατανομής του ηλεκτρονιακού νέφους (ατομικού τροχιακού). Οι κβαντικοί αυτοί αριθμοί προκύπτουν από την επίλυση

Διαβάστε περισσότερα

ΕΡΓΑΣΙΕΣ ΜΕ ΔΙΑΛΥΜΑΤΑ Γραμμομοριακή συγκέντρωση διαλυμάτων

ΕΡΓΑΣΙΕΣ ΜΕ ΔΙΑΛΥΜΑΤΑ Γραμμομοριακή συγκέντρωση διαλυμάτων ΕΡΓΑΣΙΕΣ ΜΕ ΔΙΑΛΥΜΑΤΑ Γραμμομοριακή συγκέντρωση διαλυμάτων Συγκέντρωση διαλύματος: ποσότητα διαλυμένης ουσίας σε καθορισμένη ποσότητα διαλύματος Αραιό διάλυμα: μικρή συγκέντρωση διαλυμένης ουσίας Πυκνό

Διαβάστε περισσότερα

Ατομική Φυσική. Η Φυσική των ηλεκτρονίων και των ηλεκτρομαγνητικών δυνάμεων.

Ατομική Φυσική. Η Φυσική των ηλεκτρονίων και των ηλεκτρομαγνητικών δυνάμεων. Ατομική Φυσική Η Φυσική των ηλεκτρονίων και των ηλεκτρομαγνητικών δυνάμεων. Μικρόκοσμος Κβαντική Φυσική Σωματιδιακή φύση του φωτός (γενικότερα της ακτινοβολίας) Κυματική φύση των ηλεκτρονίων (γενικότερα

Διαβάστε περισσότερα

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις 1 ο Κεφάλαιο Χημείας Θετικής Κατεύθυνσης Γ Λυκείου 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις 1. Η εξίσωση E = h v μας δίνει την ενέργεια μιας ηλεκτρομαγνητικής ακτινοβολίας 2. H κβαντική

Διαβάστε περισσότερα

Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s.

Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s. Κεφάλαιο 1 Το Φως Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s. Το φως διαδίδεται στο κενό με ταχύτητα περίπου 3x10 8 m/s. 3 Η ταχύτητα του φωτός μικραίνει, όταν το φως

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paula (Atkins

Διαβάστε περισσότερα

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Κβαντική µηχανική Τύχη ή αναγκαιότητα Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Ηφυσικήστόγύρισµα του αιώνα «Όλοι οι θεµελιώδεις νόµοι και δεδοµένα της φυσικής επιστήµης έχουν ήδη ανακαλυφθεί και

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ «Β ΘΕΜΑΤΑ ΑΤΟΜΙΚΑ ΜΟΝΤΕΛΑ» ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 0-05 ΘΕΜΑ B Σχέσεις μεταξύ κινητικής,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΦΥΣΙΚΗ Γ.Π. Γ Λυκείου / Το Φως 1. Η υπεριώδης ακτινοβολία : a) δεν προκαλεί αμαύρωση της φωτογραφικής πλάκας. b) είναι ορατή. c) χρησιμοποιείται για την αποστείρωση ιατρικών εργαλείων. d) έχει μήκος κύματος

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Κβαντικοί αριθμοί. l =0 υποφλοιός S σφαίρα m l =0 ένα τροχιακό με σφαιρική συμμετρία

Κβαντικοί αριθμοί. l =0 υποφλοιός S σφαίρα m l =0 ένα τροχιακό με σφαιρική συμμετρία Κβαντικοί αριθμοί Η θεωρία του Bohr χρειάζεται μόνο τον κύριο κβαντικό αριθμό η, για να καθορίσει ενέργεια για το άτομο του υδρογόνου Ε η =-2,18.10-18 /η 2 κυκλική τροχιά. και επιτρεπτή Στην κβαντομηχανική

Διαβάστε περισσότερα

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ) Κυματική εξίσωση του Schrödinger (196) Η Ψ = Ε Ψ Η: τελεστής Hamilton (Hamiltonian operator) εκτέλεση μαθηματικών πράξεων επί της κυματοσυνάρτησης Ψ. Ε: ολική ενέργεια των ηλεκτρονίων δυναμική ενέργεια

Διαβάστε περισσότερα

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κινούμενα ηλεκτρόνια συμπεριφέρονται σαν κύματα (κύματα de Broglie)

Διαβάστε περισσότερα

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης Μοριακή Φασματοσκοπία I Παραδόσεις μαθήματος Θ. Λαζαρίδης 2 Τι μελετά η μοριακή φασματοσκοπία; Η μοριακή φασματοσκοπία μελετά την αλληλεπίδραση των μορίων με την ηλεκτρομαγνητική ακτινοβολία Από τη μελέτη

Διαβάστε περισσότερα

είναι τα μήκη κύματος του φωτός αυτού στα δύο υλικά αντίστοιχα, τότε: γ. 1 Β) Να δικαιολογήσετε την επιλογή σας.

είναι τα μήκη κύματος του φωτός αυτού στα δύο υλικά αντίστοιχα, τότε: γ. 1 Β) Να δικαιολογήσετε την επιλογή σας. Β.1 Μονοχρωματικό φως, που διαδίδεται στον αέρα, εισέρχεται ταυτόχρονα σε δύο οπτικά υλικά του ίδιου πάχους d κάθετα στην επιφάνειά τους, όπως φαίνεται στο σχήμα. Οι χρόνοι διάδοσης του φωτός στα δύο υλικά

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 4: Εξίσωση Schro dinger. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 4: Εξίσωση Schro dinger. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 4: Εξίσωση Schro dinger Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η εξαγωγή της εξίσωσης Schro dinger καθώς και μια πρώτη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗ ΧΗΜΕΙΑ. Ν. Μαραβελάκη Επίκουρος Καθηγήτρια Γενικού Τµήµατος Πολυτεχνείου Κρήτης

ΑΣΚΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗ ΧΗΜΕΙΑ. Ν. Μαραβελάκη Επίκουρος Καθηγήτρια Γενικού Τµήµατος Πολυτεχνείου Κρήτης ΑΣΚΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗ ΧΗΜΕΙΑ Ν. Μαραβελάκη Επίκουρος Καθηγήτρια Γενικού Τµήµατος Πολυτεχνείου Κρήτης Χανιά Απρίλιος 011 Ασκήσεις και Λύσεις στο µάθηµα Γενική & Ανόργανη Χηµεία 1. Εάν ο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ 1 Η υπέρυθρη ακτινοβολία α συμμετέχει στη μετατροπή του οξυγόνου της ατμόσφαιρας σε όζον β προκαλεί φωσφορισμό γ διέρχεται μέσα από την ομίχλη και τα σύννεφα δ έχει μικρότερο μήκος κύματος από την υπεριώδη

Διαβάστε περισσότερα

Εργαστήριο Φυσικοχημείας Ι (ΧΗΜ-311)

Εργαστήριο Φυσικοχημείας Ι (ΧΗΜ-311) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εργαστήριο Φυσικοχημείας Ι (ΧΗΜ-311) Ενότητα: Ατομική Φασματοσκοπία Νικόλαος Στρατηγάκης, Βασίλειος Παπαδημητρίου, Δημήτριος Άγγλος Τμήμα Χημείας,Πανεπιστήμιο Κρήτης

Διαβάστε περισσότερα

Κβαντοφυσική. 3 ο Μέρος : ΠΡΑΚΤΙΚΕΣ ΔΡΑΣΤΡΙΟΤΗΤΕΣ. Διακριτά Φάσματα Εκπομπής. Η φυσική των πολύ μικρών στοιχείων με τις μεγάλες εφαρμογές

Κβαντοφυσική. 3 ο Μέρος : ΠΡΑΚΤΙΚΕΣ ΔΡΑΣΤΡΙΟΤΗΤΕΣ. Διακριτά Φάσματα Εκπομπής. Η φυσική των πολύ μικρών στοιχείων με τις μεγάλες εφαρμογές Κβαντοφυσική Η φυσική των πολύ μικρών στοιχείων με τις μεγάλες εφαρμογές 3 ο Μέρος : ΠΡΑΚΤΙΚΕΣ ΔΡΑΣΤΡΙΟΤΗΤΕΣ Διακριτά Φάσματα Εκπομπής Το Quantum Spin-Off χρηματοδοτείται από την Ευρωπαϊκή Ένωση υπό το

Διαβάστε περισσότερα

ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ. Θέμα B

ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ. Θέμα B ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ Θέμα B _70 Β. Το ηλεκτρόνιο ενός ατόμου υδρογόνου που βρίσκεται στη τρίτη διεγερμένη ενεργειακή κατάσταση (n = ), αποδιεγείρεται εκπέμποντας φωτόνιο ενέργειας Ε.Κατά τη συγκεκριμένη αποδιέγερση

Διαβάστε περισσότερα

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 2-1 Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης Εδάφια: 2.a. Η σύσταση των ατόμων 2.b. Ατομικά φάσματα 2.c. Η Θεωρία του Bohr 2.d. Η κυματική συμπεριφορά των σωμάτων: Υλικά

Διαβάστε περισσότερα

ΘΕΜΑ Β Β.1 Α) Μονάδες 4 Μονάδες 8 Β.2 Α) Μονάδες 4 Μονάδες 9

ΘΕΜΑ Β Β.1 Α) Μονάδες 4  Μονάδες 8 Β.2 Α) Μονάδες 4 Μονάδες 9 Β.1 O δείκτης διάθλασης διαφανούς υλικού αποκλείεται να έχει τιμή: α. 0,8 β. 1, γ. 1,4 Β. Το ηλεκτρόνιο στο άτομο του υδρογόνου, έχει κινητική ενέργεια Κ, ηλεκτρική δυναμική ενέργεια U και ολική ενέργεια

Διαβάστε περισσότερα

Ακτίνες επιτρεπόμενων τροχιών (2.6)

Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας το r με r n, έχουμε: Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας n=1, βρίσκουμε την τροχιά με τη μικρότερη ακτίνα n: Αντικαθιστώντας την τελευταία εξίσωση στη 2.6, παίρνουμε: Αν

Διαβάστε περισσότερα

Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΑΤΟΜΟΥ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΑΤΟΜΟΥ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΑΤΟΜΟΥ ΤΟΥ ΥΔΡΟΓΟΝΟΥ ΑΣΚΗΣΗ 1 Άτομα αερίου υδρογόνου που βρίσκονται στη θεμελιώδη κατάσταση (n = 1), διεγείρονται με κρούση από δέσμη ηλεκτρονίων που έχουν επιταχυνθεί από διαφορά δυναμικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ακτίνες Χ - Lasers Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ακτίνες Χ - Lasers Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Ακτίνες Χ - Lasers Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ

ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνσης Συντήρησης Πολιτισμικής Κληρονομιάς ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ 2 η Ενότητα Δομή των Ατόμων Δημήτριος Λαμπάκης Λεύκιππος + Δημόκριτος Η ύλη, αποτελείται

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 22: Η έννοια της σκέδασης και η εξίσωση συνέχειας στην Κβαντομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 22: Η έννοια της σκέδασης και η εξίσωση συνέχειας στην Κβαντομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 22: Η έννοια της σκέδασης και η εξίσωση συνέχειας στην Κβαντομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ Συζευγμένα ηλεκτρικά και μαγνητικά πεδία τα οποία κινούνται με την ταχύτητα του φωτός και παρουσιάζουν τυπική κυματική συμπεριφορά Αν τα φορτία ταλαντώνονται περιοδικά οι διαταραχές

Διαβάστε περισσότερα

Πώς θα μπορούσαμε να μετρήσουμε τη θερμότητα μιας αντίδρασης; Θα πρέπει να βρούμε τη θερμότητα που απελευθερώνεται ή απορροφάται από μια ουσία

Πώς θα μπορούσαμε να μετρήσουμε τη θερμότητα μιας αντίδρασης; Θα πρέπει να βρούμε τη θερμότητα που απελευθερώνεται ή απορροφάται από μια ουσία Πώς θα μπορούσαμε να μετρήσουμε τη θερμότητα μιας αντίδρασης; Η μέτρηση των ποσοτήτων θερμότητας που υπεισέρχονται στα διάφορα φυσικοχημικά φαινόμενα ονομάζεται θερμιδομετρία και το όργανο που χρησιμοποιείται

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 9 Πολυηλεκτρονιακά Άτομα Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Να προσδιοριστούν τα επίπεδα, τα οποία μπορεί να προκύψουν

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 2 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4

Διαβάστε περισσότερα

ΔΟΜΗ ΑΤΟΜΩΝ ΚΑΙ ΜΟΡΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ ΤΟΥ BOHR

ΔΟΜΗ ΑΤΟΜΩΝ ΚΑΙ ΜΟΡΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ ΤΟΥ BOHR ΔΟΜΗ ΑΤΟΜΩΝ ΚΑΙ ΜΟΡΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ ΤΟΥ BOHR Μοντέλο του Bohr : Άτομο ηλιακό σύστημα. Βασικά σημεία της θεωρίας του Bohr : 1 η συνθήκη ( μηχανική συνθήκη ) Τα ηλεκτρόνια κινούνται

Διαβάστε περισσότερα

ΤΟ ΚΒΑΝΤΟΜΗΧΑΝΙΚΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΤΟΜΟΥ

ΤΟ ΚΒΑΝΤΟΜΗΧΑΝΙΚΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΤΟΜΟΥ 682 ΤΟ ΚΒΑΝΤΟΜΗΧΑΝΙΚΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΤΟΜΟΥ Παπαχρήστου Βασίλειος Χημικός, MSc στη διδακτική της Χημείας vasipa@in.gr ΠΕΡΙΛΗΨΗ Το παρόν CD-Rom αποτελείται από τέσσερις ενότητες: Η πρώτη ενότητα αναφέρεται

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 10 Μοριακή Δομή Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 (α) Να υπολογιστεί το ολικό πλάτος του κανονικοποιημένου δεσμικού

Διαβάστε περισσότερα

1 o. Τροχιακό Κβαντικοί αριθµοί ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 11. Τροχιακό - Κβαντικοί αριθµοί

1 o. Τροχιακό Κβαντικοί αριθµοί ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 11. Τροχιακό - Κβαντικοί αριθµοί Τροχιακό - Κβαντικοί αριθµοί 11. 1 o Τροχιακό Κβαντικοί αριθµοί Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ατοµικό πρότυπο του Βοhr: Το ατοµικό πρότυπο του Βohr µπορεί να συνοψιστεί στις δύο συνθήκες του: 1η συνθήκη

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Θέμα Α ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 10 ΙΟΥΝΙΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

Η Κβαντική «επανάσταση»! Κύκλοι Μαθημάτων Σύγχρονης Φυσικής Δρ. Μιχάλης Καραδημητρίου

Η Κβαντική «επανάσταση»! Κύκλοι Μαθημάτων Σύγχρονης Φυσικής Δρ. Μιχάλης Καραδημητρίου Η Κβαντική «επανάσταση»! Κύκλοι Μαθημάτων Σύγχρονης Φυσικής Δρ. Μιχάλης Καραδημητρίου www.perifysikhs.com Η Φυσική στο γύρισμα του Αιώνα Όλοι οι θεμελιώδεις νόμοι και δεδομένα της φυσικής επιστήµης έχουν

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια πρώτη επαφή με την έννοια των τετραγωνικών

Διαβάστε περισσότερα

A.3 Ποια από τις παρακάτω ηλεκτρονιακές δομές παραβιάζει την αρχή του Pauli:

A.3 Ποια από τις παρακάτω ηλεκτρονιακές δομές παραβιάζει την αρχή του Pauli: Θέμα Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ A.1 Να διατυπώσετε την 1 η συνθήκη του Bohr για το ατομικό μοντέλο (μηχανική συνθήκη). (5 μονάδες) A.2 Να διατυπώσετε την 2 η συνθήκη του Bohr για το

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (1): Εισαγωγή στη χημεία Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ

ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ Μάθηµα 1 ο, 30 Σεπτεµβρίου 2008 (9:00-11:00). ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ Ακτινοβολία µέλανος σώµατος (1900) Plank: έδωσε εξήγηση του φάσµατος (κβαντική ερµηνεία*) ΠΑΡΑ ΟΧΗ Το φως δεν είναι µόνο κύµα. Είναι

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΡΧΗ ΜΗΝΥΜΑΤΟΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ: Τα άτομα έχουν διακριτές ενεργειακές στάθμες ΕΦΑΡΜΟΓΗ ΣΤΑ ΦΑΣΜΑΤΑ

ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ: Τα άτομα έχουν διακριτές ενεργειακές στάθμες ΕΦΑΡΜΟΓΗ ΣΤΑ ΦΑΣΜΑΤΑ ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ: Τα άτομα έχουν διακριτές ενεργειακές στάθμες ΕΦΑΡΜΟΓΗ ΣΤΑ ΦΑΣΜΑΤΑ Ένα σημαντικό αποτέλεσμα της κβαντομηχανικής θεωρίας είναι ότι τα μόρια, όχι μόνο βρίσκονται σε διακριτές ενεργειακές

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 2 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 12 Μοριακά Φάσματα Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Προσδιορισμός μήκους δεσμού Η φασματοσκοπία μικροκυμάτων μπορεί να

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 1: ΑΤΟΜΑ ΚΑΙ ΔΕΣΜΟΙ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 1: ΑΤΟΜΑ ΚΑΙ ΔΕΣΜΟΙ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 1: ΑΤΟΜΑ ΚΑΙ ΔΕΣΜΟΙ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

ΑΤΟΜΙΚΑ ΤΟΜΙΚΑ ΠΡΟΤΥΠΑ

ΑΤΟΜΙΚΑ ΤΟΜΙΚΑ ΠΡΟΤΥΠΑ ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ Thomson (σταφιδόψωμο) Rutherford (πλανητικό μοντέλο) Bohr (επιτρεπόμενες τροχιές ενεργειακές στάθμες) Κβαντομηχανική β ή (τροχιακό) ρχ 24/9/2008 1 ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ Bohr 1η Συνθήκη (Μηχανική

Διαβάστε περισσότερα

Φυσική ΙΙΙ. Ενότητα 3: Επαγωγή. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Φυσική ΙΙΙ. Ενότητα 3: Επαγωγή. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Φυσική ΙΙΙ Ενότητα 3: Επαγωγή Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Χρονικά μεταβαλλόμενο πεδίο. Κυκλικό πηνίο με 100 σπείρες και αντίσταση =5 Ω, τοποθετείται γύρω από σωληνοειδές όπως

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενότητας 4 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΘΕΜΑ Δ. Δίνονται: η ταχύτητα του φωτός στο κενό c 0 = 3 10, η σταθερά του Planck J s και για το φορτίο του ηλεκτρονίου 1,6 10 C.

ΟΡΟΣΗΜΟ ΘΕΜΑ Δ. Δίνονται: η ταχύτητα του φωτός στο κενό c 0 = 3 10, η σταθερά του Planck J s και για το φορτίο του ηλεκτρονίου 1,6 10 C. Σε μια διάταξη παραγωγής ακτίνων X, η ηλεκτρική τάση που εφαρμόζεται μεταξύ της ανόδου και της καθόδου είναι V = 25 kv. Τα ηλεκτρόνια ξεκινούν από την κάθοδο με μηδενική ταχύτητα, επιταχύνονται και προσπίπτουν

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.4: Υπολογισμός Όγκων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ IV. ΟΙ ΚΒΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΤΑ ΤΡΟΧΙΑΚΑ

ΕΙΣΑΓΩΓΗ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ IV. ΟΙ ΚΒΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΤΑ ΤΡΟΧΙΑΚΑ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ IV. ΟΙ ΚΒΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΤΑ ΤΡΟΧΙΑΚΑ Ν. ΜΠΕΚΙΑΡΗΣ ΕΙΣΑΓΩΓΗ Στο ατομικό πρότυπο του Bohr ο κύριος κβαντικός αριθμός (n) εισάγεται αυθαίρετα, για τον καθορισμό

Διαβάστε περισσότερα

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή:

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή: 54 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ 2014 ΘΕΜΑ Α Α1. Πράσινο και κίτρινο φως

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 14/09/2014 ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 14/09/2014 ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 14/09/2014 ΘΕΜΑ Α Α1. Κατά την ανάλυση λευκού φωτός από γυάλινο πρίσμα, η γωνία εκτροπής του κίτρινου χρώματος είναι:

Διαβάστε περισσότερα

Εννοιες και Παράγοντες της Ψηφιακής Επεξεργασίας Εικόνας

Εννοιες και Παράγοντες της Ψηφιακής Επεξεργασίας Εικόνας Εννοιες και Παράγοντες της Ψηφιακής Επεξεργασίας Εικόνας Δειγματοληψία Βάθος χρώματος Ψηφιακή φωτογραφική μηχανή CCD Δυναμικό Εύρος Αναπαραγωγή εικόνας Χρωματικά μοντέλα και Χρωματικοί Χώροι Το ορατό φως,

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνων

Ψηφιακή Επεξεργασία Εικόνων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 1: Εισαγωγή Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Ψηφιακή Επεξεργασία Εικόνων Γιώργος Τζιρίτας Τμήμα Επιστήμης

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 5: Κυματομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η ερμηνεία της κυματοσυνάρτησης, δηλαδή της λύσης της εξίσωσης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p University of Ioannina Deartment of Materials Science & Engineering Comutational Materials Science τική Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π1, 7146, elidorik@cc.uoi.gr cmsl.materials.uoi.gr/elidorik

Διαβάστε περισσότερα

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Εφαρμογές στη Φυσική Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Οργανική Χημεία. Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου

Οργανική Χημεία. Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου Οργανική Χημεία Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου 1. Γενικά Δυνατότητα προσδιορισμού δομών με σαφήνεια χρησιμοποιώντας τεχνικές φασματοσκοπίας Φασματοσκοπία μαζών Μέγεθος, μοριακός τύπος

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΟΠΤΙΚΗ (Πεδία και Κύµατα) Φύση του φωτός Γεωµετρική Οπτική

Διαβάστε περισσότερα

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ηλεκτρικά Κυκλώματα Γ. Βούλγαρης 2 Ασκήσεις κατανομές φορτίου 1) Ένα γραμμικό φορτίο με

Διαβάστε περισσότερα

προς τα θετικά του x άξονα. Ως κύμα η ηλεκτρομαγνητική ακτινοβολία (άρα και το φως) ικανοποιούν τη βασική εξίσωση των κυμάτων, δηλαδή: c = λf (1)

προς τα θετικά του x άξονα. Ως κύμα η ηλεκτρομαγνητική ακτινοβολία (άρα και το φως) ικανοποιούν τη βασική εξίσωση των κυμάτων, δηλαδή: c = λf (1) Φως 1 1 Φως 11 Η φύση του φωτός Το φως είναι το μέρος της ηλεκτρομαγνητικής ακτινοβολίας που διεγείρει τα κωνία και τα ραβδία του αμφιβληστροειδή χιτώνα του ματιού μας Αυτό έχει μήκος κύματος από λ 400

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΕΙΣΑΓΩΓΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΣΤΗ ΦΥΣΗ ΦΩΤΟΣ

ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΣΤΗ ΦΥΣΗ ΦΩΤΟΣ ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΣΤΗ ΦΥΣΗ ΦΩΤΟΣ 1.. Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες λανθασμένες (Λ); α. Στη διάθλαση όταν το φως διέρχεται από ένα οπτικά πυκνότερο υλικό σε ένα οπτικά αραιότερο

Διαβάστε περισσότερα

ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ ΠΕΙΡΑΙΑΣ ΤΗΛ , ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. Φως

ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ ΠΕΙΡΑΙΑΣ ΤΗΛ , ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. Φως ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Κεφάλαιο 1 ο Φως Ο μαθητής που έχει μελετήσει το κεφάλαιο του φωτός πρέπει: Να γνωρίζει πως εξελίχθηκε ιστορικά η έννοια του φωτός και ποια είναι η σημερινή

Διαβάστε περισσότερα

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10

Διαβάστε περισσότερα