ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( ("

Transcript

1 35 Þ 6 Ð Å Vol. 35 No ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ ) ( Ð ( Æ (Í ), µ ) ( Þ» ½ α- Ð Æ Ä Õ Å α- Ð Ø Æ Ä ½ Ö Ö» Ï ½ Ó Á Ï α- Ð Ø Æ Ä Ö ¾ Ó MR(2000) Å 90C26; 90C29 É O224 1 Å ËÄÜÅ Ú Ð ±Ô¾ Ý Â«Å ËÄ ÜÅ ¾ÒÛ ÐÅÎ ±Ô¾ Ù Đ ¾  ߱ ² Ç ÉÐ ¾Â ¼ ±«¾ÒÈ º [1 5].  ¾ Ï Đ ¾ ±º ±Ô¾ Ù Sheng [6] ß¼ α- ѹ ÅÉ Ü É ¾ Â Ê α- ѹ ÅÉ ¾ÇÄ Ìß¼ Đ ¾ α- ѹ Å À ¾Å Ö «α- Ñ Ù ¹ Å Đ ¾ ¼ ¾ ÔÂ Ë ¹ ¹ ƽ»µ ( ).

2 Þ 2 Ã Ì X, Y, Z Ü ÅÈ «X, Y, Z Ê X, Y, Z ¾È S Y, K Z ÆŹ S = { s Y : s (s) 0, s S } Ê S ¾ ¹ s (s) Ê s s ¾ Ü S ¾Ñ ¹Ê S i = { s Y : s (s) > 0, s S \ {θ Y } } ( θ Y Ê Y ¾ «). D X ¾ ¼ F : D 2 Y Ë G : D 2 Z Đ ³ F(D) = F(x). F ¾Æ Ë Æ ÜÊ x D graphf = { (x, y) D Y : x D, y F(x) }, epi D F = { (x, y) D Y : x D, y F(x) + S }. 1.1 [6] η : X X X «É D X η- ž α > 0 É F : D 2 Y α- Ñ S- ž ½ x 1, x 2 D, λ [0, 1], λ α F(x 1 ) + (1 λ α )F(x 2 ) F(x 2 + λη(x 1, x 2 )) + S. 1.2 η : X X X «É D X η- ž α > 0 É F : D 2 Y α- Ñ S- ž ½ θ ints, ¼ x 1, x 2 D, λ [0, 1], ε > 0 εθ + λ α F(x 1 ) + (1 λ α )F(x 2 ) F(x 2 + λη(x 1, x 2 )) + S. 1.3 [7] C X Y, C, (x 0, y 0 ) cl C, C (x 0, y 0 ) ¾ (1, α)- Ù ²¹ T (1,α) C ((x 0, y 0 )) ÜÊ X Y ¾ ¼ ³ (x, y) T (1,α) C ((x 0, y 0 )) ³ Ø h n 0 +, (x n, y n ) C, (x n, y n ) (x 0, y 0 ) (n + ), { xn x 0 (x, y) = lim, y n y } 0 n + h n h α. n 1.4 [8] F : S 2 Y, (x 0, y 0 ) graphf. epi S D α F((x 0, y 0 )) = T (1,α) epi SF ((x 0, y 0 )) ¾ É D α F((x 0, y 0 )) «Ê F (x 0, y 0 ) ¾ α- Ñ Ù 1.5 [6] C X Y. C (1, α)- Å ½ Û¾ (x 1, y 1 ), (x 2, y 2 ) C, λ [0, 1], (λx 1 + (1 λ)x 2, λ α y 1 + (1 λ α )y 2 ) C. Ì N ¾ ¾ Ì ³ Ì A, B D, A + B = {a + b : a A, b B}, A B = {(a, b) : a A, b B}. A R ( R = (, + )), A 0, Û a A, a 0. A B ² a A, b B a b.

3 6 ³ Ã Ê Æ Ä Ï Á Í À Á 2.1 η : X X X «É D X η- ž F : D 2 Y α- Ñ S- ž epi D F α- Ñ Å Ò µ (x 1, y 1 ), (x 2, y 2 ) epi D F, y 1 F(x 1 )+S, y 2 F(x 2 )+S. ÝÊ D X η- ž Ú x 2 +λη(x 1, x 2 ) D. ÝÊ F : D 2 Y α- Ñ S- ž Ú θ ints, ¼ x 1, x 2 D, λ [0, 1], ε > 0 εθ+λ α F(x 1 )+(1 λ α )F(x 2 ) F(x 2 + λη(x 1, x 2 )) + S. θ ints, ³ S ÆŹ Á εθ ints, Y ¾ ¾ V ¼ εθ + V ints. V ¾ ÐÚ ¹ ¾ ε ¼ 2εθ V. Ý εθ 2εθ = εθ ints. Ú Á λ α y 1 + (1 λ α )y 2 λ α (F(x 1 ) + S) + (1 λ α )(F(x 2 ) + S) =λ α F(x 1 ) + (1 λ α )F(x 2 ) + S =εθ + λ α F(x 1 ) + (1 λ α )F(x 2 ) + S εθ εθ + λ α F(x 1 ) + (1 λ α )F(x 2 ) + S + ints F(x 2 + λη(x 1, x 2 )) + S + S + ints F(x 2 + λη(x 1, x 2 )) + S + ints F(x 2 + λη(x 1, x 2 )) + ints F(x 2 + λη(x 1, x 2 )) + S [x 2 + λη(x 1, x 2 ), λ α y 1 + (1 λ α )y 2 ] epi D F, Õ epi D F α- Ñ Å Á 2.2 [6] C X Y «η ( [6] ¾Â C 3 ) ¾ α- Ñ Å (x 0, y 0 ) clc, T (1,α) C ((x 0, y 0 )) Õ Â«η ¾ α- Ñ Å Á 2.3 X, Y Ü ÅÈ «S Y ÆŹ³ int S. D X η- ž F : D 2 Y D α- Ñ S- ž D α F((x 0, y 0 ))(D)+intS Å D α F((x 0, y 0 ))(D) = D α F((x 0, y 0 ))(x). x D Ò λ (0, 1) λ α (0, 1). v 1, v 2 D α F((x 0, y 0 ))(D) + ints, x i D, y i D α F((x 0, y 0 ))(x i ), s i ints ¼ v i = y i + s i, i = 1, 2. s 0 = λ α s 1 + (1 λ α )s 2, ÝÊ int S Å Á s 0 ints. x i D, y i D α F((x 0, y 0 ))(x i ), i = 1, 2. Î (x 1, y 1 ) T (1,α) epi ((x DF 0, y 0 )), (x 2, y 2 ) T (1,α) epi ((x DF 0, y 0 )). F D S- Å ¾ ß 2.1 ß 2.2 T (1,α) epi ((x DF 0, y 0 )) Â«η ¾ α- Ñ Å Á Ú [x 2 + λη(x 1, x 2 ), λ α y 1 + (1 λ α )y 2 ] T (1,α) epi DF ((x 0, y 0 )). λ α D α F((x 0, y 0 ))(x 1 ) + (1 λ α )D α F((x 0, y 0 ))(x 2 ) D α F((x 0, y 0 ))(x 2 + λη(x 1, x 2 )) + S.

4 Þ λ α v 1 + (1 λ α )v 2 =λ α y 1 + (1 λ α )y 2 + S 0 λ α D α F((x 0, y 0 ))(x 1 ) + (1 λ α )D α F((x 0, y 0 ))(x 2 ) + ints D α F((x 0, y 0 ))(x 2 + λη(x 1, x 2 )) + S + ints D α F((x 0, y 0 ))(x 2 + λη(x 1, x 2 )) + ints D α F((x 0, y 0 ))(D) + ints. Á D α F((x 0, y 0 ))(D) + ints Å Á 2.4 ( ) D X η- ž S Y ÆŹ³ int S. ½ F : D 2 Y D α- Ñ S- ž ¾ (i) Ë (ii) ³ à (i) x D, ¼ D α F((x 0, y 0 ))(x) ( ints) ; (ii) y S \ {0}, ¼ D α F((x 0, y 0 ))(x), y 0, x D. Ò (i) Ë (ii) à [2] ¾ß 1.1 x D, y S \ {0}, µ D α F((x 0, y 0 ))(x) ( ints) ¼ 0 y, µ < 0, Á (i) Ë (ii) à (i) D α F((x 0, y 0 ))(x) ( ints) =, x D. (3.1) 0 D α F((x 0, y 0 ))(D) + ints. ½ 0 D α F((x 0, y 0 ))(D) + ints, x D, y D α F((x 0, y 0 ))(x) ¼ 0 y + ints, y ints, ÐÚ¼¹ y D α F((x 0, y 0 ))(x) (int S), (3.1) Ú 0 D α F((x 0, y 0 ))(D) + ints. ß 2.3 D α F((x 0, y 0 ))(D) + ints Å Ú Å y S \ {0} ¼ y + εθ, y 0, θ ints, ε > 0, y D α F((x 0, y 0 ))(D). (3.2) (3.2) ε + ¼ θ, y 0, θ ints. Û¾ θ S = cls = clints, θ, y 0. Ý y S \ {0}. (3.2) ε 0, y, y 0, y D α F((x 0, y 0 ))(D). Ý (ii) 4 ÏÆ ß º ÍÀ (VOP) min F(x), s.t. x A

5 6 ³ Ã Ê Æ Ä Ï Á 1095 A = { x X : G(x) ( K) }, F(A) = F(x). x A 4.1 [2] x 0 A Ê (VOP) ¾ Ô ºÈ y 0 F(x 0 ) ¼ (F(A) y 0 ) ( ints) =. Á 4.2 D X η- ž F : D 2 Y, G : D 2 ÊÅ Ý Z Ù ¾ Đ x 0 A Ê (VOP) ¾ Ô z 0 G(x 0 ) ( K), ϕ (x) = D α F((x 0, y 0 ))(x) (D α G((x 0, z 0 ))(x) + G(x 0 ) ( K)) : D 2 Y Z Ê α- Ñ S K- ž (s, k ) S K, ³ (s, k ) (θ Y, θ Z ) ( θ Y Ê Y ¾ «), ¼ [ inf s (D α F((x 0, y 0 ))(x)) + k (D α G((x 0, z 0 ))(x)) ] 0, (4.3) x D ³ k (G(x 0 ) ( K)) = {0}, (4.4) s (D α F((x 0, y 0 ))(x)) = s (y), k (D α G((x 0, z 0 ))(x)) = y D α F((x 0,y 0))(x) z D α G((x 0,z 0))(x) k (z), D α F((x 0, y 0 ))(x) (D α G(x 0, z 0 )(x) + G(x 0 ) ( K)) = (y, z). y D α F((x 0,y 0))(x),z D α G(x 0,z 0)(x)+G(x 0) ( K) Ò Ü 4.1 º y F(x 0 ), ¼ (F(A) y 0 ) ( ints) =. ϕ (X) = ϕ (x). ϕ (X) [ (ints intk) ] =. x X ϕ (X) [ (int S intk) ], y D α F((x 0, y 0 ))(x), z D α G((x 0, z 0 ))(x), z 0 G(x 0) ( K) ¼ (y, z + z 0) int(s K). z D α G((x 0, z 0 ))(x), Æ {t n }, t n 0, x n X, z n G(x n ) + K, x n x 0, z n z 0, ¼ (x, z) = lim n (t n(x n x 0 ), t α n(z n z 0 )). Ú z n z 0 +z 0 intk, z n z 0 z 0 intk K(n N). µ z n = z n+k n G(x n )+ K, k n K, z n G(x n)(n N), z n K k n z n K, Ú G(x n ) ( K), x n A (n N). y D α F((x 0, y 0 ))(x) ints, Ú t n, x n A, y n F(x n ) + S, ¼ (x, y) = lim n (t n(x n x 0 ), t α n (y n y 0 )).

6 Þ Ú M N, y n {y 0 } ints, n M. (F(A) y 0 ) ( ints) = Á φ (X) [ (ints intk)] =. ß 2.4 (s, k ) S K, ³ (s, k ) (θ Y, θ Z ) ¼ s ( D α F((x 0, y 0 ))(x)) + k (D α G((x 0, z 0 ))(x) + G(x 0 ) ( K)) 0, x D. (4.5) (4.5) µ x = θ Y, ¼¹ k (G(x 0 ) ( K)) 0. x 0 A, k ¾ Ü k (G(x 0 ) ( K)) 0. Ý (4.4) (4.4) ²¼ (4.5) ¼ (4.3) Ê 4.3 D X η- ž F : D 2 Y Ê Ù ¾ α- Ñ S- Å É G : D 2 Z Ê Ù ¾ α- Ñ K- Å É x 0 A Ê (VOP) ¾ Ô z 0 G(x 0 ) ( K), (s, k ) S K, ³ (s, k ) (θ Y, θ Z ), ¼ inf x D [s (D α F((x 0, y 0 ))(x)) + k (D α G((x 0, z 0 ))(x))] 0 (4.6) ³ k (G(x 0 ) ( K)) = {0}, (4.7) s (D α F((x 0, y 0 ))(x)) = s (y), k (D α G((x 0, z 0 ))(x)) = y D α F((x 0,y 0))(x) z D α G((x 0,z 0))(x) k (z). Ò φ (x) = D α F((x 0, y 0 ))(x) (D α G((x 0, z 0 ))(x) + G(x 0 ) ( K)). x i D, y i D α F((x 0, y 0 ))(x i ). ß 2.1 ß 2.2 T (1,α) T (1,α) epi DG (x 0, z 0 ) α- Ñ Å Á Õ Ë [x 2 + λη(x 1, x 2 ), λ α y 1 + (1 λ α )y 2 ] T (1,α) epi DF (x 0, y 0 ), [x 2 + λη(x 1, x 2 ), λ α z 1 + (1 λ α )z 2 ] T (1,α) epi DG (x 0, z 0 ), λ α D α F((x 0, y 0 ))(x 1 ) + (1 λ α )D α F((x 0, y 0 ))(x 2 ) epi DF (x 0, y 0 ) Ë D α F((x 0, y 0 ))(x 2 + λη(x 1, x 2 )) + S (4.8) λ α D α G((x 0, z 0 ))(x 1 ) + (1 λ α )D α G((x 0, z 0 ))(x 2 ) D α G((x 0, z 0 ))(x 2 + λη(x 1, x 2 )) + K. (4.9)

7 6 ³ Ã Ê Æ Ä Ï Á 1097 λ α (D α F((x 0, y 0 ))(x 1 ) (D α G((x 0, z 0 ))(x 1 ) + G(x 0 ) ( K))) + (1 λ α )(D α F((x 0, y 0 ))(x 2 ) (D α G((x 0, z 0 ))(x 2 ) + G(x 0 ) ( K))) =(λ α D α F((x 0, y 0 ))(x 1 ) + (1 λ α )D α F((x 0, y 0 ))(x 2 )) (λ α D α G((x 0, y 0 ))(x 1 ) + G(x 0 ) ( K)) + (1 λ α )(D α G((x 0, y 0 ))(x 2 ) + G(x 0 ) ( K)) =(λ α D α F((x 0, y 0 ))(x 1 ) + (1 λ α )D α F((x 0, y 0 ))(x 2 ))) (λ α D α G((x 0, y 0 ))(x 1 ) + (1 λ α )D α G((x 0, y 0 ))(x 2 ) + G(x 0 ) ( K)). (4.10) Ý (4.8), (4.9) Ë (4.10) ¼ λ α φ (x 1 ) + (1 λ α )φ (x 2 ) ( D α F((x 0, y 0 ))(x 2 + λη(x 1, x 2 )) + S) (D α G((x 0, z 0 ))(x 2 + λη(x 1, x 2 )) + G(x 0 ) ( K) + K ) =D α F((x 0, y 0 ))(x 2 + λη(x 1, x 2 )) (D α G((x 0, z 0 ))(x 2 + λη(x 1, x 2 )) + G(x 0 ) ( K)) + S K. Ú φ (x) α- Ñ S K- Å É 4.2 м Ë Ì [1] Jahn J, Raul R. Contingent Epiderivalives and Set-valued Optimization. Math. Meth. Oper. Res., 1997, 46: [2] Li Z. A Theorem of the Alternative and Its Application to the Optimization of Set-valued Maps. J. Optim. Theory Appl., 1999, 100(2): [3] Li Z F. Benson Proper Efficieny in the Vector Optimization of Set-valued Maps. J. Optim. Theory Appl., 1998, 98(3): [4] Yang X M, Yang X Q, Chen G Y. Theorems of the Alternative and Optimization with Set-valued Maps. J. Optim. Theory Appl., 2000, 107(3): [5] Lin L J. Optimization of Set-valued Functions. J. Math. Anal. Appl., 1994, 186: [6] Sheng B H, Liu S Y. Kuhn-tucker Condition and Wolfe Duality of Preinvex Set-valued Optimization. Appl. Math. Mech. (Engl. Ed.), 2006, 27(12): [7] Sheng B H, Liu S Y. The Generalized Optimality Conditions of Set-valued Optimization with Benson Proper Efficiency. Acta Math. Sci., 2003, 46(3): [8] Sheng B H, Liu S Y. The Optimality Conditions of Nonconvex Set-valued Vector Optimization. Acta Math. Sci. B, 2002, 22(1): 47 55

8 Þ The Derivative Type Optimality Conditions of Subpreinvex Set-valued Optimization ZHU Jianguang (College of Science, Shandong University of Science and Technology, Qingdao ) ( Hao Binbin (College of Science, China University of Petroleum, Qingdao ) ( Abstract In this paper, the concept of α-order cone subpreinvex of set-valued maps is introduced, and a derivative type theorem of the alternative for cone subpreinvex set-valued maps by the α order tangent derivative; using this theorem, the derivative type necessary optimality condition of set-valued maps are given. Key words set-valued optimization; α order tangent derivative; cone subpreinvex; theorem of the alternative; weak efficient solution MR(2000) Subject Classification 90C26; 90C29 Chinese Library Classification O224

! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C

Διαβάστε περισσότερα

) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, (  MR(2000) ß Â 49J20; 47H10; 91A10 À 34 À 3 Ù Ú ß Vol. 34 No. 3 2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, 2011 Á É ÔÅ Ky Fan Ë ÍÒ ÇÙÚ ( ¾±» À ¾ 100044) (Ø À Ø 550025) (Email: dingtaopeng@126.com) Ü Ö Ë»«Æ Đ ĐÄ Ï Þ Å Ky Fan Â Ï Ò¹Ë

Διαβάστε περισσότερα

ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55

ACTA MATHEMATICAE APPLICATAE SINICA Sep., (  MR (2000) Õ È 32C17; 32F07; 35G30; 53C55 37 5 Ó Ä Ä Vol. 37 No. 5 014 9 ACTA MATHEMATICAE APPLICATAE SINICA Sep., 014 É Ì - Î Dirichle ÓÆ ÞÝÜ ÎÞÈÅÔÅ ÅÅ 100048 E-mail: wyin@mail.cnu.edu.cn Ñ - ƱРÑĐ» ³Æ Ð Û Ò ÌĐ Ø ÕÃ Ý Caran-Harogs ÚÆ - ƱРDirichle

Διαβάστε περισσότερα

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1 Å Ü Ò ÙÐØ Ø ÍÒ Ú ÖÞ Ø Ø Ù Ó Ö Ù Ã Ø Ö Þ Ñ Ò Ù ÐÙ Ð Ò Ö Ëº Ó Ì Ä ÈÊÇÊ ÉÍÆ Æ ÃÁÀ ËÌÊÍ ËÌÁ ÁÎÇ ÄÍÁ Á ÆÌÊÇÈËÃ Ê Ä Á κ = 1.4µ ½ ½ ÁÞ ÒØÖÓÔ Ö Ð ÃÓÖ Ø Ò ÑÓ Þ Þ ÒØÖÓÔ Ó ØÖÙ ½ Ú ÔÓÑÓ Ù Ò ÜÙ ØÓØ ÐÒ Ú Ð Õ Ò Ø Ø

Διαβάστε περισσότερα

¼ ½ ¾ À Á Â Á Ã Ä Å Á Æ Ç È É È É Á Ê Ä Ã Ã Ë Ì Í Ç Á Ê Ã È Á Ê Æ Ê Ì Ä Î Í Ï Ä É È Í Ç È Í Ð Í Ä Ê Ñ Ê Ì Ä É È Í Ò Ó Ô Õ Ö Ø Ù Ú Ú Û Ü Ý Þ Ó Ø ß à á

¼ ½ ¾ À Á Â Á Ã Ä Å Á Æ Ç È É È É Á Ê Ä Ã Ã Ë Ì Í Ç Á Ê Ã È Á Ê Æ Ê Ì Ä Î Í Ï Ä É È Í Ç È Í Ð Í Ä Ê Ñ Ê Ì Ä É È Í Ò Ó Ô Õ Ö Ø Ù Ú Ú Û Ü Ý Þ Ó Ø ß à á F G H I J J K L L! " # $ % % & ' ( # ) * + ), -. - / 0 1 2 ), -. 3.. 4, 5 1 6 7 1 8 9 4 : ; < 4 = 4 < >? $ @ @ A B < < C D D E E E 1 8 9 4 >? U S U X s U V W U X X Y W U X U V W š T Z J J ^ _ h \ J F \

Διαβάστε περισσότερα

þÿ±½»åã ±½±³ºÎ½ ƱÁ¼ ³  þÿ» Á Æ Á¹±º Í ÅÃÄ ¼±Ä  þÿ ºº± Á¹Ã  ±À±½Î½

þÿ±½»åã ±½±³ºÎ½ ƱÁ¼ ³  þÿ» Á Æ Á¹±º Í ÅÃÄ ¼±Ä  þÿ ºº± Á¹Ã  ±À±½Î½ Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ Á ¼ µ¹µâ ¼Ìù Å ¼ ± º± þÿ±½»åã ±½±³ºÎ½ ƱÁ¼ ³  þÿ» Á Æ Á¹±º

Διαβάστε περισσότερα

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ Ó³ Ÿ. 2007.. 4, º 5(141).. 719Ä730 ˆ ˆ ƒˆÿ, Š ƒˆÿ ˆ Ÿ Ÿ Œ ˆ ˆ ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ Š Œ Œ ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ÖÉ Ö Ê²ÓÉ ÉÒ μéò μ ³ Õ ±μ Í É Í CO 2 O 2 ϲ μì

Διαβάστε περισσότερα

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö

Διαβάστε περισσότερα

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ ½»Åà Äɽ µ½½ ¹Î½ Ä Â þÿ±¾¹»ì³ à  º±¹ Ä Â þÿ±à ĵ»µÃ¼±Ä¹ºÌÄ Ä±Â

Διαβάστε περισσότερα

Vol.30 No ß Journal of Chinese Society for Corrosion and Protection Oct /HCO 3 3 /HCO 3 É. 2.0 cm cm 2 SiC µ Ì 2000 Å

Vol.30 No ß Journal of Chinese Society for Corrosion and Protection Oct /HCO 3 3 /HCO 3 É. 2.0 cm cm 2 SiC µ Ì 2000 Å Ð Ð 5 ² Ô Â Vol. No.5 1 1 ß Journal of Chinese Society for Corrosion and Protection Oct. 1»³ AZ91 Ð Ó± CO /HCO ¹Í Ú ¾ (± Ý Ë Ë Ó Á Ò ÀÅ ¼Á 1116) : ÔÆ À Ó ÀÓÆ À» À AZ91 É Đ Ú Ø ¾ CO /HCO ÉÕ ± (SCC) ½ Đ

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ± Ó³ Ÿ. 2010.. 7, º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ Š ˆ œ Š Œ ˆ Œ.. Ëμ μ Î ± É ÉÊÉ ³..., Œμ ± ² É Î ± ³μÉ μ Ëμ ³ μ ²Ó μéμî ÒÌ Ô² ±É μ ÒÌ Êαμ, Ö ±μéμ ÒÌ Î É Î μ É ² μ μ ³, Éμ± ³, ÒÏ ÕÐ ³ ²Ó μ Î Éμ± ²Ó. Ê

Διαβάστε περισσότερα

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ± Ó³ Ÿ. 2012.. 9, º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ Ÿ Œ Ÿ.. Ëμ μ,.. μ, Š.. ±μ Î ± É ÉÊÉ ³..., Œμ ± Ö Ì μ ÊÌ É³μ Ë μ μ ² Ö ³ ± ³ ²Ó μ³ Ö μ³ Êɱ μé 0,8 μ 1,2 Œ É μ μ ³ Ê²Ó μ É μ ±μ ²ÊÎ Ô ± Éμ μ² 5 ±Ô

Διαβάστε περισσότερα

Quick algorithm f or computing core attribute

Quick algorithm f or computing core attribute 24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute

Διαβάστε περισσότερα

Pilloras, Panagiotis. Neapolis University. þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Pilloras, Panagiotis. Neapolis University. þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Law and Social Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ ± µã¼¹º ÌÁ³±½± Ä Â ÅÁÉÀ± Pilloras, Panagiotis þÿ Á̳Á±¼¼± ¹µ ½  º±¹

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ .. ± Î,. ˆ. ³. ƒ ˆ, Œμ ±

Ó³ Ÿ , º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ .. ± Î,. ˆ. ³. ƒ ˆ, Œμ ± Ó³ Ÿ. 2010.. 7, º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ ƒ ˆ Šˆ ˆ ˆ ƒ Š.. ± Î,. ˆ. ³ ƒ ˆ, Œμ ± μí Ê μ ± É μ μ Êα Î ÉμÉ É É μ ÒÌ ±μ² Î É Í ³ Ö- É Ö - μ É Ì μé±²μ Ö μ ³ Ê²Ó Ê ( ² Î Ì μ³ É Î μ É ) ³ Ö ±Ê²μ- μ

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ± Ó³ Ÿ. 009.. 6, º 7(156.. 6Ä69 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒ ˆ - ˆ ƒ ˆ ˆ ˆŸ Š -Œ ˆ Šˆ ˆ.. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ μ ± Ê É É Ê Ò μ μ, Œμ ± É ÉÓ μ Ò ÕÉ Ö ²μ Í Ò - μ Ò ² É Ö ³ ÖÉÓ Ì ÒÎ ² ÖÌ, μ²ó ÊÕÐ Ì ±μ ± 4- μ Ò. This paper

Διαβάστε περισσότερα

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 2008.. 5, º 5(147).. 777Ä786 Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ ˆŒˆ Šˆ Œ Š ƒ ˆŒ œ ƒ - Ÿ ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ± μ, ÎÉμ ² ³ Ö Éμ³ μ-ô³ μ μ μ ±É μ³ É μ Ìμ É μ μ ³μ² ±Ê² CN CO 2 N 2. ±

Διαβάστε περισσότερα

Chitaridou, Kyriaki. Neapolis University. þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Chitaridou, Kyriaki. Neapolis University. þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Law and Social Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ ¹À»É¼±Ä ± : ½Ä±³É½¹Ã¼Ì ½ þÿ»¹äµ¹î½ ¼µÁ¹º  º±¹ Éùº þÿÿ¼ ÃÀ ½ ±Â ¼µ

Διαβάστε περισσότερα

þÿ Á±½Äà Å, šåá¹±º Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

þÿ Á±½Äà Å, šåá¹±º Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ ±¾ ± Ä Â ÃÉÃÄ Â ¹±Çµ Á¹Ã þÿ±½ ÁÉÀ ½ ŠŽ±¼¹º Í ÃÄ ÃÇ þÿ Á±½ÄÃ

Διαβάστε περισσότερα

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 2014.. 11, º 3(187).. 431Ä438 Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ ˆŒ Š Š Š ƒ ˆŸ ŠˆŒ Œ ˆ Œ Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μé É ² Ò Ê²ÓÉ ÉÒ ÊÎ Ö ³ μéò Éμ ±μ É ÒÌ Ëμ ÒÌ É Ê μ± ( É μê) Ì

Διαβάστε περισσότερα

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing 2003 61 3, 435 439 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 435 439 2 ΞΞ ( 400715), 2, 2, 2, 3/ 2 2,, 2,, Ne w Methods for the Determination of the Inclusion Constant between Procaine Hydrochloride and 2Cyclodextrin

Διαβάστε περισσότερα

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É. P13-2011-120. ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ ² μ Ê ² μ Ò É Ì ± Ô± ³ É E-mail: sobolev@nrmail.jinr.ru μ μ². ƒ., ˆ μ Œ.., μ ± Î.. P13-2011-120 É μ ± ²Ö ³ Ö μ² ÒÌ Î Ö ÒÌ ±Í Ò É Ö Ô± ³ É ²Ó Ö

Διαβάστε περισσότερα

20.2.5 Å/ ÅÃ... YD/ kod... 130

20.2.5 Å/ ÅÃ... YD/ kod... 130 Περιεχόμενα 13 Ψάχνοντας υποαπασχόληση 1 13.1 Διάλογοι.................................................. 1 13.1.1 Ÿ º Â È Ç½µ¹ Å»µ¹..................................... 1 13.1.2 Ä µãä¹±äìá¹...........................................

Διαβάστε περισσότερα

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ * 6-2008-5 Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ * ˆ ˆ ˆˆ U(VI) ˆ ˆ ˆ ˆ Š ˆ ² μ Ê ² μì ³ Ö *, μ -, μ² Ö ² μ Œ... 6-2008-5 ˆ ² μ μ Í U(VI) μî μ μ Ì ² Ð μ ±É ÒÌ μéìμ μ ˆ ² μ μ Í Ö U(VI) μî

Διαβάστε περισσότερα

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï P15-2012-75.. Ò±,. Ï ± ˆ Œ ˆŸ ˆ, š Œ ˆ ˆŒˆ Š ƒ ˆŸ ˆ ˆ, Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ ² μ Ê ² Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï Ò±.., Ï ±. P15-2012-75 ˆ ³ Ö μ Ì μ É, μ Ñ ³ ÒÌ μ É Ì ³ Î ±μ μ μ É μ Íμ Ö ÕÐ

Διαβάστε περισσότερα

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA Ó³ Ÿ. 2006.. 3, º 7(136).. 78Ä83 Š 537.533.33, 621.384.60-833 Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA ( ).. μ²éêï±,.. Ò±μ ±,. ƒ. Šμ Í,.. Šμ μé,. ˆ. μì³ Éμ,.. Œ ² Ìμ, ˆ.. Œ ϱμ,.. ²μ,.., ˆ.. ²,.. μ,.. ³ μ,. Œ. Ò,

Διαβάστε περισσότερα

Ιστοσελίδα:

Ιστοσελίδα: ½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ÌÀÄ ½ Ð Ü Ιστοσελίδα: www.telecom.tuc.gr/courses/tel412 ÌÀÄ ½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ¼ ÌÑ Ñ ÀÅÅÍ ÈÓÐÙØ ÕÒ Ó ÃÖ Ø Συνελικτικοι Κωδικες (n, k) L blocks ½ ¾ k ½ ¾ k ½ ¾ k [ ] g1 G T kl

Διαβάστε περισσότερα

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION 8 6 Ø Vol.8 No.6 6 67 677 ACTA METALLURGICA SINICA Jun. pp.67 677 (Y, Gd) O Eu + ÆÅ ³ º ½ Á ÞÐÜ ) ÓØÔ ) Ù Ò ) Ö ) Ó Ò,) Ú Õ ) ) Ä Ë Ä ÆË ½, ) ¾ ¼ ¾ ( ) ½, 6 ) Õ Ë, 89 ¹Ì Ó² Ñ (Y, Gd) O Eu + Þ, ²ßÚ ±, Í

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 2010.. 7, º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ ƒ ˆŠˆ œ Š Šˆ Š ˆ ILC Ÿ ƒ ˆ ˆ ƒ ˆ ˆŸ.. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ É ± ʲÓÉ ±μ μé± Ì Ô² ±É μ ÒÌ Î, ÉÒ ³

Διαβάστε περισσότερα

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É P13-2009-117.. μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ ² μ Ê ² μ Ò É Ì ± Ô± ³ É 1ˆ É ÉÊÉ Éμ³ μ Ô, ±Ä Ï, μ²óï 2 Ì μ²μ Î ± Ê É É, Õ ², μ²óï μ... P13-2009-117 μ ³ μ ³μ² ±Ê²Ö ÒÌ Êαμ

Διαβάστε περισσότερα

Constantinou, Andreas

Constantinou, Andreas Neapolis University HEPHAESTUS Repository School of Law and Social Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2014 þÿ ± µã¼¹º ÌÁ³±½± Ä Â ÅÁÉÀ± Constantinou, Andreas þÿ Á̳Á±¼¼± ¹µ ½  º±¹

Διαβάστε περισσότερα

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ± Ó³ Ÿ. 2009.. 6, º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ Œ ˆ ˆ Œ ˆŒ ˆ ˆ ˆ ˆ ˆ Ÿ Œ ƒ ˆ ˆŠ ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ÿ. ʲ ±μ ± ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï Œ É ³ É Î ±μ ±μ³

Διαβάστε περισσότερα

N i. D i (x) = 1 N i. D(x, x ik ). (3, 1), (3, 0.9), (3, 0.8), (3, 0.8) (4, 0), (4, 0.1), (4, 0.2). k=1. j=1

N i. D i (x) = 1 N i. D(x, x ik ). (3, 1), (3, 0.9), (3, 0.8), (3, 0.8) (4, 0), (4, 0.1), (4, 0.2). k=1. j=1 Å Ì Å ÌÁà Á Î µ ÍÔÓÖ Å Ø Ñ Ø Á Ú Ð ØÖÓØ Ò ÚØÓÖ ØÙÑ Å Ð Ø À Ò Ú Ù Ø ¾¼¼ ½ âì ÎÁÄËà ÎÊËÌ ½º Ê ÎÊâ Æ ΠÇÊ Î ÃÓ ö Ð ÑÓ Ò Ö ÞÚÖ Ò ÚÞÓÖ ÑÓ ÒÓ Ö ÞÚÖ Ø Ø ÓÞº ÓÔÖ Ð Ø ÞÖ ÙÒ ÑÓ Ö Þ Ð Ø ÚÞÓÖ Ó Ú ÞÒ Ò Ö ÞÖ ÓÚ ÚÞÓÖ

Διαβάστε περισσότερα

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION Ð 46 Ð 10 Vol.46 No.10 2010 10 Þ Ð 1153 1160 Ì ACTA METALLURGICA SINICA Oct. 2010 pp.1153 1160 18Mn TRIP Â«É ÓÙÞÔ Â ( «Õ² Û, «100083) Ñ Ò Ê ¼ XRD «EBSD À Æ ³Â «18Mn 100 500 Ð Ä Â ß. Ð Ï, 300 Ï, TRIP, Â

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )

Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( ) Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ4) Περίοδος 8-9 ΕΡΓΑΣΙΑ η Θέμα (μονάδες ) i. Δείξτε ότι ( a b) c a ( b c ) + b( a c ). a b c+ c a b+ b c a ii. Δείξτε την ταυτότητα Jacobi : ( ) ( ) ( ) Απάντηση i.

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclss.ue.gr/courses/inf6/ Άνοιξη 207 - I. ΜΗΛΗΣ ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ Divie Coquer D&C ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 207 - Ι. ΜΗΛΗΣ - 04 - DIVIDE & CONQUER I Divie & Coquer Διαίρεσε αναδρομικά το

Διαβάστε περισσότερα

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ 13-2009-159.. ƒê,.. ± É,.. Ëμ μ Š ˆŒ œ ˆ ˆ ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ ² μ Ê ² ² ±É Î É μ ƒê.., ± É.., Ëμ μ.. 13-2009-159 ± ³ É ²Ó μ ² μ Ê ² Î Ö ³ É μ μ μ²ö Ð Í ² Î ± - ³³ É Î μ μ ³ É μ ³

Διαβάστε περισσότερα

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9 Á ¹ È ÖÙÔ ½º ÖÞ ÚÓÞ Ö ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 1 = 45,0 m/s ÔÖÙ ÒÓÑ ÔÖ Ð ÞÙ Ó ÔÙØ Ñ ÒÓÖÑ ÐÒÓ Ò ÔÖ Ú ÔÖÙ Ö ÙØÓÑÓ Ð ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 2 = 15,0 m/s Ó Ò Ð º Í ÓÐ Ó Ö Ò ÚÓÞ Ñ ØÙ ÞÚÙ ÙÕ Ø ÒÓ

Διαβάστε περισσότερα

Δυναμική διαχείριση μνήμης

Δυναμική διαχείριση μνήμης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσες Προγραμματισμού ΙΙ Διδάσκοντες: Νικόλαος Παπασπύρου, Κωστής Σαγώνας

Διαβάστε περισσότερα

D F g ヾ j gj k E k j i g g ヾg g j i kg ヾ j jk g ヾ j g kg k jji g gj G k g k i g H g gh gj g g k j j IJ K L M g N li g ヾ i g IJ L O M BC

D F g ヾ j gj k E k j i g g ヾg g j i kg ヾ j jk g ヾ j g kg k jji g gj G k g k i g H g gh gj g g k j j IJ K L M g N li g ヾ i g IJ L O M BC ! "#$ % "&$ ' ( ' ))$ % *$ ' ( ' +, + + &)$ % &)$ ' ( ' + + + ' + ' ' / 0 1 2 2 3 4 5 6789 : 2 5 ; ; ;?. 2?>> ;? 2 @ >> ;? 2 @ > ; A 2A> 2 2 5 -. D E F G H IJKL M IJ N L O M BC RS TU V RSW U V

Διαβάστε περισσότερα

ƒ ˆŒ Œ ƒ ƒ ˆ ƒ ˆŠ ˆ -144

ƒ ˆŒ Œ ƒ ƒ ˆ ƒ ˆŠ ˆ -144 Ó³ Ÿ. 2012.. 9, º 4Ä5(174Ä175).. 647Ä653 ˆ ˆŠ ˆ ˆŠ Š ˆ Œ Œ ˆ Š Œ ˆ ˆ ƒ ˆŒ Œ ƒ ƒ ˆ ƒ ˆŠ ˆ -144 ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï ÔÉμ

Διαβάστε περισσότερα

þÿ ɺÁ Ä ÅÂ, ±»Î¼ Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

þÿ ɺÁ Ä ÅÂ, ±»Î¼ Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ ͽ Á ¼ µà±³³µ»¼±ä¹º  þÿµ¾ Å ½Éà  ³º» ³¹ºÎ½ ½ à þÿ ɺÁ Ä ÅÂ,

Διαβάστε περισσότερα

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ P13-2013-6.. ²ÒÏ,.. μ μ ƒ ˆ Šˆ Š Š ˆ -2Œ. Œ ƒ Š Š ˆ ˆ Ÿ ˆ ²ÒÏ.., μ μ.. P13-2013-6 É Î ± Ê ± ±Éμ ˆ -2Œ. ³ É Ò Ìμ μ μ ÔËË ±É ±É μ É μ É μ Ö μ ÖÉ Ö Ê²ÓÉ ÉÒ ² μ Ö Ìμ ÒÌ ÔËË ±Éμ ±É μ É - ±Éμ ˆ -2Œ, Ò μ² μ μ

Διαβάστε περισσότερα

þÿ µ ºÄµÂ À ¹ÌÄ Ä±Â ÃÄ

þÿ µ ºÄµÂ À ¹ÌÄ Ä±Â ÃÄ Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015-09 þÿ µ ºÄµÂ À ¹ÌÄ Ä±Â ÃÄ þÿ²¹ À±» ³¹ºÌ µá³±ãä Á¹ Avraam, Anastasia

Διαβάστε περισσότερα

þÿ ¼ ¼± Ä Â ÆÅùº  ÃÄ ½

þÿ ¼ ¼± Ä Â ÆÅùº  ÃÄ ½ Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ ¼ ¼± Ä Â ÆÅùº  ÃÄ ½ þÿ ż½±Ã Å. ÀÌȵ¹Â ¼± Äν º Likaki, Ioannis

Διαβάστε περισσότερα

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U. P6-2009-30.. Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U ² μ Ê ² μì ³ Ö, μ, μ² Ö Œ ²μ... ³ μ É Ê±ÉÊ μ μ ³ É ² ²Ö ² Ö 238U 237 U, μ²êî ³μ

Διαβάστε περισσότερα

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008. P3-2009-104.. ² ± μ ˆ ˆ Š Š ˆ œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008. ² ± μ.. ²μ μ ± μé±²μ μé ÓÕÉμ μ ±μ μ ±μ ÉÖ μé Ö μ³μðóõ É μ μ ³ ²ÒÌ Ô P3-2009-104 ÓÕÉμ

Διαβάστε περισσότερα

Εισαγωγικά. URL:

Εισαγωγικά.   URL: Ø ÖÓ Ü Ñ ÒÓ ÓØ Εισαγωγικά ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ ôò È Ö Õ Ñ Ò ½ Οργάνωση Μαθήματος Διαδικαστικά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΨΗΦΙΑΚΗ ΤΥΠΟΘΗΚΗ. Majestic

ΕΛΛΗΝΙΚΗ ΨΗΦΙΑΚΗ ΤΥΠΟΘΗΚΗ. Majestic ΕΛΛΗΝΙΚΗ ΨΗΦΙΑΚΗ ΤΥΠΟΘΗΚΗ λ Majestic Έξοχα! α Τυπογράφος Display 2013 Ξ Extraordinary Ω DEFAULT SET 48 PT STYLISTIC SET 1 16 PT Majestic Stella Project Calligraphy à la Greka DEFAULT SET 12/14 PT ΠΗΓΗ

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ 6 Ο ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ ΧΑΡΤΟΓΡΑΦΙΑ: Είναι η επιστήμη που ασχολείται με την απεικόνιση μιας γεωγραφικής ενότητας σε ένα χαρτί

Διαβάστε περισσότερα

Kyriakou, Eupraxia. Neapolis University. þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Kyriakou, Eupraxia. Neapolis University. þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2014 þÿ À±³³µ»¼±Ä¹º ¹º±½ À à ÄÉ þÿ½ ûµÅÄν À Å µá³ ½Ä±¹ à þÿ µ½¹ºì Ã

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ? Εύρεση εφαπτόμενης της γνωστό σημείο (, ( )) με την βοήθεια του ορισμού: Εάν το σημείο αλλαγής τύπου η σημείο μηδενισμού της ύπαρξης ποσότητας, εξετάζω αν η είναι παραγωγισιμη

Διαβάστε περισσότερα

þÿ µ½¹º Í Ã º ¼µ Å Æ Å.

þÿ µ½¹º Í Ã º ¼µ Å Æ Å. Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2014 þÿ À±³³µ»¼±Ä¹º ¹º±½ À à ÄÉ þÿµá³± ¼ ½É½ ÃĹ ÅÀ ÁµÃ µâ þÿ ÀµÁ ÀÄÉÃ

Διαβάστε περισσότερα

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2010.. 41.. 1 Š ƒ ˆ ˆŸ Å Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. ÉÉÊ,. Ê μ μ ± Ö μ Í Ö Ö ÒÌ

Διαβάστε περισσότερα

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ Ó³ Ÿ. 2008.. 5, º 2(144).. 219Ä225 ˆ ˆ ƒˆÿ, Š ƒˆÿ ˆ Ÿ Ÿ Œ ˆ ˆ ˆ ˆ ˆ Œ Œ ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ.. Šμ ²μ a,.. Š,.. μ ±μ,.. Ö a,.. ² ± a,.. ² Õ± a a ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ Œμ

Διαβάστε περισσότερα

þÿ ½ ÁÉÀ ºµ½ÄÁ¹º ÀÁ à ³³¹Ã Ä þÿ Á³±½Éù±º  ±»»±³  ¼ ÃÉ þÿà» Á Æ Á¹±º Í ÃÅÃÄ ¼±Ä Â.

þÿ ½ ÁÉÀ ºµ½ÄÁ¹º ÀÁ à ³³¹Ã Ä þÿ Á³±½Éù±º  ±»»±³  ¼ ÃÉ þÿà» Á Æ Á¹±º Í ÃÅÃÄ ¼±Ä Â. Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016-02 þÿ ½ ÁÉÀ ºµ½ÄÁ¹º ÀÁ à ³³¹Ã Ä þÿ Á³±½Éù±º  ±»»±³  ¼ ÃÉ þÿà»

Διαβάστε περισσότερα

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ P13-2009-166 Œ ˆŸ ˆ Œ Œ ˆ Šˆ Œ ˆ Š Š Š ˆ Š ˆ œ ˆ -2Œ Œ P13-2009-166 ² Ö É ³μ³ Ì Î ± Ì ³ Ð ±Éμ ÒÌ ±μ É Ê±Í ±É μ ÉÓ ˆ -2Œ μ²ó μ ³ μ ³³ SCALE DORT μ Î É Ò ² ² Ö Ö É ³μ³ Ì Î ± Ì ³ Ð Ëμ ³ Í ±Éμ ÒÌ ±μ É Ê±Í

Διαβάστε περισσότερα

ƒšˆœˆ Ÿ Œˆ ˆ ˆ ˆ Šˆ ƒˆÿ.. Ê μ Î ±μ

ƒšˆœˆ Ÿ Œˆ ˆ ˆ ˆ Šˆ ƒˆÿ.. Ê μ Î ±μ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2013.. 44.. 5 ƒšˆœˆ Ÿ Œˆ ˆ ˆ ˆ Šˆ ƒˆÿ.. Ê μ Î ±μ É μë Î ± É ÉÊÉ ³.. ƒ. ±μ, ˆ É ÉÊÉ Ö μ Ë ± Š, ²³ - É, Š Ì É ˆ 1535 Œ 1537 μ² Ò Î Ö Ì É 1537 μé Í ²Ò μ² μ Ò ËÊ ±Í 1539 ² Ò ³ Éμ Ò Î É 1541

Διαβάστε περισσότερα

Georgiou, Styliani. Neapolis University. þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Georgiou, Styliani. Neapolis University. þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ É ÃÇ»¹ºÌ µà±³³µ»¼±ä¹ºìâ þÿàá ñ½±Ä»¹Ã¼Ì Ãż²»»µ¹ þÿ±½ ÀÄž

Διαβάστε περισσότερα

þÿ ÀÌ Ä º± µä À ¹ ¼ ½

þÿ ÀÌ Ä º± µä À ¹ ¼ ½ Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ ÀÌ Ä º± µä À ¹ ¼ ½ þÿµºà±¹ µåä¹ºì ¹ ¹º ĹºÌ ÃÍÃÄ ¼± þÿãä ½ º±Ä±½µ¼

Διαβάστε περισσότερα

Vaitsidis, Christos. Neapolis University. þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Vaitsidis, Christos. Neapolis University. þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ Ãż²» Ä Å ¹µÅ Å½Ä ÀÁ þÿ ¼ ºÁ±Ä¹º µºà± µåã Vaitsidis, Christos

Διαβάστε περισσότερα

þÿ ±¾¹ À Ã Ä Â ÃÄÁ±Ä ³¹º Â

þÿ ±¾¹ À Ã Ä Â ÃÄÁ±Ä ³¹º  Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015-05 þÿ ±¾¹ À Ã Ä Â ÃÄÁ±Ä ³¹º  þÿ¼ à ±½±ÀÄ;  Äɽ Á³±½¹Ã þÿå³µ ±Â.œ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f( ως προς το στο σημείο 0 ;

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 5: Συναρτήσεις Πολλών Μεταβλητών Μέρος ΙI Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο

Διαβάστε περισσότερα

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200 P9-2011-62. Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200 Î.. P9-2011-62 É μ É μ μ Í μ μ Ö μ ±μ Êα Ê ±μ É ²Ö -200 É ² μ μ Ê É μ É μ Í μ μ Ö Ò ÒÌ μ - ±μ, ±μéμ μ Ö ²Ö É Ö Î ÉÓÕ É ³Ò μ É ± Êα ²

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ:28/05/2012

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ:28/05/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ:8/5/ ΘΕΜΑ Α Α. Θεωρία. Σελίδα σχολικού βιβλίου 53 Α. Θεωρία. Σελίδα σχολικού βιβλίου 9 Α3. Θεωρία. Σελίδα σχολικού βιβλίου 58

Διαβάστε περισσότερα

, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.

, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No. 212 2 28 1 Pure and Applied Mathematics Feb. 212 Vol. 28 No. 1 P bkc (c[, 1]) P bkc (L p [, 1]) (1) ( (), 364) (G, β, u),,, P bkc (c[, 1]) P bkc (L p [, 1]),. ; ; O174.12 A 18-5513(212)1-99-1 1, [2]. 1965,

Διαβάστε περισσότερα

Š ˆ ˆ Šˆ Šˆ ˆ Šˆ ˆ Š ˆˆ ˆ Ÿ Œ ƒ ˆ œ Šˆ ˆ ˆ Š Œ 1 n 1,6

Š ˆ ˆ Šˆ Šˆ ˆ Šˆ ˆ Š ˆˆ ˆ Ÿ Œ ƒ ˆ œ Šˆ ˆ ˆ Š Œ 1 n 1,6 Ó³ Ÿ. 2013.. 10, º 3(180).. 376Ä388 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ Š ˆ ˆ Šˆ Šˆ ˆ Šˆ ˆ Š ˆˆ ˆ Ÿ Œ ƒ ˆ œ Šˆ ˆ ˆ Š Œ 1 n 1,6.. Œ Ì,.. É±μ ±μ μ Ê É Ò Ê É É, Ó, μ Ö μé Ò μ± μ ² Î ± É Î ± Ì ÉμÎ ± ÉμÎ ± ËÊ ± Í Ê Ð ÕÐ Ì

Διαβάστε περισσότερα

Ó³ Ÿ , º 4(140).. 559Ä570. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. .. ²μ ±μ,.. Šμ μ μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 4(140).. 559Ä570. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. .. ²μ ±μ,.. Šμ μ μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 27.. 4, º 4(14).. 559Ä57 Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ ˆ Š ˆ ˆŒ ˆ ƒ ˆ Š ˆ.. ²μ ±μ,.. Šμ μ μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μé É ² ² É Ê±ÉÊ Ò Ô± ³ É ²Ó ÒÌ ² ³Ö μ Î ²Ê É ÒÌ ( Š) μ² Ë ÊÕÐ Ì ( Š) ±² Éμ± ³ É ³ Ì ±μ ϱμ μ

Διαβάστε περισσότερα

þÿ ±¾¹»Ì³ Ã Ä Â ±ÀÌ Ã Â Äɽ þÿ Ãͽ µã Ä Â ¼µ Ä ½ ±¼ ¹² Vasileiou, Nikoletta Neapolis University þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

þÿ ±¾¹»Ì³ Ã Ä Â ±ÀÌ Ã Â Äɽ þÿ Ãͽ µã Ä Â ¼µ Ä ½ ±¼ ¹² Vasileiou, Nikoletta Neapolis University þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2014 þÿ ±¾¹»Ì³ Ã Ä Â ±ÀÌ Ã Â Äɽ þÿ ¼Ìùɽ ÅÀ±»»»É½ Ä Â šíàá þÿ Ãͽ µã

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2010

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2010 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 00 ΘΕΜΑ Α Στις ερωτήσεις Α-Α3 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

NONLINEAR DYNAMICS ANALYSIS OF ALUMINUM HONEYCOMB SANDWICH PLATE WITH COMPLETED CLAMPED SUPPORTED

NONLINEAR DYNAMICS ANALYSIS OF ALUMINUM HONEYCOMB SANDWICH PLATE WITH COMPLETED CLAMPED SUPPORTED Ô Vol. No. 22 995» ACTA METALLURGICA SINICA Aug. 22 pp.995 Al ÂÑ ÐÕ ÌÖ Ü Ú,2) «Æ ) 2) 2) ) Ê Ë, 9 2) ¼, 9 ÈÉ ½È ½È, ±Ð Al Æ «ÌĐÝ. à ² Ì ÐÖ, À Hamilton ½Ø «³ ÏÚ ¹À ̳ÒÚ, Â¼Ú ÝÞ Ú «Ì³Ò Ú Ñ ÖÌ Å, Ä À Runge

Διαβάστε περισσότερα

Antoniou, Antonis. Neapolis University. þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Antoniou, Antonis. Neapolis University. þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ µà¹² ÁÅ½Ã Ä Â ¹º ³ ½µ¹±Â þÿæá ½Ä µ¹ ¼»  ¼µ Ãǹ Æ Antoniou, Antonis

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ƒ. ˆ. μ μ. Í μ ²Ó Ò ² μ É ²Ó ± Í É ŠÊ Î Éμ ± É ÉÊÉ, Œμ ± Ÿ ˆ ˆ Š Ÿ ˆ ˆ Š Ÿ ˆ Œ ˆ ˆ Š Ÿ ˆŸ - ˆˆ 1375

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ƒ. ˆ. μ μ. Í μ ²Ó Ò ² μ É ²Ó ± Í É ŠÊ Î Éμ ± É ÉÊÉ, Œμ ± Ÿ ˆ ˆ Š Ÿ ˆ ˆ Š Ÿ ˆ Œ ˆ ˆ Š Ÿ ˆŸ - ˆˆ 1375 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2011.. 42.. 5 ˆ Šˆ ˆ Š ˆŒ œ ˆ ˆ Šˆ Œ - ˆˆ ƒ. ˆ. μ μ Í μ ²Ó Ò ² μ É ²Ó ± Í É ŠÊ Î Éμ ± É ÉÊÉ, Œμ ± ˆ 1372 Ÿ ˆ ˆ Š Ÿ ˆ ˆ Š Ÿ ˆ Œ ˆ ˆ Š Ÿ ˆŸ - ˆˆ 1375 Š ˆŒ œ ˆ ˆ Šˆ Œ - - ˆˆ 1409 Œˆ ˆ ˆ Šˆ

Διαβάστε περισσότερα

þÿ ÄÁ±Ä ³¹º µå ųÁ ¼¼¹Ã Äɽ þÿãåãä ¼ Äɽ E R P / C R M ³¹± Ä

þÿ ÄÁ±Ä ³¹º µå ųÁ ¼¼¹Ã Äɽ þÿãåãä ¼ Äɽ E R P / C R M ³¹± Ä Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ ÄÁ±Ä ³¹º µå ųÁ ¼¼¹Ã Äɽ þÿãåãä ¼ Äɽ E R P / C R M ³¹± Ä þÿ

Διαβάστε περισσότερα

þÿµ½ ÃÇ»¹º  ² ±Â ÃÄ ÃͳÇÁ þÿ ¼ ĹºÌ ÃÇ»µ

þÿµ½ ÃÇ»¹º  ² ±Â ÃÄ ÃͳÇÁ þÿ ¼ ĹºÌ ÃÇ»µ Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿÿ ÁÌ» Â Ä Â µºà±¹ µå乺  ³µ þÿãä ½ ±½Ä¹¼µÄÎÀ¹Ã Ä Â þÿµ½ ÃÇ»¹º

Διαβάστε περισσότερα

NUMERICAL SIMULATION OF WELDING RESIDUAL STRESSES IN A MULTI PASS BUTT WELDED JOINT OF AUSTENITIC STAINLESS STEEL USING VARIABLE LENGTH HEAT SOURCE

NUMERICAL SIMULATION OF WELDING RESIDUAL STRESSES IN A MULTI PASS BUTT WELDED JOINT OF AUSTENITIC STAINLESS STEEL USING VARIABLE LENGTH HEAT SOURCE 46 2 Vol.46 No.2 21 2 195 ACTA METALLURGICA SINICA Feb. 21 pp.195 Đ ³ Ì Ó Ö ßß Öß ¼»¹ ( À ÅÈ, 445) ½º¾ ( Þ, «½ 142 41, ¾ ) Р º À ½Ê ß Û ¹Ä Ñ», À Ðû Üß Û. ĐºÑÜÆ ßÜÖß Û Đ ÃÛ ÜÖßà ± Ü, Ð À Û ßÑ», ½ ÂÓ

Διαβάστε περισσότερα

þÿ ±Á±² ±Ã Äɽ ¹º±¹É¼ Äɽ

þÿ ±Á±² ±Ã Äɽ ¹º±¹É¼ Äɽ Neapolis University HEPHAESTUS Repository School of Law and Social Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2016-03 þÿ ±Á±² ±Ã Äɽ ¹º±¹É¼ Äɽ þÿཱུ弱乺  ¹ ¹ ºÄ à ±Â ÃÄ þÿ ¹± ºÄÅ ¼ ñ

Διαβάστε περισσότερα

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION Õ 48 Õ 12 Vol.48 No.12 212 Û 12 Õ 151 1519 Í ACTA METALLURGICA SINICA Dec. 212 pp.151 1519 Æ È ÒÕ Þ Đ ÕÜÌÏ Ê ³ 1) µ²¹ 1) ½ 1) ¼ º 2) 1) ĐÔ CAD Ñ Á ¼, 23 2), Õ ÄÅËÏ, ÆÂ Ô Avrami Æ Ú ¾, ÀÂÏ º Ñ ¼Å ¾,  È

Διαβάστε περισσότερα

þÿà±á±º ½ à  ÃÄ ÇÎÁ Ä Â Å³µ

þÿà±á±º ½ à  ÃÄ ÇÎÁ Ä Â Å³µ Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿœ ½Ä»± ³µÃ ±Â º±¹ ĵǽ¹º  þÿà±á±º ½ à  ÃÄ ÇÎÁ Ä Â Å³µ þÿ Á¹ÃÄ

Διαβάστε περισσότερα

Ó³ Ÿ , º 5(196) Ä1111

Ó³ Ÿ , º 5(196) Ä1111 Ó³ Ÿ. 2015.. 12, º 5(196).. 1100Ä1111 Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ Š ˆŒ Œ ˆ ƒ ˆˆ ˆˆ Œ œ ˆ Š Š.. ² ± μ,.. ʲÖ, Œ.. ² ³ μ,.ˆ.ƒ ²±,,. ƒ. ±μ,,. ƒ. ³ ±μ,,.. Šμ μ ²μ,. ²²,. Š. Œ,. ˆ. Ê ±,. ƒ. μ²êì, 1,. Œ. μ μ, Š. μ,. ˆ.

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1 P13-2011-43 Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1 Š ˆ ˆ Œ Š Œ ˆ Š ˆ - ˆ ˆ Œ ˆ ˆŸ ² μ Ê ² μ Ò É Ì ± Ô± ³ É 1 Í μ ²Ó Ò ÊÎ μ-êî Ò Í É Ë ± Î É Í Ò μ± Ì Ô -

Διαβάστε περισσότερα

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB] (Akihiko Inoue) Graduate School of Science, Hiroshima University (Yukio Kasahara) Graduate School of Science, Hokkaido University Mohsen Pourahmadi, Department of Statistics, Texas A&M University 1, =

Διαβάστε περισσότερα

þÿä  ¹±Æ ÁµÄ¹ºÌÄ Ä±Â

þÿä  ¹±Æ ÁµÄ¹ºÌÄ Ä±Â Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿÿ ÁÌ» Â Ä Å ¹µÅ Å½Ä Ä Å Ã þÿãä ¹±Çµ Á¹Ã Ä Â µäµáìä ı þÿä  ¹±Æ

Διαβάστε περισσότερα

þÿ ÀÍÁ Å, µ ÆÍı Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

þÿ ÀÍÁ Å, µ ÆÍı Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ à ¼±Ã ± Ä Â µà¹º ¹½É½ ±Â þÿåà ÁµÃ µâ ųµ ±Â þÿ ÀÍÁ Å, µ ÆÍı

Διαβάστε περισσότερα

Ó³ Ÿ , º 2(186).. 177Ä Œ. Š Ö,.. Ì Ö,.. ± Ö,, 1,.. ƒê, 2. μ ±μ- ³Ö ± ( ² Ö ± ) Ê É É, ± μ Ê É Ò Ê É É, Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 2(186).. 177Ä Œ. Š Ö,.. Ì Ö,.. ± Ö,, 1,.. ƒê, 2. μ ±μ- ³Ö ± ( ² Ö ± ) Ê É É, ± μ Ê É Ò Ê É É, Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 14.. 11, º (186).. 177Ä185 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ Š Ÿ Œ œ Œ Š ƒ Œ ƒ ˆŸ. Œ. Š Ö,.. Ì Ö,.. ± Ö,, 1,.. ƒê, μ ±μ- ³Ö ± ( ² Ö ± ) Ê É É, ± μ Ê É Ò Ê É É, Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³± Ì É Í μ μ É μ μ ³ÊÐ ³μÉ

Διαβάστε περισσότερα

1.ΑΡΙΣΤΑ ΚΑΤΑ PARETO ΣΗΜΕΙΑ

1.ΑΡΙΣΤΑ ΚΑΤΑ PARETO ΣΗΜΕΙΑ 1 of 23 vector maxmzaton 1.ΑΡΙΣΤΑ ΚΑΤΑ PRETO ΣΗΜΕΙΑ Τα αριστα κατα παρετο σημεια,η διανυσματικα μεγιστα, οριζονται παντα ως προς n μια συναρτηση στοχου της μορφης f( x = ( f ( x, f ( x,..., f ( x, xîr,και

Διαβάστε περισσότερα

Some New Friedrichs-Type Inequalities in Domains with Microinhomogeneous Structure

Some New Friedrichs-Type Inequalities in Domains with Microinhomogeneous Structure LICENTIATE T H E SIS Some New Friedrichs-Type Inequalities in Domains with Microinhomogeneous Structure Yulia Koroleva Luleå University of Technology Some New Friedrichs-Type Inequalities in Domains with

Διαβάστε περισσότερα

Š Œ Ÿ ˆ Œ ˆŠ ƒ Š Œ Š Ÿ ˆ DC-60

Š Œ Ÿ ˆ Œ ˆŠ ƒ Š Œ Š Ÿ ˆ DC-60 Ó³ Ÿ. 2008.. 5, º 4(146).. 655Ä674 ˆ ˆŠ ˆ ˆŠ Š ˆ Š Œ Ÿ ˆ Œ ˆŠ ƒ Š Œ Š Ÿ ˆ DC-60.. ƒ ± ²,.. Ìμ³ μ, Œ.. μ,.. ÒÏ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ μ ±Êʳ μ É ³Ò Í ±²μÉ μ μ μ ±μ³ ² ± ÉÖ ²ÒÌ μ μ DC-60, μ - μ μ μ Éμ Ö

Διαβάστε περισσότερα

Reading Order Detection for Text Layout Excluded by Image

Reading Order Detection for Text Layout Excluded by Image 19 5 JOURNAL OF CHINESE INFORMATION PROCESSING Vol119 No15 :1003-0077 - (2005) 05-0067 - 09 1, 1, 2 (11, 100871 ; 21IBM, 100027) :,,, PMRegion,, : ; ; ; ; :TP391112 :A Reading Order Detection for Text

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2004.. 35.. 5 Š 539.12.01 ˆ ˆ Š œ Ÿ Š Ÿ ˆŸ Ÿ ƒ.. Ë ³µ Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ 1116 Š ˆ ˆ ŒŸ Œ ˆŠ 1119 Š Ÿ ˆŸ Ÿ ˆ Œ Š œ ˆ 1121 Š Ÿ ˆŸ Ÿ Š œ Œ ˆŒ ˆ Œ 1130 Š ˆ Œ ˆ Š Ÿ Š Ÿ ˆŸ Ÿ 1134 ˆ ˆ œ

Διαβάστε περισσότερα

Œ ˆ ˆŸ Šˆ œ ˆŒŒ ˆˆ ˆ..

Œ ˆ ˆŸ Šˆ œ ˆŒŒ ˆˆ ˆ.. ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2009.. 40.. 7 ˆ ˆ Šˆ ˆ ˆ ˆ Šˆ Š Œ ˆ ˆŸ Šˆ œ ˆŒŒ ˆˆ ˆ.. Î ± É ÉÊÉ ³..., Œμ ± ˆ 103 Šˆ œ Œ Š ˆ ˆ 106 ˆˆ ˆ ˆŸ Šˆ œ ˆ 114 Š Š ˆˆ ˆˆ Ÿ ˆ œ ƒ Œ Šˆ- œ œ? 116 ˆ ƒ Œ Šˆ œ œ œ Œ Ÿ ˆ ˆ ˆŸ ˆ ˆ Š ƒ

Διαβάστε περισσότερα

Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê

Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2003.. 34.. 7 Š 524.8+[530.12:531.51] Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ 138 Š Šˆ Š Š ˆ ˆ Š Œ ƒˆˆ 140 Š Œ ƒˆÿ œ 141 Š Ÿ Š Œ ƒˆÿ 143 ˆ Ÿ Š Œ ƒˆÿ ˆ Œ 144 ˆŸ Ä ˆ Œ

Διαβάστε περισσότερα

U(t,x) R m w i, i = 1,2,... t = τ i W R p º f(t,x,u) g(x,w) (t,x,u) [t 0,+ ) R n R m (x,w) R n R p ¹ U(t,x) (t,x) [t 0,+ ) R n

U(t,x) R m w i, i = 1,2,... t = τ i W R p º f(t,x,u) g(x,w) (t,x,u) [t 0,+ ) R n R m (x,w) R n R p ¹ U(t,x) (t,x) [t 0,+ ) R n ¾¼½ º þ º ¾ µ ½ º º º ü üü üþ þ þ º º ¹ º ¹ º þ ½ ¹ M. = { (tx) [t 0 ) R n : x M(t) } ¹ º ¹ Mº x(tx 0 ) freq(x) ¹ M [0] x(tx 0 ) M(t) º ¹ freq (x) freq (x)º ¹ κ κ [0] ¹ º þ ¹ freq (x) κ freq (x) κ. ¹ º

Διαβάστε περισσότερα

þÿ½ ûµÅĹº Í ÀÁ ÃÉÀ¹º Í

þÿ½ ûµÅĹº Í ÀÁ ÃÉÀ¹º Í Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ ² ± ÃÄ ÇÎÁ µá³±ã ±Â Ä Å þÿ½ ûµÅĹº Í ÀÁ ÃÉÀ¹º Í þÿœ¹ç±», œ¹ç»

Διαβάστε περισσότερα

Galois and Residuated Connections on Sets and Power Sets

Galois and Residuated Connections on Sets and Power Sets Galois and Residuated Connections on Sets and Power Sets Yong Chan Kim 1 and Jung Mi Ko 2 Department of Mathematics, Gangneung-Wonju National University, Gangneung, 201-702, Korea Abstract We investigate

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ Από προηγούμενες τάξεις γνωρίζουμε τις παρακάτω ιδιότητες

Διαβάστε περισσότερα