2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10"

Transcript

1 À 34 À 3 Ù Ú ß Vol. 34 No Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, 2011 Á É ÔÅ Ky Fan Ë ÍÒ ÇÙÚ ( ¾±» À ¾ ) (Ø À Ø ) ( Ü Ö Ë»«Æ Đ ĐÄ Ï Þ Å Ky Fan Â Ï Ò¹Ë Þ Å Ä Ï ¾Ïº»«Æ Ky Fan Ï Ò¹ Ç Ì ÙÞ (1) Ky Fan Ç Fan-Browder ÊÂÇ Ö (2) ÙÞ ÐÇ Nash Ö ÏÇ ÃÎ Ky Fan Ï Ç ÊÂÇ Nash Ö MR(2000) ß Â 49J20; 47H10; 91A10 Þ Â O177.9; O178; O225 1 ØÕ 1995 [1] ÆÕÊ Ky Fan Á Ò X Å φ : X X R y X, φ(y, y) 0, ß x X, y X, φ(x, y) 0. x µ Ý φ Ky Fan Á ²Òµ Ky Fan Á Ö Ky Fan ƹ Ñ Ê x Î Æ [2], Ú Ñµ Ky Fan ½ Ky Fan Ê Ì ß ÀÎ ½ Ò Ê µ ØÝ [3,4]. Ò Ky Fan [1 4] : 1.1 X Hausdorff ÀÎ Ø E ½ºÅ φ : X X R (1) Í y X, x φ(x, y) à «2010 Ñ Ñ 4 12 Ù 973 (2010CB732501) ÐØ ¹ ( ) ¼¹Ã

2 3 Ù Óǵ»«Æ Ä Þ Ky Fan ÆÛ Ì ÙÞ 527 (2) Í x X, y φ(x, y) Æ«(3) Í y X, φ(y, y) 0, x X, y X, φ(x, y) 0. ¼ ÕßØÝ µ Ú Ê ± Ú Á [5] ¼ÊÝ ½Î [6] Ý ÆÝ Î¹ ÐÄ ºÎ [5,7] Ý ÅÎ Ã Î [8] Ê ÄÈÊ Ky Fan [4,9] Í Ky Fan ÚØÝÅ ÐÄ ºÎ¼ Ý Ã ÎÒ ½Î ß Ý Ky Fan [10]. 1.2 (Ky Fan ) X Hausdorff ÀÎ Ø E ½Å Å Ü F : X 2 X x X, F(x) E Å Þ x 0 F(x 0 ) ºÅ ÚÍ X ½Å {x 1, x 2,, x n }, CO{x 1, x 2,, x n } n F(x i ), F(x) Ø. 2 Ky Fan ÛÓ x X Ý Ã Îß ºÎ¹ Ky Fan Á Î 2.1 X Hausdorff ÀÎ Ø E ½½Å Ý φ : X X R (1) Í y X, φ(y, y) 0; (2) Í x X, {y X : φ(x, y) > 0} ½Å«(3) y 0 X, cl X {x X : φ(x, y 0 ) 0} ºÅ Ú cl X B Å B X x X Î Í Ô y X, Ž {x α } α I X, x α x, φ(x α, y) 0 Ͳ α I  ( Í Ô y X, Ò x ÔÍ N(x ), x α N(x ), φ(x α, y) 0). ÆÕÅ Ü F : X 2 X F(y) = {x X : φ(x, y) 0}, y X. й (1) Í y X, F(y) F KKM Ü Í ½Å {y 1, y 2,, y n } X, CO {y 1, y 2,, y n } Đ ½Å {y 1, y 2,,y n } X, α i 0, n F(y i ). (2.1) n α i = 1, x 0 = n α i y i n F(y i ). ÐÜ F ÆÕ φ(x 0, y i ) > 0 Í i = 1, 2,,n  y i {y X : φ(x 0, y) > 0}. й (2), Í x 0 X, Å {y X : φ(x 0, y) > 0} ½ ²Ò

3 528 Ù Þ 34 x 0 = n α i y i {y X : φ(x 0, y) > 0}, φ(x 0, x 0 ) > 0, ¹ (1) Î Ö¼ F KKM Ü «Å Ü F : X 2 X F(y) = cl X (F(y)), y X. Đ Í y X, F(y) Å ¹ (3) F(y0 ) º Ð F(y) F(y) Ò (2.1) Í ½Å {y 1, y 2,, y n } X, CO {y 1, y 2,,y n } n F(y i ). ½ F : X 2 X Ky Fan ( 1.2) ±¹ Ö¼ F(y) Ø. y X x F(y), x F(y) = cl X (F(y)) Í y X Â Í y X, y X Ž {x α } α I F(y), x α x. Ð x α F(y),  φ(x α, y) 0 Ͳ α I  Ky Fan ÁÂ Æ 2.1 Á x µ Ky Fan Á ØÝÆ 2.1, Ky Fan Á Î 2.2 X Hausdorff ÀÎ Ø E ½½Å Æ Ý φ, ψ : X X R (1) Í y X, ψ(y, y) 0; (2) Í x X, {y X : ψ(x, y) > 0} ½Å«(3) y 0 X, cl X {x X : ψ(x, y 0 ) 0} º«(4) Í {y X : φ(x, y) > 0} Ø x X, y X, x int X {x X : ψ(x, y ) > 0}, Ú int X B Å B X ÁÅ x X, y X, φ(x, y) 0. й (1) (3) Ý ψ : X X R Æ 2.1 ±¹ Ö¼Ý ψ Ky Fan Á x X. ¼ x Ý φ Ky Fan Á Đ y 0 X, φ(x, y 0 ) > 0, {y X : φ(x, y) > 0} Ø. й (4), Í x X, y 0 X x int X {x X : ψ(x, y 0 ) > 0}, x Í N(x ), ψ(x, y 0 ) > 0 Í x N(x )  Πx Ý ψ Ky Fan Á ½ Í y 0 ß x Í N(x ), x α N(x ), ψ(x α, y 0 ) 0. ψ(x, y 0 ) > 0 Í x N(x )  Π2.1 Æ 2.2 Ý φ ² ¹»Ð Ý ψ ½ ÊÍÝ φ ¾ ß 2.2 Ó Æ 2.2 Ò [4] Æ 3.3.2, Æ 3.3.6, Æ 3.3.7, [5] Æ 2, [6] Æ 3.2, [7] Æ 2.1 Ú Á 2.3 X Hausdorff ÀÎ Ø E ½½Å Ý φ : X X R (1) Í y X, φ(y, y) 0; (2) Í x X, {y X : φ(x, y) > 0} ½Å«

4 3 Ù Óǵ»«Æ Ä Þ Ky Fan ÆÛ Ì ÙÞ 529 (3) y 0 X cl X {x X : φ(x, y 0 ) 0} º«(4) Í {y X : φ(x, y) > 0} Ø x X, y X, x int X {x X : φ(x, y ) > 0}, x X, y X, φ(x, y) 0. Æ 2.2 ψ = φ 2.3 y φ(x, y) ½ Æ 2.3 ¹ (2) x φ(x, y) X Ã Æ 2.3 ¹ (4) ²ÒÆ 2.1, Æ 2.2, Æ 2.3 ½Ò Õ Ê Ky Fan ( 1.1): (1) ºÎ«(2) ÊÝ ½Î¹ «(3) ÊÝ Ã Î ß 2.4 X Hausdorff ÀÎ Ø E ½º½Å Ý φ : X X R (1) Í y X, φ(y, y) 0; (2) Í x X, {y X : φ(x, y) > 0} ½Å«(3) Í {y X : φ(x, y) > 0} Ø x X, y X, x int X {x X : φ(x, y ) > 0}, x X, y X, φ(x, y) 0. Ö X E º½Å Æ 2.3 ¹ (3) ¾Đ ²Ò Æ Â ÐÆ 2.2 [9] Æ [9] X Hausdorff ÀÎ Ø E ½½Å Æ Ý φ, ψ : X X R (1) φ(x, y) ψ(x, y), x, y X, Þ ψ(y, y) 0, y X; (2) Í y X, x φ(x, y) à «(3) Í x X, {y X : ψ(x, y) > 0} ½«(4) ºÅ K X ß y 0 K, x X\K, φ(x, y 0 ) > 0, x K, y X, φ(x, y) 0. Æ 2.2 ¹ (1), (2), (4) Đ ³¹ (3) Ð ¹ (1) ß (4), Å {x X : ψ(x, y 0 ) 0} {x X : φ(x, y 0 ) 0} K. K X ºÅ Ô cl X {x X : ψ(x, y 0 ) 0} K ºÅ ½ X ºÅ Ó Æ 2.2, x X, y X, φ(x, y) 0. x X\K φ(x, y 0 ) > 0, ²Ò x K. 2.5 X Hausdorff ÀÎ Ø E ½Å Ý φ : X X R (1) Í y X, φ(y, y) 0; (2) Í x X, {y X : φ(x, y) > 0} ½Å«(3) X Ì ½ºÅ {X n } n=1, X 1 X 2 X 3, X = n=1 X n, ÞÍ X {x n } n=1, x n X n, Þ n, x m X n, n 0 y n0 X n0, φ(x n0, y n0 ) > 0; (4) n = 1, 2,, Í {y X n : φ(x, y) > 0} Ø x X n, y n X n, x int Xn {x X n : φ(x, y ) > 0}.

5 530 Ù Þ 34 x X, y X, φ(x, y) 0. n = 1, 2,,X n ½ºÅ x X n, {y X n : φ(x, y) > 0} = X n {y X : φ(x, y) > 0} ½Å «Ð (1), (4), φ X n X n Æ 2.4 ±¹ Ö ¼ x n X n, y X n, φ(x n, y) 0. Ì N, {x n } n=1 X N, n, x m X n. Ó (3), n 0 y n0 X n0, φ(x n0, y n0 ) > 0, y X n, φ(x n, y) 0 Î Ö¼ N, {x n } n=1 X N. Ö X N ºÅ x n x X N X(n ). Ò x φ Ky Fan Á y 0 X, φ(x, y 0 ) > 0. Ö X 1 X 2 X 3, X = n=1 X n, Ô M N, y 0 X M, Þ n M, y 0 X n. Ö φ(x, y 0 ) > 0, Ô n M, {y X n : φ(x, y) > 0} Ø, Ð (4), y n X n x X n Í U(x ), x U(x ), φ(x, y n) > 0. Ö x n x (n ), Ô n ( n M) x n U(x ), ½ φ(x n, y n ) > 0, y X n, φ(x n, y) 0 Î Ô x φ Ky Fan Á 2.4 Æ 2.5 [11] Æ 2.1 Õ 3 Ì Ê Ky Fan Ï Æ Fan-Browder À Ä µ Ñ Æ 2.2 Ƴ Ë ØÝ Ñ Ky Fan ³ Æ ß Fan- Browder ÉÁÆ Õ 3.1 X Hausdorff ÀÎ Ø E ½½Å A, B X X (1) Í y X, (y, y) B; (2) Í x X, Å {y X : (x, y) B} ½«(3) y 0 X, cl X {x X : (x, y 0 ) B} º«(4) Í {y X : (x, y) A} Ø x X, y X x int X {x X : (x, y ) B}, x X, {x } X A. 3.1 Æ 2.2 Æ 3.1. ÆÕÆ Ý φ, ψ : X X R φ(x, y) = { 0, (x, y) A, 1, (x, y) A, ψ(x, y) = { 0, (x, y) B, 1, (x, y) B, x, y X. (a) Í y X, й (1), ψ(y, y) = 0; (b) Í x X, й (2), Å {y X : ψ(x, y) > 0} = {y X : ψ(x, y) = 1} = {y X : (x, y) B} ½«

6 3 Ù Óǵ»«Æ Ä Þ Ky Fan ÆÛ Ì ÙÞ 531 (c) Ó ¹ (3), Á y 0, Å cl X {x X : ψ(x, y 0 ) 0} = cl X {x X : ψ(x, y 0 ) = 0} = cl X {x X : (x, y 0 ) B} ºÅ«(d) x X {y X : φ(x, y) > 0} Ø, {y X : (x, y) A} Ø. й (4), y X, x int X {x X : (x, y ) B}. {x X : (x, y ) B} = {x X : ψ(x, y ) = 1} = {x X : ψ(x, y ) > 0}, ²Ò x int X {x X : ψ(x, y ) > 0}. ¼Ý φ, ψ Æ 2.2 ±¹ ½ x X, y X, φ(x, y) 0, φ(x, y) = 0 Ͳ y X  {x } X A. 3.2 X Hausdorff ÀÎ Ø E ½½Å Æ Å Ü M, N : X 2 X (1) Í y X, y N(y); (2) Í x X, N(x) ½«(3) y 0 X, cl X (X\N 1 (y 0 )) º«(4) Í M(x) Ø x X, y X x int X N 1 (y ), x X, M(x ) = Ø. 3.2 Æ 3.1 Æ 3.2. Å A = {(x, y) X X : y M(x)}, B = {(x, y) X X : y N(x)}. (a) ¹ (1) Í y X, (y, y) B; (b) й (2), Í x X, Å {y X : (x, y) B} = {y X : y N(x)} = N(x) ½«(c) Ó ¹ (3), y 0» Å cl X {x X : (x, y 0 ) B} = cl X {x X : y 0 N(x)} = cl X (X\N 1 (y 0 )) º«(d) x X {y X : (x, y) A} Ø, A ÆÕ ¼ M(x) Ø. Ó ¹ (4), y X, x int X N 1 (y ). «B ÆÕ x int X {x X : (x, y ) B}. Ó Æ 3.1, x X, {x } X A. A ÆÕ ¼ y M(x ) Ͳ y X  ²Ò M(x ) = Ø. 3.3 Æ 3.2 Æ 2.2. ÆÕÆ Å Ü M, N : X 2 X M(x) = {y X : φ(x, y) > 0}, N(x) = {y X : ψ(x, y) > 0}, x X, (a) Í y X, й (1), ψ(y, y) 0, ÆÕ y N(y);

7 532 Ù Þ 34 º«(b) Í x X, й (2), N(x) = {y X : ψ(x, y) > 0} ½«(c) Ó ¹ (3), y 0» Å cl X (X\N 1 (y 0 )) = cl X {x X : y 0 N(x)} = cl X {x X : ψ(x, y 0 ) 0} (d) x X M(x) Ø, {y X : φ(x, y) > 0} = M(x) Ø. Ó ¹ (4), y X, x int X {x X : ψ(x, y ) > 0}. ºÔ {x X : ψ(x, y ) > 0} = {x X : y N(x )} = N 1 (y ), ²Ò x int X N 1 (y ). ¼Æ 3.2 ¹ ± ²Ò x X, M(x ) = Ø, y M(x ) Ͳ y X  ½ φ(x, y) 0 Ͳ y X  ² Æ 2.2 Æ 3.1 Æ 3.2 Æ 2.2, ²ÒÆ 2.2, Æ 3.1, Æ 3.2 «3.3 X Hausdorff ÀÎ Ø E ½½Å A X X (1) Í y X, (y, y) A; (2) Í x X, Å {y X : (x, y) A} ½«(3) y 0 X, cl X {x X : (x, y 0 ) A} º«(4) Í {y X : (x, y) A} Ø x X, y X x int X {x X : (x, y ) A}, x X, {x } X A. Æ 3.1 A = B 3.4 X Hausdorff ÀÎ Ø E ½½Å A X X (1) Í y X, (y, y) A; (2) Í x X, Å {y X : (x, y) A} ½«(3) y 0 X, {x X : (x, y 0 ) A} º«(4) Í y X, Å {x X : (x, y) A} Å Å x X, {x } X A. Æ ¹ ÅÜÊÆ 3.3 ¹ ²Ò  3.1 Ky Fan ³ Æ [10] Â Æ 3.1, Æ 3.3 ßÆ 3.4 Ë ºÎ 3.5 X Hausdorff ÀÎ Ø E ½½Å Å Ü N : X 2 X (1) Í x X, N(x) ½«(2) y 0 X, cl X (X\N 1 (y 0 )) º«(3) Í x X, y X x int X N 1 (y ), x X, x N(x ). Æ Â Í y Y, y N(y). Å Ü M : X 2 X, Í x X, M(x) Ø (Á M(x) X, x X), й (3), y X x int X N 1 (y ). «Ð¹ (1)(2) Æ 3.2 ¹ ± x X,

8 3 Ù Óǵ»«Æ Ä Þ Ky Fan ÆÛ Ì ÙÞ 533 M(x ) = Ø, M : X 2 X Å Ü Î ²Ò  x X, x N(x ). 3.6 X Hausdorff ÀÎ Ø E ½½Å Å Ü N : X 2 X (1) Í x X, N(x) ½«(2) y 0 X, X\N 1 (y 0 ) º«(3) Í y X, N 1 (y) Å Å x X, x N(x ). Æ ¹ ÅÜÊÆ 3.5 ¹ ²Ò  3.7 X Hausdorff ÀÎ Ø E ½ºÅ Å Ü N : X 2 X (1) Í x X, N(x) ½Å«(2) Í x X, y X, x int X N 1 (y ), x X, x N(x ). Ö X º½Å Æ 3.5 ¹ (2) Đ «Ð¹ (1)(2) Æ 3.5 ¹ ± 3.2 Æ 3.5, Æ 3.6, Æ 3.7 Ò Á (1) ºÎ«(2) ßÅ Ü ( Ü ) ÁÁ ( ) «(3) ßÅ Ü ÁÁ «(4) Å Ü ( ) à Π½ ÕÊ Fan-Browder ÉÁÆ [12]. 3.3 [8] ÛÆ 3.7, Øݳ Ñ Ê Tarafdar É ÁÆ [13] ß [9] Æ Nash È ÛÓ I = {1, 2,, n} Å i I, X i i ³ Å X = n X i. Í i I, Xî = X j, f i : X R i Ý Ú³ j I\i x = (x 1, x 2,,x n ) X i I, f(x i, x î ) = max u i X i f(u i, x î ), x µ ¼ n Nash Õ Á Ú x î = (x 1,, x i 1, x i+1,,x n ) X î, x = (x i, x î ). 4.1 i I, X i Hausdorff ÀÎ Ø E i ½½Å f i : X R (1) x X, { n y X : f i (y i, xî) > r(x) } ½Å Ú r(x) = n f i (x); { n (2) y 0 X, cl X x X : f i (yi 0, x ) n f î i (x i, xî) } º«(3) Í { y X : x int X { x X : n f i (y i, xî) > n n f i (y i, x ) > n f i (x î i, x )}. î ¼ Nash Õ Á f i (x i, xî) } Ø x X, y X

9 534 Ù Þ 34 ÆÕÝ φ : X X R φ(x, y) = n [f i (y i, xî) f i (x i, xî)], x = (x 1, x 2, x n ), y = (y 1, y 2,, y n ) X. Ó y X, φ(y, y) = 0; x X, {y X : φ(x, y) > 0} ½Å«y 0» Å cl X {x X : φ(x, y 0 ) 0} º«Í {y Y : φ(x, y) > 0} Ø x X, y Y, x int X {x X : φ(x, y ) > 0}. Ó Æ 2.3, x X, y X, φ(x, y) 0, n [f i (y i, x ) n f i (x î i, x )] 0 Í y = (y 1, y 2,, y n ) î  i I, u i X i, Ï y = (u i, x ), î φ(x, y) = f i (u i, x ) f i(x î i, x ) 0, î f(x i, x ) = max f(u i, x ), i I. ²Ò î u i X i î x ¼ Nash Õ Á 4.2 i I, X i Hausdorff ÀÎ Ø E i ½½Å f i : X R (1) x X, y n f i (y i, xî) X Æ«{ n (2) y 0 X, cl X x X : f i (yi 0, x ) n f î i (x i, xî) } º«(3) n f i X à «(4) y X, x n f i (y i, xî) X à ¼ Nash Õ Á Ó Æ ¹ (1) ÅÜÆ 4.1 ¹ (1); Æ ¹ (3), (4) ÅÜÆ 4.1 ¹ (3), Ö¼ Æ Â ÐÆ 4.2 ² [4] Æ 4.2.4, ³ [14] Æ 14 ¼ ¼ 4.1 i I, X i Hausdorff ÀÎ Ø E i ½º½Å, f i : X R x X, y n f i (y i, xî) X Æ«n f i X à «y X, x n f i (y i, xî) X à ¼ Nash Õ Á 4.1 (² [4, 14]) X ß Y Hausdorff ÀÎ Ø Ý f : X Y R Ã Å Ü G : Y 2 X Ã Þ º Ý g(y) = max f(x, y) Y x G(y) à 4.3 i I, X i Hausdorff ÀÎ Ø E i ½ºÅ f i : X R (1) f i X à «(2) xî Xî, k = 1, 2,, {y i X i : f i (y i, xî) > M k (xî)} ½Å Ú M k (xî) = max u i X i f i (u i, xî) 1/k; (3) x X, y X, x int X {x X : f i (y i, x î ) > M k(x î )}. ¼ Nash Õ Á k = 1, 2,, ÆÕÅ Ü Ì N k : X 2 X

10 3 Ù Óǵ»«Æ Ä Þ Ky Fan ÆÛ Ì ÙÞ 535 N k (x) = n { } y i X i : f i (y i, xî) > max f i (u i, xî) 1/k, u i X i Ð (1), x X, M k (xî) ÔÕ«Ð (2), x X, N k (x) ½Å«ºÔ y X, Ð (3), x X, y x k N k (x k ), Ö X = n n N 1 k (y) = { } x X : f i (y i, xî) > max f i (u i, xî) 1/k, u i X i i I, X, x int X N 1 k (y ). Ó Æ 3.7, x k X, X i ºÅ x k x. f i (x k i, x k î ) > max u i X i f i (u i, x k î ) 1/k. Ö f i à Р4.1, xî max f i (u i, xî) à ²Ò f i (x i, u x ) max f i (u i, x ). i X i î u i X i î x i X i, ²Ò f i (x i, x ) = î max f i (x i, x ), x i X i î x ¼ Nash Õ Á ÐÆ 4.3 ² [4] Æ [14] Æ 16, ³ [15] Æ 2.1 ¼ 4.2 i I, Xi Hausdorff ÀÎ Ø E i ½ºÅ f i : X R f i X à «xî Xî, y i f i (y i, xî) X i Æ«x i X i, xî f i (y i, xî) Xî à ¼ Nash Õ Á ÝÑ ²É Æ É Ê Ñ Ê Ï Ô Ð [1] Tan K K, Yu J, Yuan X Z. The Stability of Ky Fan s Points. Proc. Amer. Math. Soc., 1995, 123: [2] Fan Ky. A Minmax Inequality and Its Applications. In: Inequalities III, edited by O. Shisha. New York: Academic Press, 1972 [3] Yuan X Z. Knaster-Kuratowski-Mazurkiewicz Theorem. Ky Fan Minimax Inequalities and Fixed Point Theorems. Nonlin. World, 1995, 2: [4] Á ¾Å º 2008 (Yu J. Game Theory and Nonlinear Analysis. Beijing: Science Press, 2008) [5] Bianchi M, Schaible S. Equilibrium Problems under Generalized Convexity and Generalized Monotoncity. J. Global Optim., 2004, 30: [6] Bianchi M, Pini R. Coercivity for Equilibrium Problems. J. Optim. Theory Appl., 2005, 124(1): [7] Fakhar M, Zafarani J. Equilibrium Problems in The Quasimonotone Case. J. Optim. Theory App1., 2005, 126(1):

11 536 Ù Þ 34 [8] ÔÈ ÅÉ È Æ ÈÀ Ü Í ÐÛ Đ Ð, 2009, 52(3): (Peng D T. New Existence Theorem for Vector Equilibrium Problem and Its Equivalent Version with Applications. Acta Math. Sinica, 2009, 52(3): [9] ¾ Û ¾Å º 2004 (Zhang C J. Set-valued Analysis and It s Applications in Economics. Beijing: Science Press, 2004) [10] Fan Ky. A Generalization of Tychonoff s Fixed-point Theorem. Math. Ann., 1961, 142: [11] Banach ± Ky Fan Ã Æ Đ Ð, 2008, 31(1): (Yu J. The Existence of Ky Fan s Points over Reflexive Banach Spaces. Acta Math. Appl. Sinica, 2008, 31(1): ) [12] Browder F E. The Fixed Point Theory of Multi-valued Mappings in Topological Vectoe Spaces. Math. Ann., 1968, 177: [13] Tarafdar E. Five Equivalent Theorems on a Convex Subset of a Topological Vector Space. Comment. Math. Univ. Carolinae, 1989, 30(2): [14] Nash Æ Ð È Đ, 2002, 22(3): (Yu J. The Existence and Stability of Nash Equilibrium. J. Sys. Sci. & Math. Scis., 2002, 22(3): ) [15] Tan K K, Yu J. Existence Theorem of Nash Equilibria for Non-cooperative N-person Games, Int. J. Game Theory, 1995, 24: Ky Fan s Inequalities for Discontinuous Functions on Non-compact Set and Its Equivalent Version with Their Applications PENG Dingtao (School of Science, Beijing Jiaotong University, Beijing ) (School of Science, Guizhou University, Guizhou, Guiyang ) ( Abstract The existence of weakly Ky Fan s point for the functions with no continuity on the non-compact set is proved. Based on this result, the Ky Fan s inequality is generalized to the functions with weak continuity, weak convexity and without compactness of the set. Author also give two equivalent versions for the result. As applications, (1) Ky Fan s section theorem and Fan-Browders s fixed point theorem are generalized; (2) some new existence theorems of Nash equilibria for n-person non-cooperative games are proved. Key words Ky Fan s inequality; existence; section theorem; fixed point theorem; Nash equilibrium MR(2000) Subject Classification 49J20; 47H10; 91A10 Chinese Library Classification O177.9; O178; O225

Είδη Ζωγραφικής. BIC Kids - Μαρκαδόροι - Ξυλομπογιές - Κηρομπογιές

Είδη Ζωγραφικής. BIC Kids - Μαρκαδόροι - Ξυλομπογιές - Κηρομπογιές Είδη Ζωγραφικής BIC Kids - Μαρκαδόροι - Ξυλομπογιές - Κηρομπογιές Mαρκαδόροι Μελάνι μεγάλης διάρκειας με βάση το νερό Μελάνι που αφαιρείται εύκολα από το δέρμα και τα ρούχα Ζωντανά χρώματα Μεσαία μύτη:

Διαβάστε περισσότερα

20.2.5 Å/ ÅÃ... YD/ kod... 130

20.2.5 Å/ ÅÃ... YD/ kod... 130 Περιεχόμενα 13 Ψάχνοντας υποαπασχόληση 1 13.1 Διάλογοι.................................................. 1 13.1.1 Ÿ º Â È Ç½µ¹ Å»µ¹..................................... 1 13.1.2 Ä µãä¹±äìá¹...........................................

Διαβάστε περισσότερα

Είδη Ζωγραφικής. BIC Kids - Μαρκαδόροι - Ξυλομπογιές - Κηρομπογιές

Είδη Ζωγραφικής. BIC Kids - Μαρκαδόροι - Ξυλομπογιές - Κηρομπογιές Είδη Ζωγραφικής BIC Kids - Μαρκαδόροι - Ξυλομπογιές - Κηρομπογιές Mαρκαδόροι Κουτί x 12 τεμαχίων Μελάνι μεγάλης διάρκειας με βάση το νερό Μελάνι που αφαιρείται εύκολα από το δέρμα και τα ρούχα Ζωντανά

Διαβάστε περισσότερα

Πρότυπα. ΙωάννηςΓºΤσ ούλος

Πρότυπα. ΙωάννηςΓºΤσ ούλος Πρότυπα ΙωάννηςΓºΤσούλος ¾¼ ½ Συναρτήσειςπροτύπων Μετιςσυναρτήσειςπροτύπωνμπορούμενακάνουμεσυναρτήσειςοιοποίεςεκτελούντονίδιοκώδικα γιαδιαφορετικούςτύπουςδεδομένων όπωςπαρουσιάζεται καιστοεπόμενοπαράδειγμαºοιδηλώσειςσυναρτήσεωνμετηνχρήση

Διαβάστε περισσότερα

http://hdl.handle.net/11728/6817 Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository

http://hdl.handle.net/11728/6817 Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository Neapolis University HEPHAESTUS Repository School of Law and Social Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ ÅÁÉÀ±Êº ˆ½Éà º±¹ ı ±½ þÿ º º±, œ±á ± þÿ Á̳Á±¼¼± ¹µ ½  º±¹ ÅÁÉÀ±ÊºÌ

Διαβάστε περισσότερα

þÿ¼ ¹ ±¾¹»Ì³ Ã Â Ä Å þÿ±½ ÁÎÀ¹½ ŠŽ±¼¹º Í

þÿ¼ ¹ ±¾¹»Ì³ Ã Â Ä Å þÿ±½ ÁÎÀ¹½ ŠŽ±¼¹º Í Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿÿá³ ½Éà º±¹ ¹ ¹º à ±½ ÁÉÀ þÿàìáé½ ÃÄ ÃƱ Á± Ä Å ¼ à þÿä ¼ ± :

Διαβάστε περισσότερα

x E[x] x xµº λx. E[x] λx. x 2 3x +2

x E[x] x xµº λx. E[x] λx. x 2 3x +2 ¾ λ¹ ÐÓÒ Ó ÙÖ ½ ¼ º õ ¹ ¹ ÙÖ ¾ ÙÖ º ÃÐ ¹ ½ ¼º ¹ Ð Ñ ÐÙÐÙ µ λ¹ λ¹ ÐÙÐÙ µº λ¹ º ý ½ ¼ ø λ¹ ÃÐ º λ¹ ÌÙÖ Ò ÌÙÖ º ÌÙÖ Ò ÚÓÒ Æ ÙÑ ÒÒ ¹ ÇÊÌÊ Æ Ä Çĺ ý λ¹ ¹ º Ö ÙØ ÓÒ Ñ Ò µ Ø ¹ ÓÛ ÓÑÔÙØ Ö µ ¹ λ¹ º λ¹ ÙÒØ ÓÒ Ð

Διαβάστε περισσότερα

Hydraulic network simulator model

Hydraulic network simulator model Hyrauc ntwor smuator mo!" #$!% & #!' ( ) * /@ ' ", ; -!% $!( - 67 &..!, /!#. 1 ; 3 : 4*

Διαβάστε περισσότερα

41. ΛΕΟ ΣΧΗΕΥ ΜΕΜΟΡΙΑΛ 2014 ΣΤΑΡΤΙΝΓ ΟΡ ΕΡ

41. ΛΕΟ ΣΧΗΕΥ ΜΕΜΟΡΙΑΛ 2014 ΣΤΑΡΤΙΝΓ ΟΡ ΕΡ ΧΗΙΧΚΣ ΓΙΡΛΣ ΦΡΕΕ ΣΚΑΤΙΝΓ 1 Μαριλενα ΚΡΟΒΟΤ ΑΥΤ 2 Λαρα ΗΥΝΤΕΡ ΑΥΤ 3 Νατ λια ΟΣΤΡΟΛ ΧΚΑ ΣςΚ 4 ςανεσσα ΣΕΛΜΕΚΟςI ΣςΚ 5 ιανα ΤΟΛΚΑΧΗ ΕΝ 6 Γιυλιανα ΛΟ ΕΡ ΑΥΤ 7 Αλισαη ΡΕΙΤΕΡΕΡ ΑΥΤ 8 Αρινα ΡΨΚΟςΑ ΡΥΣ πριντεδ

Διαβάστε περισσότερα

P13-2014-14. .. ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy

P13-2014-14. .. ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy P13-2014-14.. ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3,,. ʳÌÊÊ Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ Ÿ ˆ ˆŸ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ ² μ Ê ² Annals of Nuclear Energy 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 ² ² Œƒ Œˆ, Ê, μ Ö 3 ˆ É ÉÊÉ Ë ± É Ì μ²μ Œ,

Διαβάστε περισσότερα

K K 1 2 1 K M N M(2 N 1) K K K K K f f(x 1, x 2,..., x K ) = K f xk (x k ), x 1, x 2,..., x K K K K f Yk (y k x 1, x 2,..., x k ) k=1 M i, i = 1, 2 Xi n n Yi n Xn 1 Xn 2 ˆM i P (n) e = {( ˆM 1, ˆM2 )

Διαβάστε περισσότερα

ÍÒ Ú Ö Ø Ð Ù ÖÒ Ö ÄÝÓÒ Á ÁÒ Ø ØÙØ È Ý ÕÙ ÆÙÐ Ö ÄÝÓÒ Ì ÓØÓÖ Ø ËÔ Ð Ø È Ý ÕÙ Ô ÖØ ÙÐ ØÙ Ù Ò Ð À ¼ ¼ ÙÜ ÓÐÐ ÓÒÒ ÙÖ ÖÓÒ ÕÙ Ø ÒØ Ö Ð Ö Ø ÓÒ Ù ÐÓÖ Ñ ØÖ Ù ÊÙÒ ÁÁ Ù Ì Ú ØÖÓÒº Ô Ö È ÖÖ ¹ ÒØÓ Ò Ð ÖØ ËÓÙØ ÒÙ Ð ½

Διαβάστε περισσότερα

Κατοικίδια και ζώα της φάρμας 978-960-566-195-3. Σελίδες: 32 // Τιμή: 3,70. Τα λουλούδια. 978-960-566-473-2 Σελίδες: 32 // Τιμή: 3,70

Κατοικίδια και ζώα της φάρμας 978-960-566-195-3. Σελίδες: 32 // Τιμή: 3,70. Τα λουλούδια. 978-960-566-473-2 Σελίδες: 32 // Τιμή: 3,70 x Προσχολική Αγωγή Χρώματα, Σχήματα, Γραμμές 978-960-566-192-2 Τιμή: 5,50 Πλανήτες 978-960-566-197-7 Τα γράμματα 978-960-566-474-9 Άγρια ζώα και ζώα της θάλασσας 978-960-566-193-9 Τιμή: 5,50 ÆÕÒÏ Κατοικίδια

Διαβάστε περισσότερα

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Α.Σ.ΠΑΙ.Τ.Ε.) «Αρχιμήδης ΙΙΙ Ενίσχυση Ερευνητικών ομάδων στην Α.Σ.ΠΑΙ.Τ.Ε.» Υποέργο: 8 Τίτλος: «Εκκεντρότητες αντισεισμικού σχεδιασμού ασύμμετρων

Διαβάστε περισσότερα

Mαρκαδόροι. Κουτί x 12 τεμαχίων

Mαρκαδόροι. Κουτί x 12 τεμαχίων Mαρκαδόροι Μελάνι μεγάλης διάρκειας με βάση το νερό Μελάνι που αφαιρείται εύκολα από το δέρμα και τα ρούχα Ζωντανά χρώματα Μεσαία μύτη: Ιδανική για σχεδίαση και ζωγραφική Κουτί x 12 τεμαχίων 3 270220 00272

Διαβάστε περισσότερα

Š ƒ ˆŠ œ ˆ ˆ ˆ Œ ƒ ˆ Š ˆˆ Š

Š ƒ ˆŠ œ ˆ ˆ ˆ Œ ƒ ˆ Š ˆˆ Š Ó³ Ÿ. 204.., º 4(88).. 768Ä776 ˆ ˆŠ ˆ ˆŠ Š ˆ Š ƒ ˆŠ œ ˆ ˆ ˆ Œ ƒ ˆ Š ˆˆ Š Š ˆ Œ ˆ Š Œ ˆ Œ. Œ. Ò Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ËË ±É μ ÉÓ ³ μ μμ μ μé μ ±Í μ μ μ²ó μ ³ Ô² ±É μ μ μ μì² Ö É μé ÊÌ ³ É μ : ÔËË ±É μ É

Διαβάστε περισσότερα

Role of Alumina Support in Cobalt Fischer-Tropsch Synthesis

Role of Alumina Support in Cobalt Fischer-Tropsch Synthesis Øyvind Borg Role of Alumina Support in Cobalt Fischer-Tropsch Synthesis Thesis for the degree of doktor ingeniør Trondheim, April 2007 Norwegian University of Science and Technology Faculty of Natural

Διαβάστε περισσότερα

ΕΥΧΑΡΙΣΤΙΕΣ. Θεσσαλονίκη, Δεκέμβριος 2005. Κώστας Δόσιος

ΕΥΧΑΡΙΣΤΙΕΣ. Θεσσαλονίκη, Δεκέμβριος 2005. Κώστας Δόσιος ΕΥΧΑΡΙΣΤΙΕΣ Μου δίνεται η ευκαιρία με την περάτωση της παρούσης διδακτορικής διατριβής να σημειώσω ότι, είναι ιδιαίτερα δύσκολο και κοπιαστικό να ολοκληρώσεις το έργο που ξεκινάς κάποια στιγμή έχοντας

Διαβάστε περισσότερα

µ µ µ ¾¼¼ ¹ º ¹ º ¹ º º ¹ º þ º ¹ º º º º º ÓÔÝÖ Ø º º º º º º º º º ¹ º º ýº ¹ º º º º º º º Ú Ú Ú ½ ½ ½º½ º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ º º º º º º º º º º º º º º º

Διαβάστε περισσότερα

þÿº±¹ ¹ ¹ÉĹºÎ½ š ÃÄ ½»» ±.

þÿº±¹ ¹ ¹ÉĹºÎ½ š ÃÄ ½»» ±. Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2014 þÿ ½»Åà ±½Ä±³É½¹ÃĹº Í þÿ໵ ½µºÄ ¼±Ä  ¼µÄ±¾Í ¼ þÿº±¹ ¹ ¹ÉĹºÎ½

Διαβάστε περισσότερα

solid Design & Manufacturing

solid Design & Manufacturing από το σχεδιασμό... from design...... στην υλοποίηση... to implementation μελέτη και σχεδιασμός / research and design παραγωγή / production ποικιλία χρωμάτων / variety of colours εφαρμογή / applications

Διαβάστε περισσότερα

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z)

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z) 1 ιανυσματικοί χώροι Άσκηση 1.1 Στο σύνολο R 3 όλων των διατεταγμένων τριάδων διατηρούμε την πρόσθεση, που ορίσαμε στο αντίστοιχο παράδειγμα, και ορίζουμε εξωτερικό πολλαπλασιασμό με τη σχέση λ(a 1,a 2,a

Διαβάστε περισσότερα

athanasiadis@rhodes.aegean.gr , -.

athanasiadis@rhodes.aegean.gr , -. παιδαγωγικά ρεύµατα στο Αιγαίο Προσκήνιο 88 - * athanasiadis@rhodes.aegean.gr -., -.. Abstract The aim of this survey is to show how students of the three last school classes of the Primary School evaluated

Διαβάστε περισσότερα

Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration. DTU Wind Energy - PhD

Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration. DTU Wind Energy - PhD Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration DTU Wind Energy - PhD Leonardo Bergami DTU Wind Energy PhD-0020(EN) August 2013 DTU Vindenergi Active Load Alleviation

Διαβάστε περισσότερα

þÿ ı¼ Ä, ı¼ Ä Â Neapolis University þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

þÿ ı¼ Ä, ı¼ Ä Â Neapolis University þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Law and Social Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ ¹µÍÁÅ½Ã Ä Â ÅÁÉÀ±Êº  þÿ ı¼ Ä, ı¼ Ä Â þÿ Á̳Á±¼¼± ¹µ ½  º±¹ ÅÁÉÀ±ÊºÌ

Διαβάστε περισσότερα

ÅØÑØ ÒÓ Î ØÙÐÖ Ó ÁÅ ¼¼ ËÖÓ ÄÑ ÆØØÓ ÖÓÒ ºÙÖºÖ ÚÖ Ó ÓÖÑ Ø ÑØÖÐ ØÐÚÞ ÖÑÓÒØ» ÕÙÒÓ Þ Ó Ú ØÙÐÖ Ó ÁÅ Ñ ÖÖÓ ÕÙ Ù ÖÖÓÚÓ ÓÑÓ Ö ÖÖº ÈÖØÙÐÖÑÒØ ÓÑØÖ Ó ÁÅ ÑÖ Ó ÙÑ ÖÒ Ó Ñ ØÖÒÓ Ð ÐÞ Ù ÖÓÐÑ ÖÒÐÑÒØ Ð ÐÒ Ð Ø Ö ØÚ ÓÐÙÓ º

Διαβάστε περισσότερα

AI, A2, A3, A4, A5, A6, A7 AIAI, AIA2, AIA3, AIA4, AIA5, AIA6, AIA7 BI, B2, B3, B4, B5, B6, B7 BIBI, BIB2, BIB3, BIB4, BIB5, BIB6, BIB7

AI, A2, A3, A4, A5, A6, A7 AIAI, AIA2, AIA3, AIA4, AIA5, AIA6, AIA7 BI, B2, B3, B4, B5, B6, B7 BIBI, BIB2, BIB3, BIB4, BIB5, BIB6, BIB7 Δίφυλλη θύρα τηλεσκοπικού ανοίγματος Two panel telescopic door AI, A2, A3, A4, A5, A6, A7 Δίφυλλη θύρα τηλεσκοπικού ανοίγματος - A2 Two panel telescopic door - A2 AAI, AA2, AA3, AA4, AA5, AA6, AA7 Δίφυλλη

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Η δυναμική ενός μοντέλου Keynsian Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ÍÆÁÎ ÊËÁÌ Ç ÎÊ Î Ä ³ ËËÇÆÆ Ç ÌÇÊ Ä Ë ÀÇÇÄ ËÁÌ ÎÊ È À Ì À Ë Á Ë ØÓ Ó Ø Ò Ø Ø ØÐ Ó È Ó Ë Ò Ó Ø ÍÒ Ú Ö ØÝ Ó ÚÖÝ Î Ð ³ ÓÒÒ ËÔ ÐØÝ ÊÓ ÓØ Ò Ý ÅÓ Ñ Ù ØÒ Ò Ò ÓÒØÖÓÐ Ó À ÔØ Ú ÓÖ Å Ò Ñ ÐÐÝ ÁÒÚ Ú ËÙÖ ÖÝ Ë ÑÙÐ Ø ÓÒ

Διαβάστε περισσότερα

ca t = β 1z t 1(q t γ)+β 2z t 1(q t >γ)+ε t z t = g(x t,π)+u t

ca t = β 1z t 1(q t γ)+β 2z t 1(q t >γ)+ε t z t = g(x t,π)+u t Ì Ö ÓÐ ÅÓ Ð Ó Ø ÍË ÙÖÖ ÒØ ÓÙÒØ ÊÓ ÖØÓ ÙÒ Ò ÇØÓ Ö ½ ¾¼½ ØÖ Ø Ï Ø Ö Ú ÍË ÙÖÖ ÒØ ÓÙÒØ Ñ Ð Ò Á Ø Ö ÓÐ Ú Ò Ø Ø Ø Ú ÓÖ Ó Ø ÙÖÖ ÒØ ÓÙÒØ Ö ÒØ ÙÖ Ò Ø Ò ÙÖÔÐÙ ÓÖ Ø Ø Ø Þ Ó Ø Ñ¹ Ð Ò Ñ ØØ Ö Á Ø Ö Ø Ö ÓÐ Ö Ð Ø ÓÒ Ô

Διαβάστε περισσότερα

-,,.. Fosnot. Tobbins Tippins -, -.,, -,., -., -,, -,.

-,,.. Fosnot. Tobbins Tippins -, -.,, -,., -., -,, -,. παιδαγωγικά ρεύµατα στο Αιγαίο Προσκήνιο 77 : patrhenis@keda.gr -,,.. Fosnot. Tobbins Tippins -, -.,, -,., -., -,, -,. Abstract Constructivism constitutes a broad theoretical-cognitive movement encompassing

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

υπηρεσίες / services ΜΕΛΕΤΗ - ΣΧΕΔΙΑΣΜΟΣ PLANNING - DESIGN ΕΜΠΟΡΙΚΗ ΜΕΛΕΤΗ COMMERCIAL PLANNING ΕΠΙΠΛΩΣΗ - ΕΞΟΠΛΙΣΜΟΣ FURNISHING - EQUIPMENT

υπηρεσίες / services ΜΕΛΕΤΗ - ΣΧΕΔΙΑΣΜΟΣ PLANNING - DESIGN ΕΜΠΟΡΙΚΗ ΜΕΛΕΤΗ COMMERCIAL PLANNING ΕΠΙΠΛΩΣΗ - ΕΞΟΠΛΙΣΜΟΣ FURNISHING - EQUIPMENT Αρχιτεκτονικές και διακοσμητικές μελέτες, με λειτουργικό και σύγχρονο σχέδιασμό, βασισμένες στην μοναδικότητα του πελάτη. ΕΜΠΟΡΙΚΗ ΜΕΛΕΤΗ Ανάλυση των χαρακτηριστικών των προϊόντων και ένταξη του τρόπου

Διαβάστε περισσότερα

ΔΙΣΚΟΚΗΛΗ ΜΕ ΤΗΝ ΑΝΑΛΥΣΗ ΠΡΩΤΑΡΧΙΚΩΝ ΠΑΡΑΓΟΝΤΩΝ

ΔΙΣΚΟΚΗΛΗ ΜΕ ΤΗΝ ΑΝΑΛΥΣΗ ΠΡΩΤΑΡΧΙΚΩΝ ΠΑΡΑΓΟΝΤΩΝ ΔΙΣΚΟΚΗΛΗ ΜΕ ΤΗΝ 1 ΝΕΥΡΟΧΕΙΡΟΥΡΓΙΚΗ ΚΛΙΝΙΚΗ - Γ. Ν. Θ. "Γ. ΠΑΠΑΝΙΚΟΛΑΟΥ", 2 Α' ΠΝΕΥΜΟΝΟΛΟΓΙΚΗ ΚΛΙΝΙΚΗ - Γ. Ν. ΚΑΒΑΛΑΣ, 3ΠΑΝΕΠΙΣΤΗΜΙΑΚΗ ΝΕΥΡΟΧΕΙΡΟΥΡΓΙΚΗ ΚΛΙΝΙΚΗ, ΙΑΤΡΙΚΗ ΣΧΟΛΗ, ΔΠΘ, Π. Γ. Ν. ΑΛΕΞΑΝΔΡΟΥΠΟΛΗΣ,

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim. Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ

Διαβάστε περισσότερα

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία. Γεώργιος Ακρίβης Προσωπικά στοιχεία Έτος γέννησης 1950 Τόπος γέννησης Χρυσοβίτσα Ιωαννίνων Εκπαίδευση 1968 1973,, Ιωάννινα. Μαθηματικά 1977 1983,, Μόναχο, Γερμανία. Μαθηματικά, Αριθμητική Ανάλυση Ακαδημαϊκές

Διαβάστε περισσότερα

Ειρήνη Καµαράτου-Γιαλλούση, 2009. Ðñþôç Ýêäïóç: Σεπτέµβριος 2009 ÉSBN 978-960-453-617-7

Ειρήνη Καµαράτου-Γιαλλούση, 2009. Ðñþôç Ýêäïóç: Σεπτέµβριος 2009 ÉSBN 978-960-453-617-7 TÉÔËÏÓ ÂÉÂËÉÏÕ: Η πεισµατάρα ÓÕÃÃÑÁÖÅÁÓ: Ειρήνη Καµαράτου-Γιαλλούση ΕΠΙΜΕΛΕΙΑ ΙΟΡΘΩΣΗ ÊÅÉÌÅÍÏÕ: Χρυσούλα Τσιρούκη ÅÉÊÏÍÏÃÑÁÖÇÓÇ ΕΞΩΦΥΛΛΟ: ηµήτρης Καρατζαφέρης ÇËÅÊÔÑÏÍÉÊÇ ÓÅËÉÄÏÐÏÉÇÓÇ: Μερσίνα Λαδοπούλου

Διαβάστε περισσότερα

ΔΗΜΙΟΥΡΓΙΑ ΕΝΟΣ ΝΕΟΥ ΠΟΛΙΤΙΚΟΥ ΚΟΜΜΑΤΟΣ ΚΑΙ ΠΟΛΙΤΙΚΗ ΙΣΟΡΡΟΠΙΑ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΩΝ ΠΑΙΓΝΙΩΝ

ΔΗΜΙΟΥΡΓΙΑ ΕΝΟΣ ΝΕΟΥ ΠΟΛΙΤΙΚΟΥ ΚΟΜΜΑΤΟΣ ΚΑΙ ΠΟΛΙΤΙΚΗ ΙΣΟΡΡΟΠΙΑ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΩΝ ΠΑΙΓΝΙΩΝ «ΣΠΟΥΔΑΙ», Τόμος 52, Τείχος 4ο, (2002), Πανεπιστήμιο Πειραιώς / «SPOUDAI», Vol. 52, No 4, (2002), University of Piraeus ΔΗΜΙΟΥΡΓΙΑ ΕΝΟΣ ΝΕΟΥ ΠΟΛΙΤΙΚΟΥ ΚΟΜΜΑΤΟΣ ΚΑΙ ΠΟΛΙΤΙΚΗ ΙΣΟΡΡΟΠΙΑ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΤΗΣ

Διαβάστε περισσότερα

ΤΑΥΤΟΤΗΤΑ IDENTITY Τσουμάνης ΑΒΕΕ

ΤΑΥΤΟΤΗΤΑ IDENTITY Τσουμάνης ΑΒΕΕ DESIGN 02 ΤΑΥΤΟΤΗΤΑ Η Τσουμάνης ΑΒΕΕ ιδρύεται το 1983, με αντικείμενο την επίπλωση καταστημάτων. Μέσα στις δύο πρώτες δεκαετίες εξελίσσεται σε μια πλήρως καθετοποιημένη μονάδα, ικανή να προσφέρει ολοκληρωμένες

Διαβάστε περισσότερα

Ιδιωτικότητα και ασφάλεια στο νέο δικτυακό περιβάλλον Ηλίας Χάντζος

Ιδιωτικότητα και ασφάλεια στο νέο δικτυακό περιβάλλον Ηλίας Χάντζος Ιδιωτικότητα και ασφάλεια στο νέο δικτυακό περιβάλλον Ηλίας Χάντζος Senior Director EMEA&APJ Government Affairs 1 Η πέντε μεγάλες τάσεις στην τεχνολογία 2 The Big Numbers for 2011 5.5B Attacks blocked

Διαβάστε περισσότερα

THÈSE. Raphaël LEBLOIS

THÈSE. Raphaël LEBLOIS MINISTÈRE DE L AGRICULTURE ÉCOLE NATIONALE SUPÉRIEURE AGRONOMIQUE DE MONTPELLIER THÈSE présentée à l École Nationale Supérieure Agronomique de Montpellier pour obtenir le diplôme de Doctorat Spécialité

Διαβάστε περισσότερα

ΑΧΙΛΛΕΑΣ ΔΡΑΜΑΛΙΔΗΣ CV

ΑΧΙΛΛΕΑΣ ΔΡΑΜΑΛΙΔΗΣ CV ΑΧΙΛΛΕΑΣ ΔΡΑΜΑΛΙΔΗΣ CV ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΜΑΘΗΜΑΤΙΚΩΝ & ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ, ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΑΛΕΞΑΝΔΡΟΥΠΟΛΗ, adramali@psed.duth.gr Διεύθυνση κατοικίας: Εθνική οδός

Διαβάστε περισσότερα

2010 Offroad Standard & Flame fixed discs

2010 Offroad Standard & Flame fixed discs New Flame discs March 23/9/2010 2010 2010 Offroad Standard & Flame fixed discs APRILIA APRILIA RXV, MXV 450 450 2005-2010 - - - 110315 97 APRILIA SXV 450 450 2005-2010 - 112067 252-110315 97 APRILIA RXV

Διαβάστε περισσότερα

Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων

Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων Κωνσταντίνος Παπαοδυσσεύς Καθηγητής ΣΗΜΜΥ, Δημήτρης Αραμπατζής Δρ. ΣΗΜΜΥ Σολομών Ζάννος Υ.Δ. ΣΗΜΜΥ Φώτιος Γιαννόπουλος Υ.Δ. ΣΗΜΜΥ Μιχαήλ Έξαρχος Δρ. ΣΗΜΜΥ

Διαβάστε περισσότερα

Πτυχιακή εργασία Ο ΡΟΛΟΣ ΤΩΝ ΚΟΙΝΟΤΙΚΩΝ ΝΟΣΗΛΕΥΤΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΑΙΔΙΟΥ ΜΕ ΧΡΟΝΙΟ ΑΣΘΜΑ

Πτυχιακή εργασία Ο ΡΟΛΟΣ ΤΩΝ ΚΟΙΝΟΤΙΚΩΝ ΝΟΣΗΛΕΥΤΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΑΙΔΙΟΥ ΜΕ ΧΡΟΝΙΟ ΑΣΘΜΑ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Πτυχιακή εργασία Ο ΡΟΛΟΣ ΤΩΝ ΚΟΙΝΟΤΙΚΩΝ ΝΟΣΗΛΕΥΤΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΑΙΔΙΟΥ ΜΕ ΧΡΟΝΙΟ ΑΣΘΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΚΥΡΙΑΚΟΣ ΛΟΙΖΟΥ ΑΡΙΘΜΟΣ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΧΡΥΣΟΒΑΛΑΝΤΗΣ ΒΑΣΙΛΕΙΟΥ ΛΕΜΕΣΟΣ 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

PAC-MAN & NAMCO BANDAI Games Inc. Courtesy of NAMCO BANDAI Games America Inc. Ðñþôç Ýêäïóç: Νοέμβριος 2011 ÉSBN 978-960-496-422-2

PAC-MAN & NAMCO BANDAI Games Inc. Courtesy of NAMCO BANDAI Games America Inc. Ðñþôç Ýêäïóç: Νοέμβριος 2011 ÉSBN 978-960-496-422-2 TÉÔËÏÓ ÐÑÙÔÏÔÕÐÏÕ: DIARY OF A WIMPY KID: CABIN FEVER Áðü ôéò Åêäüóåéò Harry N. Abrams Inc., Νέα Υόρκη 2011 TÉÔËÏÓ ÂÉÂËÉÏÕ: Το ημερολόγιο ενός σπασίκλα 6: Μέρες πανικού ÓÕÃÃÑÁÖÅÁÓ: Jeff Kinney ÌÅÔÁÖÑÁÓÇ:

Διαβάστε περισσότερα

DOKTORA TEZĐ. Canan AKKOYUNLU. Anabilim Dalı: Matematik-Bilgisayar. Programı: Matematik. Tez Danışmanı: Prof. Dr. Erhan GÜZEL

DOKTORA TEZĐ. Canan AKKOYUNLU. Anabilim Dalı: Matematik-Bilgisayar. Programı: Matematik. Tez Danışmanı: Prof. Dr. Erhan GÜZEL T.C. ĐSTANBUL KÜLTÜR ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ LĐNEER OLMAYAN SCHRÖDĐNGER DENKLEMĐNĐN ENERJĐ KORUMALI YÖNTEMLE ÇÖZÜMÜ VE MODEL ĐNDĐRGEME YÖNTEMĐNĐN UYGULANMASI DOKTORA TEZĐ Canan AKKOYUNLU Anabilim

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ HACCP ΣΕ ΜΙΚΡΕΣ ΒΙΟΤΕΧΝΙΕΣ ΓΑΛΑΚΤΟΣ ΣΤΗΝ ΕΠΑΡΧΙΑ ΛΕΜΕΣΟΥ

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα

Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4

Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4 Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4 Ε Π Ι Σ Τ Ο Λ Η Δ Ι Ο Ι Κ Η Τ Η Α Υ Γ Ο Υ Σ Τ Ο Σ Μ η ν ι α ί α Ε π ι σ τ ο λ ή ι ο ι κ η τ ή 1 Π ε ρ ι ε χ ό μ ε ν α Σ ε λ ί δ ε ς Τ ο μ ή ν υ μ α τ

Διαβάστε περισσότερα

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014 LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG 4 March 2014 Family η οικογένεια a/one(fem.) μία a/one(masc.) ένας father ο πατέρας mother η μητέρα man/male/husband ο άντρας letter το γράμμα brother ο

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Case 1: Original version of a bill available in only one language.

Case 1: Original version of a bill available in only one language. currentid originalid attributes currentid attribute is used to identify an element and must be unique inside the document. originalid is used to mark the identifier that the structure used to have in the

Διαβάστε περισσότερα

Περιοχή διαγωνισμού Rethink Athens

Περιοχή διαγωνισμού Rethink Athens Περιοχή διαγωνισμού Rethink Athens Πρόγραμμα : Statistical_Analysis_1.prg Ανάλυση : 28/06/2012 13:05 Κατάλογος : C:\Workspace\Planning\Mst\2010\Statistics\Analysis_5\ Vesrion : 2.8.0, 20-06-2011 Τα κοινά

Διαβάστε περισσότερα

e-mail: bisbas@teikoz.gr

e-mail: bisbas@teikoz.gr ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΤΟΥ ΜΠΙΣΜΠΑ ΑΝΤΩΝΗ ΚΑΘΗΓΗΤΗ ΤΟΥ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Ιανουάριος 2014 Ονοματεπώνυμο Αντώνης Γ. Μπίσμπας Διεύθυνση Τ. Ε. Ι. Δυτικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

A Francesca, Paola, Laura

A Francesca, Paola, Laura A Francesca, Paola, Laura L. Formaggia F. Saleri A. Veneziani Applicazioni ed esercizi di modellistica numerica per problemi differenziali 2 3 LUCA FORMAGGIA FAUSTO SALERI ALESSANDRO VENEZIANI MOX - Dipartimento

Διαβάστε περισσότερα

ÌÖ Ò ÔÓÖØ Ò Ø Ò ÓÑÔÐ Ü Ö Ñ Ø ÐÐ Ö ËÝ Ø Ñ Ñ Ö È Ý ÙÒ Ð ØÖÓØ Ò Ö ÍÒ Ú Ö ØØ Ö Ñ Ò ÚÓÖ Ð Ø À Ð Ø Ø ÓÒ Ð ØÙÒ ÂÓ Ò Ò ÖØ Å ½ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ÌÖ Ò ÔÓÖØ Ò Ñ Ø ÐÐ Ò ËÝ Ø Ñ Ò ½ ½º½ Ò ÖÙÒ º º º º º º º º º º

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

Από τις Εκδόσεις Puffin Books, Λονδίνο 2008. Roald Dahl Nominee Ltd., 1978 Εικονογράφησης: Quentin Blake, 1978. Ðñþ ôç Ýê äï óç: Μάρτιος 2012

Από τις Εκδόσεις Puffin Books, Λονδίνο 2008. Roald Dahl Nominee Ltd., 1978 Εικονογράφησης: Quentin Blake, 1978. Ðñþ ôç Ýê äï óç: Μάρτιος 2012 ΤΙΤΛΟΣ ΠΡΩΤΟΤΥΠΟΥ: THE ENORMOUS CROCODILE Από τις Εκδόσεις Puffin Books, Λονδίνο 2008 TÉÔËÏÓ ÂÉÂËÉÏÕ: Ο Πελώριος Κροκόδειλος ÓÕÃ ÃÑÁ ÖÅ ÁÓ: Roald Dahl ÅÉ ÊÏ ÍÏ ÃÑÁ ÖÇ ÓÇ: Quentin Blake ΜΕΤΑΦΡΑΣΗ: Χαρά

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή Εργασία. Κόπωση και ποιότητα ζωής ασθενών με καρκίνο.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή Εργασία. Κόπωση και ποιότητα ζωής ασθενών με καρκίνο. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Κόπωση και ποιότητα ζωής ασθενών με καρκίνο Μαργαρίτα Μάου Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ

Διαβάστε περισσότερα

Σ Ε Ι Ρ Α Κ Α Τ Α Ν Ο Η Σ Η Σ O 114 Α, Β & Γ ΔΗΜΟΤΙΚΟΥ

Σ Ε Ι Ρ Α Κ Α Τ Α Ν Ο Η Σ Η Σ O 114 Α, Β & Γ ΔΗΜΟΤΙΚΟΥ ΕΥΕΛΙΚΤΗ ΖΩΝΗ ΦΙΛΑΝΑΓΝΩΣΙΑ Αγκαλιά με παραμύθια ΤΙΤΛΟΣ ΒΙΒΛΙΟΥ: Αγκαλιά με παραμύθια ΣΥΓΓΡΑΦΕΑΣ: Γαλάτεια Γρηγοριάδου-Σουρέλη ΕΠΙΜΕΛΕΙΑ ΔΙΟΡΘΩΣΗ: Χρυσούλα Τσιρούκη ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Κατερίνα Χαδουλού ΗΛΕΚΤΡΟΝΙΚΗ

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ USE INSTRUCTIONS

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ USE INSTRUCTIONS ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ USE INSTRUCTIONS ΤΗΛΕΦΩΝΟ ΜΕ ΑΝΑΓΝΩΡΙΣΗ ΚΛΗΣΗΣ /CORDED PHONE WITH CALLER ID ΜΟΝΤΕΛΟ/MODEL: TM09-448 DC48V Παρακαλούμε διαβάστε προσεκτικά όλες τις οδηγίες χρήσης πριν την χρήση της συσκευής

Διαβάστε περισσότερα

JEREMIE Joint European Resources for Micro to medium Enterprises

JEREMIE Joint European Resources for Micro to medium Enterprises JEREMIE Joint European Resources for Micro to medium Enterprises ΑΝΑΚΟΙΝΩΣΗ Αθήνα, 1 η Ιουνίου 2010 Σχετικά με την Πρόσκληση Υποβολής Προτάσεων στο «Σχέδιο Επιμερισμού Ρίσκου και Συγχρηματοδότησης» της

Διαβάστε περισσότερα

Basic Raster Styling and Analysis

Basic Raster Styling and Analysis Basic Raster Styling and Analysis QGIS Tutorials and Tips Author Ujaval Gandhi http://google.com/+ujavalgandhi Translations by Christina Dimitriadou Paliogiannis Konstantinos Tom Karagkounis Despoina Karfi

Διαβάστε περισσότερα

A Threshold Model of the US Current Account *

A Threshold Model of the US Current Account * Federal Reserve Bank of Dallas Globalization and Monetary Policy Institute Working Paper No. 202 http://www.dallasfed.org/assets/documents/institute/wpapers/2014/0202.pdf A Threshold Model of the US Current

Διαβάστε περισσότερα

Επι Mένοντας Διεθνώς. Λίζα Μάγιερ. Managing Director, Fortis Venustas

Επι Mένοντας Διεθνώς. Λίζα Μάγιερ. Managing Director, Fortis Venustas Επι Mένοντας Διεθνώς Λίζα Μάγιερ Managing Director, Fortis Venustas Reinventing your Business Διαγράφοντας το παρελθόν και χαράζοντας το μέλλον Υπάρχει μέλλον μετά την κρίση; Ηκρίσηοδηγεί στην αναζήτηση

Διαβάστε περισσότερα

Test Data Management in Practice

Test Data Management in Practice Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?

Διαβάστε περισσότερα

Erik Axl Sund, 2012 Published by arrangement with Salomonsson Agency. Πρώτη έκδοση: Ιανουάριος 2015

Erik Axl Sund, 2012 Published by arrangement with Salomonsson Agency. Πρώτη έκδοση: Ιανουάριος 2015 ΤΙΤΛΟΣ ΠΡΩΤΟΤΥΠΟΥ: PYTHIANS ANVISNINGAR Από τις Εκδόσεις Ordupplaget, Στοκχόλμη 2012 ΤΙΤΛΟΣ ΒΙΒΛΙΟΥ: Η τριλογία της Βικτόριας Μπέργμαν (ΒΙΒΛΙΟ 3) Οι εντολές της Πυθίας ΣΥΓΓΡΑΦΕΑΣ: Erik Axl Sund ΜΕΤΑΦΡΑΣΗ:

Διαβάστε περισσότερα

@ BY AVENUES PRIVATE INSTITUTE JUNE 2014

@ BY AVENUES PRIVATE INSTITUTE JUNE 2014 1 Εκεί που η ποιότητα συναντά την επιτυχία Λεωφ. Αρχ. Μακαρίου 7, Αρεδιού Τηλ. 22874368/9 2 ENGLISH INSTITUTE A Place where quality meets success 7, Makarios Avenue, Arediou, Tel. 22874368/9 99606442 Anglia

Διαβάστε περισσότερα

Biodiesel quality and EN 14214:2012

Biodiesel quality and EN 14214:2012 3η Ενότητα: «Αγορά Βιοκαυσίμων στην Ελλάδα: Τάσεις και Προοπτικές» Biodiesel quality and EN 14214:2012 Dr. Hendrik Stein Pilot Plant Manager, ASG Analytik Content Introduction Development of the Biodiesel

Διαβάστε περισσότερα

Μεταπτυχιακή διατριβή

Μεταπτυχιακή διατριβή ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Μεταπτυχιακή διατριβή «100% Α.Π.Ε.» : ΤΕΧΝΙΚΕΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΕΣ ΠΡΟΚΛΗΣΕΙΣ ΓΙΑ ΤΗΝ ΠΛΗΡΗ ΥΠΟΚΑΤΑΣΤΑΣΗ ΤΩΝ ΣΥΜΒΑΤΙΚΩΝ

Διαβάστε περισσότερα

ΑΙΤΗΣΗ π ΑΣΦΑΛΙΣΗΣ π ΑΣΤΙΚΗΣ π ΕΥΘΥΝΗΣ ΠΡΟΣ ΤΡΙΤΟΥΣ π

ΑΙΤΗΣΗ π ΑΣΦΑΛΙΣΗΣ π ΑΣΤΙΚΗΣ π ΕΥΘΥΝΗΣ ΠΡΟΣ ΤΡΙΤΟΥΣ π ΑΝΩΝΥΜΟΣ ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΙΑ ΓΕΝΙΚΩΝ ΑΣΦΑΛΕΙΩΝ «Η ΕΘΝΙΚΗ» ΕΤΟΣ ΙΔΡΥΣΗΣ 1891 ΕΤΑΙΡΙΑ ΤΟΥ ΟΜΙΛΟΥ ΤΗΣ ΕΘΝΙΚΗΣ ΤΡΑΠΕΖΑΣ ΤΗΣ ΕΛΛΑΔΟΣ ΑΡ.Μ.Α.Ε.: 12840/05 B 86/20 Α.Φ.Μ.: 094003849 Δ.Ο.Υ.: ΜΕΓΑΛΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΛΕΩΦ.

Διαβάστε περισσότερα

Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο

Διαβάστε περισσότερα

Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. Χρυσάνθη Στυλιανού Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

API: Applications Programming Interface

API: Applications Programming Interface ÒØ Ñ ÒÓ ØÖ ÔÖÓ» Ñ ÒØ Ñ ÒÓ ØÖ ÔÖÓ Ö ÑÑ Ø Ñ ½ Ö Ø Ò Ô Ö Ø ÒØ Ñ ÒÛÒ ÒÒÓ ôòøóù ÔÖ Ñ Ø Ó ÑÓÙ Ì ÔÓ ÓÑ ÒÛÒ Ì µ (i) ÒÓÐÓØ ÑôÒ (ii)ôö Ü º Ð ØÖ Ò Ò ÖÛÔÓ ØÖ ÔÐ Ò Ø Ó Ó Ù Ø Ñ Ø ººº ½ºÈÖÛØ ÓÒØ Ø ÔÓ int double char

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ H O G feature descriptor global feature the most common algorithm associated with person detection Με τα Ιστογράμματα της Βάθμωσης (Gradient) μετράμε τον προσανατολισμό και την ένταση της βάθμωσης σε μία

Διαβάστε περισσότερα

ˆŸ ˆ ƒ Š Š ˆˆ ˆ ˆ ƒ Ÿ 250 No

ˆŸ ˆ ƒ Š Š ˆˆ ˆ ˆ ƒ Ÿ 250 No Ó³ Ÿ. 2008.. 5, º 1(143).. 40Ä52 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. Š ˆŒ ˆŸ ˆ ƒ Š Š ˆˆ ˆ ˆ ƒ Ÿ 250 No ƒ.. Š Ö, Œ. ƒ. ˆÉ±,. Œ. Šμ ʲ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. ƒ. Ö,.. Ê Î Ö,. ± Î ± Ë ±Ê²ÓÉ É É É. Ö ±Õ²Ö, ²Ö Ö.. ² ±μ Ò É ÉÊÉ

Διαβάστε περισσότερα

η βάση της ιδεολογίας του

η βάση της ιδεολογίας του Regular ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ ΆΌΊΈ ΎΉΏΪΫ βρίσκονται εντός και εκτός του φυσικού του χώρου. Πριν όμως εξετάσουμε τους παραπάνω τομείς για την περίπτωση του Εβραϊκού Μουσείου, θα επιχειρήσουμε μια θεωρητική

Διαβάστε περισσότερα

- S P E C I A L R E P O R T - EMPLOYMENT. -January 2012- Source: Cyprus Statistical Service

- S P E C I A L R E P O R T - EMPLOYMENT. -January 2012- Source: Cyprus Statistical Service - S P E C I A L R E P O R T - UN EMPLOYMENT -January 2012- Source: Cyprus Statistical Service This Special Report is brought to you by the Student Career Advisory department of Executive Connections. www.executiveconnections.eu

Διαβάστε περισσότερα

FSM Toolkit Exercises

FSM Toolkit Exercises ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών Αναπληρωτής Καθηγητής: Αλέξανδρος Ποταμιάνος Ονοματεπώνυμο: Α Μ : ΗΜΕΡΟΜΗΝΙΑ: ΤΗΛ 413 : Συστήματα Επικοινωνίας

Διαβάστε περισσότερα

Bring Your Own Device (BYOD) Legal Challenges of the new Business Trend MINA ZOULOVITS LAWYER, PARNTER FILOTHEIDIS & PARTNERS LAW FIRM

Bring Your Own Device (BYOD) Legal Challenges of the new Business Trend MINA ZOULOVITS LAWYER, PARNTER FILOTHEIDIS & PARTNERS LAW FIRM Bring Your Own Device (BYOD) Legal Challenges of the new Business Trend MINA ZOULOVITS LAWYER, PARNTER FILOTHEIDIS & PARTNERS LAW FIRM minazoulovits@phrlaw.gr What is BYOD? Information Commissioner's Office

Διαβάστε περισσότερα

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

X v (q) = ( x v (q), y v (q), z v (q) ) x u (q) y u (q) z u (q) x v (q) y v (q) z v (q) X 1 u (q) X 1. det. X 2 u (q) X 2. v (q)

X v (q) = ( x v (q), y v (q), z v (q) ) x u (q) y u (q) z u (q) x v (q) y v (q) z v (q) X 1 u (q) X 1. det. X 2 u (q) X 2. v (q) Κεφάλαιο 2 Κανονικές επιφάνειες Σύνοψη Προκειμένου να ορίσουμε την έννοια της επιφάνειας στον R 3, έχουμε δύο δυνατές προσεγγίσεις. Με την πρώτη μπορούμε να ορίσουμε μια επιφάνεια ως ένα υποσύνολο του

Διαβάστε περισσότερα

Χωρητικότητα λίτρα: 604 Χωρητικότητα Συντήρησης (: 356. Dcode. BarCode

Χωρητικότητα λίτρα: 604 Χωρητικότητα Συντήρησης (: 356. Dcode. BarCode Ντουλάπα Side by Sid LG ΨΥΓΕΙΟ ΝΤΟΥΛΑΠΑ LG GW-P227XTMA ME ΒΡΥΣΗ T Τεχνικά Χαρακτηριστικά Πλάτος (εκ) 86 και άνω Ύψος (εκ) 151-180 Τύπος Ελεύθερο Χωρητικότητα λίτρα 544 Χωρητικότητα Συντήρησης ( 358 Χωρητικότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

ΛΕΩΝΗ ΕΥΑΓΓΕΛΑΤΟΥ-ΔΑΛΛΑ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

ΛΕΩΝΗ ΕΥΑΓΓΕΛΑΤΟΥ-ΔΑΛΛΑ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΗ ΕΥΑΓΓΕΛΑΤΟΥ-ΔΑΛΛΑ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 2014 Περιεχόμενα Περιεχόμενα 1. Στοιχεία 2 2. Γενικά Στοιχεία και Σπουδές 3 3. Ερευνητική-Ακαδημαϊκή Δραστηριότητα 4 3.1 Ερευνητικά Ενδιαφέροντα.............................

Διαβάστε περισσότερα

February 2012 Source: Cyprus Statistical Service

February 2012 Source: Cyprus Statistical Service S P E C I A L R E P O R T UN February 2012 Source: Cyprus Statistical Service This Special Report is brought to you by the Student Career Advisory department of Executive Connections. www.executiveconnections.eu

Διαβάστε περισσότερα

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΚΑΙ ΑΝΑΛΥΤΙΚΟ ΥΠΟΜΝΗΜΑ ΕΡΓΑΣΙΩΝ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΚΑΙ ΑΝΑΛΥΤΙΚΟ ΥΠΟΜΝΗΜΑ ΕΡΓΑΣΙΩΝ ΧΡΗΣΤΟΣ Ι. ΣΧΟΙΝΑΣ Καθηγητής του Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών του Δ.Π.Θ. ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΚΑΙ ΑΝΑΛΥΤΙΚΟ ΥΠΟΜΝΗΜΑ ΕΡΓΑΣΙΩΝ Ξάνθη, 2014 1. ΒΙΟΓΡΑΦΙΚΑ ΣΤΟΙΧΕΙΑ Ονοματεπώνυμο

Διαβάστε περισσότερα

Les gouttes enrobées

Les gouttes enrobées Les gouttes enrobées Pascale Aussillous To cite this version: Pascale Aussillous. Les gouttes enrobées. Fluid Dynamics. Université Pierre et Marie Curie - Paris VI,. French. HAL Id: tel-363 https://tel.archives-ouvertes.fr/tel-363

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Python Μάθημα 4: Συναρτήσεις (functions) και δομοστοιχεία (modules) στην Python

Εισαγωγή στον Προγραμματισμό Python Μάθημα 4: Συναρτήσεις (functions) και δομοστοιχεία (modules) στην Python Εισαγωγή στον Προγραμματισμό Python Μάθημα 4: Συναρτήσεις (functions) και δομοστοιχεία (modules) στην Python Νοέμβριος 2014 Χ. Αλεξανδράκη, Γ. Δημητρακάκης Συναρτήσεις (Functions) Στον προγραμματισμό,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΟΙΚΗΣΗΣ II ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΟΙΚΗΣΗΣ II ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΟΙΚΗΣΗΣ

Διαβάστε περισσότερα

ΠΟΛΛΑΠΛΗ ΔΙΔΑΚΤΙΚΗ ΔΙΑΣΤΑΣΗ ΕΝΟΣ ΑΡΧΑΙΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΕΣ ΕΡΜΗΝΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ

ΠΟΛΛΑΠΛΗ ΔΙΔΑΚΤΙΚΗ ΔΙΑΣΤΑΣΗ ΕΝΟΣ ΑΡΧΑΙΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΕΣ ΕΡΜΗΝΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ ΠΟΛΛΑΠΛΗ ΔΙΔΑΚΤΙΚΗ ΔΙΑΣΤΑΣΗ ΕΝΟΣ ΑΡΧΑΙΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΕΣ ΕΡΜΗΝΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ ΓΕΩΡΓΙΟΣ ΤΣΑΠΑΚΙΔΗΣ georgetsapakidis@yahoo.gr ΠΕΤΡΟΣ ΣΟΥΛΙΔΗΣ petrossoulidis@gmail.com ΕΚΠΑΙΔΕΥΤΗΡΙΑ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή Εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή Εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία ΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΠΙΠΕ ΩΝ ΘΝΗΣΙΜΟΤΗΤΑΣ ΚΑΙ ΤΩΝ ΚΥΡΙΟΤΕΡΩΝ ΑΙΤΙΩΝ ΠΡΟΚΛΗΣΗΣ ΘΑΝΑΤΟΥ ΑΤΟΜΩΝ ΜΕ ΨΥΧΟΓΕΝΗ ΑΝΟΡΕΞΙΑ Γεωργία Χαραλάµπους Λεµεσός

Διαβάστε περισσότερα

a-shapes στη βιολογία

a-shapes στη βιολογία a-shapes στη βιολογία Λογισμικό CGAL για a- shapes Νικόλας Μπεγέτης Πώς παίρνουμε το περίβλημα σημείων στο χώρο; Βρίσκοντας το Convex Hull π. χ: Θα μπορούσαμε να βρούμε μία καλύτερη προσέγγιση; Ναι, με

Διαβάστε περισσότερα

20ր0ո6ւնակե նք միասին

20ր0ո6ւնակե նք միասին ÐÇÙÝ³Ï³Ý Æñ³ áñíáõùý»ñª ä»ï³ï³ý Ü»ñϳ۳óáõóÇã ì³ñ¹ ë سÑï»ë»³ÝÇ ÐÝ ³Ù»³Û å³ßïûý³í³ñáõ㻳ý 2006-2011 1 1 0 2 20ր0ո6ւնակե նք Շա միասին 6 1 0 2 2 011 ζί α μ ε μ ά Προχωρ Κύρια επιτεύγµατα του Εκπρόσωπου Βαρτκές

Διαβάστε περισσότερα