ZK2 SYSTEM BLOCK DIAGRAM

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ZK2 SYSTEM BLOCK DIAGRAM"

Transcript

1 OM MRK INT VG STUFF FOR EXT VG STUFF FOR OK SPEIL FOR EXT/INT VG MP-Stage ZKM0000: ZK M SSY(GM/UM)SSY W/O PU X'TL.MHz LOK GENERTOR IS: ISLPRSGLFT SELGO: SLGSPK0 RII ZKM000: ZK M SSY(PM/MXM)SSY W/O PU ZKM000: ZK M SSY(PM/MXM) W/O PU/E-ST SO-IMM 0 SO-IMM P P H (ST) * ZK SYSTEM LOK IGRM ual hannel R /00 MHz P Penryn ufpg N antiga P, P FS /00/0 Mhz (GM/ PM/ GL0) P, P, P, P, P, P0, P X MI interface Thermal Sensor (NS LM) PIE LVS RG P MXM (n-vidia) NM-GS VRM M Fan river (G) P P0 EXT_LVS EXT_RT EXT_VI INT_LVS INT_RT R PWR TPS THERML PROTETION.V/.V PWR ISHRGER SWITH IRUIT P P P POWER TREE P P HMI switch (PS) P RT LVS HMI US HRGER ISL OKING/VI P /V SYS PWR P ISL PU ORE PWR ISL +.0V RT0 P P P P P P est onn. US US Port x US0,, luetooth US US FingerPrint US P P P P P0 Wire ocking US0 P0 udio mplifier P,P est uffer (PIEQX0) P Sub-mplifier (MX) O (ST) udio OE (LS) P P P ST0 ST ST ST US.0 zalia M. HP ROM (Option) P SPI P RJ WIRE ONN. S IHM P,P,P,P LP E (WPLG) SPI ROM P Touch Pad P0 P X'TL.KHz PI-Express US X'TL.KHz MM P Media ardreader (RTSE) US ard Reader onnector P P PIE- PIE- THEROS Giga-LN (R) PIE-& Transformer X'TL MHz P0 P New ard US P Mini ard WLN / TV US & P US & LN SWITH OK/LN (PIL00) P P0 0ZKM0 0ZKM0 0ZKM0 0ZKM0 Speaker P S/PIF P SUWOOFER P Line in P MI Jack P Int. -MI P, P K/ OON. P0 IR P RJ P Quanta omputer Inc. PROJET : ZK Size ocument Number Rev lock iagram ate: Friday, June, 00 Sheet of

2 lock Generator +V L KP0HS-T +V_LK U0 LK V power range.0v~.v () PLK_EUG () PLK_ () PLK_IH.u_ R _ R _ R _ 0 *0p_ *.u_ PLK_MINI_R PLK R PLK_IH_R 0 *0p_.u_ *.u_ () STLKREQ# () NEW_LKREQ# 0 () LKUS_ *0p_ () LK_ard () M_IH.u_ p/0v_ p/0v_.u_ Y.MHz 0u_ G_XIN G_XOUT R /F_ STLKREQ#_R R /F_ NEW_LKREQ#_R PLK_MINI_R PLK R T PLK_PM_R PLK_IH_R PU_SEL0 R.K_ R0 _ R _ FS 0 MH_SEL PU_SEL R 0K_ R _ FS *0p/0V_ 0 V_PI V_ V_PLL V_SR V_PU V_REF XTL_IN XTL_OUT V_I/O V_PLL_I/O 0 V_SR_I/O_ V_SR_I/O_ V_SR_I/O_ V_PU_I/O PU_STOP# PI_STOP# KPWRG/P# PU_0 PU_0# PI_0/LKREQ_# PU MH PI_/LKREQ_# PU MH# 0 PI_ SR_/PU_ITP PI_ SR_#/PU_ITP# ^PI_/LLK_SEL PIF_/ITP_EN N US_MHz/FS_ FS_/TEST_MOE LLK/M LLK#/M_SS REF/FS_/TEST_SEL 0u_ +V0_LK 0.u_.u_ PM_STPPU# () PM_STPPI# () K_PWRG () LK_PU_LK () LK_PU_LK# () LK_MH_LK () LK_MH_LK# () LK_REFSSLK () LK_REFSSLK# () *.u_.u_.u_ L 00.u_ KP0HS-T +.0V Pin : It acts as a level sensitive strobe to latch the FS pins and other multiplexed inputs. (,,,0,,) PT_SM Q RHU00N0 +V +V Q RHU00N0 R 0K_ () LK_REFLK () LK_REFLK# R 0K_ GT_SM GLK_SM GT_SM SR_0/OT_ SR_ SR_0#/OT_# SR_# SR_/LKREQ_# SL SR_#/LKREQ_# S SR_ SR_# SR_ SR_# SR_/LKREQ_F# VSS_PI SR_#/LKREQ_E# VSS_ SR_ VSS_I/O SR_# VSS_PLL SR_0 VSS_SR_ SR_0# VSS_SR_ SR_/LKREQ_H# VSS_SR_ SR_#/LKREQ_G# VSS_PU VSS_REF 0 0 LK_PIE_ST () LK_PIE_ST# () LK_PIE_LN (0) LK_PIE_LN# (0) LK_PIE_NEW_ () LK_PIE_NEW_# () LK_PIE_IH () LK_PIE_IH# () LK_MXM () LK_MXM# () LK_PIE_MINI () LK_PIE_MINI# () LK_PIE_GPLL () LK_PIE_GPLL# () LK_PIE_TV () LK_PIE_TV# () (,,,0,,) PLK_SM GLK_SM SLGSP PU lock select Strap table Pin 0// : For Pin PU frequency selection () PU_SEL0 PU_SEL0 R 0_ MH_SEL0 () SEL Frequency Select Table FS FS FS Frequency Mhz 0 0 Mhz +V R0 R R 0K_ STLKREQ#_R 0K_ NEW_LKREQ#_R 0K_ PLK_MINI_R ontrol PU_0 & SR_ ontrol PU_ & SR_ R *0K_ Reserve overclocking 0 Mhz PLK_PM_R R0 0K_ () PU_SEL () PU_SEL PU_SEL PU_SEL R0 0_ R 0_ MH_SEL () MH_SEL () Mhz 00Mhz Reserved 00Mhz Pin : For Pin / and / selection 0 = LLK & OT for internal graphic controller support = M & M_SS &SR_0 for external graphic controller support PLK_IH_R R 0K_ LOK GENERTOR 0 0 Mhz Pin : For Pin / selection = PU_ITP 0 = SR_ Quanta omputer Inc. PROJET : ZK Size ocument Number Rev LOK GENERTOR ate: Wednesday, July 0, 00 Sheet of

3 () H_#[..] () H_ST#0 () H_REQ#[0..] () H_#[..] () H_ST# () H_0M# () H_FERR# () H_IGNNE# () H_STPLK# () H_INTR () H_NMI () H_SMI# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# H_# H_REQ#0 H_REQ# H_REQ# H_REQ# H_REQ# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# U J []# L []# L []# K []# M []# N []# J []# N [0]# P []# P []# L []# P []# P []# R []# M ST[0]# R GROUP_0 R GROUP_ K REQ[0]# H REQ[]# K REQ[]# J REQ[]# L REQ[]# Y []# U []# R []# W [0]# U []# Y []# U []# R []# T []# T []# W []# W []# Y []# U [0]# V []# W []# []# []# []# V ST[]# 0M# FERR# IGNNE# IH STPLK# LINT0 LINT SMI# M RSV[0] N RSV[0] T RSV[0] V RSV[0] RSV[0] RSV[0] RSV[0] RSV[0] F RSV[0] RESERVE XP/ITP SIGNLS ONTROL S# NR# PRI# EFER# RY# SY# R0# IERR# INIT# LOK# RESET# RS[0]# RS[]# RS[]# TRY# HIT# HITM# PM[0]# PM[]# PM[]# PM[]# PRY# PREQ# TK TI TO TMS TRST# R# THERML PROHOT# THERM THERM THERMTRIP# H LK LK[0] LK[] H E G H F E F 0 H F F G G G E 0 H_IERR# XP_PM#0 XP_PM# XP_PM# XP_PM# XP_PM# XP_PM# XP_TK XP_TI XP_TO XP_TMS XP_TRST# SYS_RST# H_PROHOT#_ H_THERM H_THERM PM_THRMTRIP# R0 _ T T T T0 T H_S# () H_NR# () H_PRI# () H_EFER# () H_RY# () H_SY# () H_REQ# () +.0V H_INIT# () H_LOK# () H_PURST# () H_RS#0 () H_RS# () H_RS# () H_TRY# () H_HIT# () H_HITM# () onnect it to PU R# is for ITP debug port or PU interposer (like IE) to reset the system SYS_RST# () LK_PU_LK () LK_PU_LK# () +.0V R K/F_ R K/F_ Layout note: H_GTLREF: Zo= ohm L<0.", /*VP+-% () H_#[0..] () H_STN#0 () H_STP#0 () H_INV#0 () H_#[..] () H_STN# () H_STP# () H_INV# () PU_SEL0 () PU_SEL () PU_SEL H_#[0..] H_#[..] T T T T T T T H_#0 H_# H_# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# U E [0]# F []# E []# G []# F []# G []# E []# E []# K []# G []# J [0]# J []# H []# F []# K []# H []# J STN[0]# H STP[0]# H INV[0]# N []# K []# P []# R []# L [0]# M []# L []# M []# P []# P []# P []# T []# R []# L []# T [0]# N []# L STN[]# M STP[]# N INV[]# H_GTLREF PU_TEST GTLREF PU_TEST TEST PU_TEST TEST PU_TEST TEST F PU_TEST TEST F PU_TEST TEST PU_TEST TEST TEST SEL[0] SEL[] SEL[] Penryn T GRP 0 T GRP MIS T GRP T GRP []# []# []# []# []# []# []# []# [0]# []# []# []# []# []# []# []# STN[]# STP[]# INV[]# []# []# [0]# []# []# []# []# []# []# []# []# []# [0]# []# []# []# STN[]# STP[]# INV[]# OMP[0] OMP[] OMP[] OMP[] PRSTP# PSLP# PWR# PWRGOO SLP# PSI# Y V V V T U U Y W Y W W Y U H_# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# H_# H_# E H_# H_# H_#0 H_# H_# H_# 0 E F H_# H_# H_# E H_# H_# H_# H_#0 H_# F H_# H_# E F 0 R OMP0 R U OMP R OMP R Y OMP R E E H_#[..] H_#[..]./F_./F_./F_./F_ H_#[..] () H_STN# () H_STP# () H_INV# () H_#[..] () Layout note: comp0,: Zo=.ohm, L<0." comp,: Zo=ohm, L<0." Layout note: PRSTP#, aisy hain (S>Power>N>PU) H_STN# () H_STP# () H_INV# () IH_PRSTP# (,,) H_PSLP# () H_PWR# () H_PWRG () H_PUSLP# () PSI# () Penryn Thermal Trip (,,,) ELY_VR_PWRGOO (,) PM_THRMTRIP# Processor hot H_PROHOT#_ PU / +.0V R _ PM_THRMTRIP# R +.0V +.0V R _ Q MMT0 H_PROHOT# () SYS_SHN# (,) No use Thermal trip PU side still PU ohm. Use Thermal trip can share PU at S side No use PROHOT PU side still PU ohm. Use PROHOT to optional receiver PU side PU ohm and through isolat.k ohm to receiver side *0_ Q FV0N PU Thermal monitor () T +V (,) THERM_LERT# +V +V () LK Q0 RHU00N0 +V (0) PUFN#_ON Q RHU00N0 R 0K_ R *0_ R *0K_ R 0K_ V_TH R0 0K_ U H_THERM SLK V S LERT# OVERT# +V R0 00_ XP XN LM RESS: H NS WINON 0.u_ 00p/0V_ H_THERM L0000 LL000 XP PU/P SYS_RST# XP_TO XP_TI XP_TMS XP_PM# XP_TK XP_TRST# R R R0 R R R R00 XP_RESET# and XP_TO reserve for XP +.0V Size ocument Number Rev ate: Wednesday, July 0, 00 Sheet of +V Quanta omputer Inc. PROJET : ZK PU Host us *K_ *./F_./F_./F_./F_./F_./F_

4 U VSS[00] VSS[00] VSS[00] VSS[00] VSS[00] VSS[00] VSS[00] F VSS[00] VSS[00] VSS[00] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[00] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[00] VSS[0] VSS[0] VSS[0] VSS[0] E VSS[0] E VSS[0] E VSS[0] E VSS[0] E VSS[0] E VSS[00] E VSS[0] E VSS[0] E VSS[0] F VSS[0] F VSS[0] F VSS[0] F VSS[0] F VSS[0] F VSS[0] F VSS[00] F VSS[0] F VSS[0] G VSS[0] G VSS[0] G VSS[0] G VSS[0] H VSS[0] H VSS[0] H VSS[0] H VSS[00] J VSS[0] J VSS[0] J VSS[0] J VSS[0] K VSS[0] K VSS[0] K VSS[0] K VSS[0] L VSS[0] L VSS[00] L VSS[0] L VSS[0] M VSS[0] M VSS[0] M VSS[0] M VSS[0] N VSS[0] N VSS[0] N VSS[0] N VSS[00] P VSS[0] Penryn PU / VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[00] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[00] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[0] VSS[] VSS[] VSS[] P P P R R R R T T T T U U U U V V V V W W W W Y Y Y Y E E E E E E E E E F F F F F F F F. *0u_ 0 0u_ 0u_ *0u_ Layout Note: Place these parts reference to Intel demo board. *0u_ 0u_ 0u_ 0 0u_ *0u_ *0u_ 0 *0u_ 0 *0u_ 0u_ 0 *0u_ 0u_ + *0u_ 0u_ *0u_ 0 0u_ *0u_ *0u_ *0u_ 0u_ *0u_ 0 *0u_ + 0u_ *0u_ *0u_ 0u_ 0 *0u_ 0 0u_ 0 0u_ + 0u_ *0u_ *0u_ 0u_ 0 0u_ 0 *0u_ *0u_ + 0 *0u_ V_ORE U V[00] V[00] 0 V[00] V[00] V[00] V[00] V[00] V[00] 0 V[00] V[00] V[0] 0 V[0] V[0] V[0] V[0] V[0] V[0] 0 V[0] V[0] 0 V[00] V[0] V[0] V[0] V[0] V[0] V[0] 0 V[0] V[0] V[0] V[00] V[0] V[0] E V[0] E V[0] E0 V[0] E V[0] E V[0] E V[0] E V[0] E V[00] E0 V[0] F V[0] F V[0] F0 V[0] F V[0] F V[0] F V[0] F V[0] F V[0] F0 V[00] V[0] V[0] 0 V[0] V[0] V[0] V[0] V[0] V[0] 0 V[0] V[00] 0 V[0] 0 V[0] V[0] V[0] V[0] V[0] V[0] Penryn Montevina platform : Early Reference oard Schematics Feb 00. Rev.0 stuff U*, N U* stuff 0U*, N0U* V[0] V[0] V[00] V[0] V[0] V[0] V[0] V[0] V[0] V[0] V[0] V[0] V[00] V[0] V[0] V[0] V[0] V[0] V[0] V[0] V[0] V[0] V[00] V[0] V[0] V[0] V[0] V[0] V[0] V[0] V[0] V[0] V[00] VP[0] VP[0] VP[0] VP[0] VP[0] VP[0] VP[0] VP[0] VP[0] VP[0] VP[] VP[] VP[] VP[] VP[] VP[] V[0] V[0] VI[0] VI[] VI[] VI[] VI[] VI[] VI[] VSENSE VSSSENSE 0 0 E E0 E E E E E E0 F F0 F F F F F F0 G V J K M J K M N N R R T T V W F E F E F E. F E V_ORE V: (Low power type) V: (Standard type) Layout Note: Inside PU center cavity in rows VP :.(Supply after V Stable).(Supply before V Stable).u/V_ *.u/v_ H_VI0 () H_VI () H_VI () H_VI () H_VI () H_VI () H_VI ().u/v_.u/v_ R R 00/F_ +.0V V_ORE VSENSE () VSSSENSE () ate: Friday, June, 00 Sheet of +.V Quanta omputer Inc. PROJET : ZK Size ocument Number Rev PU Power.u/V_.u/V_ V:0m.0u/V_ 00/F_ 0u_ + 0u_ Layout Note: Z0=.,PU/P L<"

5 Intel antiga (G)M Intel antiga (P)M +.0V R0 /F_ R0 00/F_ R./F_ H_SWING H_ROMP QI P/N JSL0T0 JSL0T0 0.*VP WIE(0):SPING(0), L<0.".u_ Layout Note: WIE(0):SPING(0), L<0." /*VP WIE(0):SPING(0), L<0." GMH (NTIG) () H_#[0..] +.0V R K/F_ R K/F_ () H_PURST# () H_PUSLP# H_#0 H_# H_# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_SWING H_ROMP H_VREF *.u_ F G F E G H H F H M M J J N J P L R N L M J N R N N P N L N0 M Y Y Y0 Y Y Y W Y 0 E E E F E E E G E E U H_#_0 H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_0 H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_0 H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_0 H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_0 H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_0 H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_0 H_#_ H_#_ H_#_ H_SWING H_ROMP H_PURST# H_PUSLP# H_VREF H_VREF NTIG_PM HOST H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_0 H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_0 H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_ H_#_0 H_#_ H_#_ H_#_ H_#_ H_#_ H_S# H_ST#_0 H_ST#_ H_NR# H_PRI# H_REQ# H_EFER# H_SY# HPLL_LK HPLL_LK# H_PWR# H_RY# H_HIT# H_HITM# H_LOK# H_TRY# H_INV#_0 H_INV#_ H_INV#_ H_INV#_ H_STN#_0 H_STN#_ H_STN#_ H_STN#_ H_STP#_0 H_STP#_ H_STP#_ H_STP#_ H_REQ#_0 H_REQ#_ H_REQ#_ H_REQ#_ H_REQ#_ H_RS#_0 H_RS#_ H_RS#_ F H M J P R N M E P F G0 J E0 H J0 L L J H0 K 0 F K L0 H G F G E 0 H H J F H E H J L Y Y L0 M E L M E K F F H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# H_# H_# H_# H_# H_#0 H_# H_# H_# H_# H_# H_INV#0 H_INV# H_INV# H_INV# H_STN#0 H_STN# H_STN# H_STN# H_STP#0 H_STP# H_STP# H_STP# H_REQ#0 H_REQ# H_REQ# H_REQ# H_REQ# H_RS#0 H_RS# H_RS# H_#[..] () H_S# () H_ST#0 () H_ST# () H_NR# () H_PRI# () H_REQ# () H_EFER# () H_SY# () LK_MH_LK () LK_MH_LK# () H_PWR# () H_RY# () H_HIT# () H_HITM# () H_LOK# () H_TRY# () H_INV#[..0] () H_STN#[..0] () H_STP#[..0] () H_REQ#[0..] () H_RS#[0..] () Quanta omputer Inc. PROJET : ZK Size ocument Number Rev GMH HOST ate: Friday, June, 00 Sheet of

6 Strap table U Pin Name FG[:0] FG[:] FG FG FG FG FG FG0 FG FG FG FG[:] FG FG[:] FG FG0 SVO_TRLT P_TRLT Reserved PIE Graphics Lane Reversal PIE Loopback enable Reserved XOR Strap description FS Frequency Select Reserved MI X Select itpm Host Interface ME TLS onfidentiality LLZ Reserved FS ynamic OT Reserved MI Lane Reversal igital isplay Port (SVO/P/iHMI) oncurrent with PIE SVO Present igital isplay Present Strap pin +V +V R R R00 R R R R R R R R R R R R R R GMH (NTIG) *.0K/F_ *.0K/F_ *.K/F_ *.K/F_ *.K/F_ *.K/F_ *.K/F_ *.K/F_ *.K/F_ *.K/F_ I@.K/F_ I@.K/F_ *.K/F_ *.K/F_ 0K_ 0K_ 0K_ onfiguration 000= FS 0MHz 00 = FS 00MHz 0 = FS MHz 0 = MI X = MI X(efault) 0 = itpm Host Interface is enabled = itpm Host Interface is disabled(efault) 0 = MT Firmware will use TLS cipher suite with no confidentiality = MT Firmware will use TLS cipher suite with confidentiality(efault) 0 = Reverse Lanes = Normal operation(efault) 0 = Enabled = isabled (efault) 0 = LLZ mode enable = disable(efault) 0 = XOR mode enable = disable(efault) 0 = ynamic OT disable = ynamic OT Enable(efault) 0 = Normal (efault) = Lanes Reversed 0 = Only igital isplay port (SVO/P/iHMI) or PIE is operational (efault) = igital isplay port (SVO/P/iHMI) and PIE are operating simultaneously via PEG port 0 = No SVO/HMI evice Present(efault) = SVO/HMI evice present 0 = igital display(hmi/p) device absent(efault) = igital display(hmi/p) device present MH_FG_ MH_FG_0 MH_FG_ MH_FG_ MH_FG_ MH_FG_ MH_FG_0 MH_FG_ MH_FG_ MH_FG_ SVO_TRLT SVO_TRLLK P_T P_TRLLK LK_MH_OE# PM_EXTTS#0 PM_EXTTS# TPM isable (,,,) () PM_SYN# (,,) IH_PRSTP# () PM_EXTTS#0 () PM_EXTTS# ELY_VR_PWRGOO () PLT_RST# (,) PM_THRMTRIP# (,) PM_PRSLPVR () () () T T T T0 MH_SEL0 MH_SEL MH_SEL T T R0 R0 T T T T T0 T 00/F_ *0_ N Thermal trip pin No use Thermal trip N side can N.(N has OT) PM_PRSTP# The aisy chain topology should be routed from IHM to IMVP, then to (G)MH and PU, in that order. JTG_TK JTG_TI JTG_TO JTG_TMS MH_FG_ MH_FG_ MH_FG_ MH_FG_ MH_FG_ MH_FG_ MH_FG_ MH_FG_0 MH_FG_ MH_FG_ MH_FG_ MH_FG_ MH_FG_ MH_FG_ MH_FG_ MH_FG_ MH_FG_ MH_FG_0 RST_IN#_MH THRMTRIP#_R M RSV N RSV R RSV T RSV H RSV H0 RSV H RSV H RSV K RSV T RSV RSV M RSV Y RSV0 RSV G RSV F RSV H RSV F RSV L ME_JTG_TK K ME_JTG_TI N ME_JTG_TO M ME_JTG_TMS T FG_0 R FG_ P FG_ P0 FG_ P FG_ FG_ N FG_ M FG_ E FG_ FG_ FG_0 N FG_ P FG_ T FG_ R0 FG_ M0 FG_ L FG_ H FG_ P FG_ R FG_ T FG_0 R PM_SYN# PM_PRSTP# N PM_EXT_TS#_0 P PM_EXT_TS#_ T0 PWROK T RSTIN# T0 THERMTRIP# R PRSLPVR G N_ F N_ N_ N_ H N_ G N_ E N_ H N_ F N_ G N_0 H N_ H N_ H N_ H N_ G N_ H N_ F N_ H N_ G N_ E N_0 G N_ F N_ N_ N_ F N_ NTIG_PM FG PM RSV ME JTG N R LK/ ONTROL/OMPENSTION LK MI GRPHIS VI ME MIS H S_K_0 S_K_ S_K_0 S_K_ S_K#_0 S_K#_ S_K#_0 S_K#_ S_KE_0 S_KE_ S_KE_0 S_KE_ S_S#_0 S_S#_ S_S#_0 S_S#_ S_OT_0 S_OT_ S_OT_0 S_OT_ SM_ROMP SM_ROMP# SM_ROMP_VOH SM_ROMP_VOL SM_VREF SM_PWROK SM_REXT SM_RMRST# PLL_REF_LK PLL_REF_LK# PLL_REF_SSLK PLL_REF_SSLK# PEG_LK PEG_LK# MI_RXN_0 MI_RXN_ MI_RXN_ MI_RXN_ MI_RXP_0 MI_RXP_ MI_RXP_ MI_RXP_ MI_TXN_0 MI_TXN_ MI_TXN_ MI_TXN_ MI_TXP_0 MI_TXP_ MI_TXP_ MI_TXP_ GFX_VI_0 GFX_VI_ GFX_VI_ GFX_VI_ GFX_VI_ GFX_VR_EN L_LK L_T L_PWROK L_RST# L_VREF P_TRLLK P_TRLT SVO_TRLLK SVO_TRLT LKREQ# IH_SYN# TSTN# H_LK H_RST# H_SI H_SO H_SYN P T V U0 R R U V0 Y Y Y V R Y F Y G H F H V R F E F F E E E E H E0 E E H0 E E E H E F H G F E H H N J H N M G E K H 0 M_ROMP M_ROMP# SM_ROMP_VOH SM_ROMP_VOL SM_VREF SM_POK SM_REXT LK_REFLK LK_REFLK# LK_REFSSLK LK_REFSSLK# LK_PIE_GPLL LK_PIE_GPLL# MI_TXN0 MI_TXN MI_TXN MI_TXN MI_TXP0 MI_TXP MI_TXP MI_TXP MI_RXN0 MI_RXN MI_RXN MI_RXN MI_RXP0 MI_RXP MI_RXP MI_RXP MH_LVREF_R P_TRLLK P_T TSTN# R R LK_MH_OE# H_IT_LK_HMI H_RST#_HMI H_SIN_HMI H_SOUT_HMI H_SYN_HMI 0K/F_ /F_ R _ M_LK0 () M_LK () M_LK () M_LK () M_LK#0 () M_LK# () M_LK# () M_LK# () M_KE0 () M_KE () M_KE () M_KE () M_S#0 () M_S# () M_S# () M_S# () M_OT0 () M_OT () M_OT () M_OT () LK_REFLK () LK_REFLK# () LK_REFSSLK () LK_REFSSLK# () LK_PIE_GPLL () LK_PIE_GPLL# () MI_TXN[:0] () MI_TXP[:0] () MI_RXN[:0] () MI_RXP[:0] () L_LK0 () L_T0 () MPWROK (,) L_RST#0 () SVO_TRLLK () SVO_TRLT () MH_IH_SYN# () +.0V H_IT_LK_HMI () H_RST#_HMI () H_SIN_HMI () H_SOUT_HMI () H_SYN_HMI () SM_VREF=0.*V_SM SM_PWROK only for R.(R P only) SM_RMRST# only for R.(R:N).u_ +.0V If HMI not support H --> N V_H--> ifferential signal-->n Impact IHM VH and VSUSH supply.v/.v NOTE: If (G)MH's H udio signals are connected to IHM for ihmi, VH and VSUSH on IHM should be only on.v. These power pins on IHM can be supplied with.v if and only if (G)MH's H is not connected to IHM. onsequently, only.v audio/modem codecs can be used on the platform. R K/F_ M_ROMP M_ROMP# SM_VREF TSTN# LK_REFLK# LK_REFLK LK_REFSSLK# LK_REFSSLK SM_ROMP_VOH.u_ SM_ROMP_VOL +.0V heck list note : L_VREF=0.V R /F_ P_TRL for HMI port SVO_TRL for HMI port +VR_SUS +VR_SUS 0K/F_ 0K/F_ SM_VREF.efault use voltage divider for poor layout cause +SMR_VREF not meet spec.nd Intel circuit PU/P is K,ut heck list PU/P is 0K. INTEL FE Suggest P for Ext graphics.u_ N Thermaltrip R R R R0 R *0K_ 0./F_ 0./F_ R R R R0.0u_.0u_ Q *MMT0 K/F_ R.0K/F_ R K/F_ *E@0_ *E@0_ *E@0_ *E@0_ +VR_SUS TSTN_E# () <hecklist ver0.> If TSTN# is not used, then it must be terminated with a -Ω pull-up resistor to VP. <Pin out check issue> antiga ES 0. change all to TSTN# from TSTN Quanta omputer Inc. PROJET : ZK Size ocument Number Rev GMH MI R Friday, June, 00 ate: Sheet of

7 IV&EV is/enable setting If LVS no use,all signal can N () L_KLT_TRL () INT_LVS_LON () INT_LVS_EILK () INT_LVS_EIT () INT_LVS_IGON () INT_TXLOUT0- () INT_TXLOUT- () INT_TXLOUT- () INT_TXLLKOUT- () INT_TXLLKOUT+ () INT_TXULKOUT- () INT_TXULKOUT+ () INT_TXLOUT0+ () INT_TXLOUT+ () INT_TXLOUT+ () INT_TXUOUT0- () INT_TXUOUT- () INT_TXUOUT- () INT_TXUOUT0+ () INT_TXUOUT+ () INT_TXUOUT+ () INT_RT_LK () INT_RT_T () INT_HSYN () INT_VSYN MXM STUFFE. HSYN_G VSYN_G +V R R0 I@0K_ L_TRL_LK I@0K_ L_TRL_T R INT_TXLLKOUT- INT_TXLLKOUT+ INT_TXULKOUT- INT_TXULKOUT+ INT_TXLOUT0- INT_TXLOUT- INT_TXLOUT- INT_TXLOUT0+ INT_TXLOUT+ INT_TXLOUT+ INT_TXUOUT0- INT_TXUOUT- INT_TXUOUT- INT_TXUOUT0+ INT_TXUOUT+ INT_TXUOUT+ R _ R _ R _ () INT_RT_LU () INT_RT_GRN () INT_RT_RE R R I@0._ I@0._ I@.K/F_ INT_TV_OMP INT_TV_Y/G INT_TV_/R INT_RT_LU E INT_RT_GRN G INT_RT_RE J HSYN_G RTIREF VSYN_G HSYN/VSYN serial R place close to N RTIREF pull down for IV cantiga.0k ohm/f L G M M K J M E E 0 H E G0 0 H F0 0 H G J G F K F H K H E G H J J E L U L_KLT_TRL L_KLT_EN L_TRL_LK L_TRL_T L LK L T L_V_EN LVS_IG LVS_VG LVS_VREFH LVS_VREFL LVS_LK# LVS_LK LVS_LK# LVS_LK LVS_T#_0 LVS_T#_ LVS_T#_ LVS_T#_ LVS_T_0 LVS_T_ LVS_T_ LVS_T_ LVS_T#_0 LVS_T#_ LVS_T#_ LVS_T#_ LVS_T_0 LVS_T_ LVS_T_ LVS_T_ TV_ TV_ TV_ TV_RTN TV_ONSEL_0 TV_ONSEL_ RT_LUE RT_GREEN RT_RE RT_IRTN RT LK RT T RT_HSYN RT_TVO_IREF RT_VSYN NTIG_PM LVS PI-EXPRESS GRPHIS TV VG PEG_OMPI PEG_OMPO PEG_RX#_0 PEG_RX#_ PEG_RX#_ PEG_RX#_ PEG_RX#_ PEG_RX#_ PEG_RX#_ PEG_RX#_ PEG_RX#_ PEG_RX#_ PEG_RX#_0 PEG_RX#_ PEG_RX#_ PEG_RX#_ PEG_RX#_ PEG_RX#_ PEG_RX_0 PEG_RX_ PEG_RX_ PEG_RX_ PEG_RX_ PEG_RX_ PEG_RX_ PEG_RX_ PEG_RX_ PEG_RX_ PEG_RX_0 PEG_RX_ PEG_RX_ PEG_RX_ PEG_RX_ PEG_RX_ PEG_TX#_0 PEG_TX#_ PEG_TX#_ PEG_TX#_ PEG_TX#_ PEG_TX#_ PEG_TX#_ PEG_TX#_ PEG_TX#_ PEG_TX#_ PEG_TX#_0 PEG_TX#_ PEG_TX#_ PEG_TX#_ PEG_TX#_ PEG_TX#_ PEG_TX_0 PEG_TX_ PEG_TX_ PEG_TX_ PEG_TX_ PEG_TX_ PEG_TX_ PEG_TX_ PEG_TX_ PEG_TX_ PEG_TX_0 PEG_TX_ PEG_TX_ PEG_TX_ PEG_TX_ PEG_TX_ T T L<0.", If PIE not support still connect to +V_PEG EXP OMPX H PEG_RXN0 J PEG_RXN L PEG_RXN L0 PEG_RXN N PEG_RXN P PEG_RXN N PEG_RXN T PEG_RXN U PEG_RXN Y PEG_RXN Y PEG_RXN0 Y PEG_RXN PEG_RXN PEG_RXN PEG_RXN PEG_RXN H PEG_RXP0 J PEG_RXP L PEG_RXP L PEG_RXP N0 PEG_RXP P PEG_RXP N PEG_RXP T PEG_RXP U PEG_RXP Y PEG_RXP W PEG_RXP0 Y PEG_RXP PEG_RXP PEG_RXP PEG_RXP 0 PEG_RXP J M M M0 M R N T0 U U0 Y0 0 J L M M M R N T U U Y Y _PEG_TXN0 _PEG_TXN _PEG_TXN _PEG_TXN _PEG_TXN _PEG_TXN _PEG_TXN _PEG_TXN _PEG_TXN _PEG_TXN _PEG_TXN0 _PEG_TXN _PEG_TXN _PEG_TXN _PEG_TXN _PEG_TXN R _PEG_TXP0 _PEG_TXP _PEG_TXP _PEG_TXP _PEG_TXP 0 _PEG_TXP 0 _PEG_TXP 0 _PEG_TXP _PEG_TXP 0 _PEG_TXP _PEG_TXP0 _PEG_TXP _PEG_TXP _PEG_TXP _PEG_TXP _PEG_TXP +.0V./F_ PEG_RXN[:0] () an support reversal routing.if FG=, PI Express is normal operation. If FG=0, then PEG_TXP0 becomes PEG_TXP, PEG_TXP becomes PEG_TXP, PEG_TXP becomes PEG_TXP, etc. similarly for PEG_RXP[:0] and PEG_RXN[:0] PEG_RXP[:0] ().u_.u_.u_.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_.u_.u_.u_.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ *E@.u_ PEG_TXN0 PEG_TXN PEG_TXN PEG_TXN PEG_TXN PEG_TXN PEG_TXN PEG_TXN PEG_TXN PEG_TXN PEG_TXN0 PEG_TXN PEG_TXN PEG_TXN PEG_TXN PEG_TXN PEG_TXP0 PEG_TXP PEG_TXP PEG_TXP PEG_TXP PEG_TXP PEG_TXP PEG_TXP PEG_TXP PEG_TXP PEG_TXP0 PEG_TXP PEG_TXP PEG_TXP PEG_TXP PEG_TXP PEG_TXN[:0] () PEG_TXP[:0] () IV&EV is/enable setting </>Montevina_Schematics_hecklist_Rev0_ a)for TVOUT isabled, TV_ONSEL[:0] onnect to. ut design guide Rev0. show N.What is correct. b)for RT isable, RT LK, RT T. RT_HSYN, RT_VSYNThese signals should be connected to. ut design guide Rev0. show N, Intel suggest follow esign guide. SP@ <check list> For EV@ RT R/G/ 0ohm to RTIREF 0ohm to R R R R RTIREF For IV:.0Kohm For EV:0ohm SP@.0K/F_ RT_R/G/ For IV: 0ohm For EV:0ohm SP@0_ SP@0_ SP@0_ <check list> For IV@ RT R/G/ 0ohm to RTIREF.0Kohm to RTIREF INT_RT_LU INT_RT_GRN INT_RT_RE R *E@0_ R *E@0_ Quanta omputer Inc. PROJET : ZK Size ocument Number Rev GMH VG ate: Wednesday, July 0, 00 Sheet of

8 M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q0 M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q0 M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q0 M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q0 M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q0 M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q0 M Q M Q M Q M Q0 M M0 M M M M M M M M M M M M M M M QS M QS M QS0 M QS M QS M QS M QS M QS M QS#0 M QS# M QS# M QS# M QS# M QS# M QS# M QS# M 0 M M M M M M M M 0 M M M M M M M Q M Q M Q M Q M Q M Q M Q0 M Q0 M Q M Q0 M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q0 M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q0 M Q0 M Q0 M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M Q M M QS# M M QS# M 0 M M QS# M 0 M QS# M M M M QS# M M QS M QS# M M M M M M QS M M M M0 M QS M M QS M QS M M QS M M M M QS0 M QS M M M M M QS# M QS#0 M M M M M Q[:0] () M S0 () M M[:0] () M QS[:0] () M QS#[:0] () M [:0] () M RS# () M S# () M WE# () M Q[:0] () M S0 () M M[:0] () M QS[:0] () M QS#[:0] () M [:0] () M RS# () M S# () M WE# () M S () M S () M S () M S () Size ocument Number Rev ate: Sheet of Quanta omputer Inc. PROJET : GMH RII Friday, June, 00 ZK Size ocument Number Rev ate: Sheet of Quanta omputer Inc. PROJET : GMH RII Friday, June, 00 ZK Size ocument Number Rev ate: Sheet of Quanta omputer Inc. PROJET : GMH RII Friday, June, 00 ZK GMH (NTIG) R SYSTEM MEMORY U NTIG_PM R SYSTEM MEMORY U NTIG_PM S_Q_0 J S_Q_ J S_Q_0 U0 S_Q_ T S_Q_ N S_Q_ N S_Q_ U S_Q_ U S_Q_ V S_Q_ Y S_Q_ 0 S_Q_ S_Q_ N S_Q_0 V S_Q_ Y S_Q_ S_Q_ 0 S_Q_ Y S_Q_ S_Q_ V S_Q_ T S_Q_ Y S_Q_ S_Q_ M S_Q_0 V S_Q_ W S_Q_ S_Q_ U S_Q_ S_Q_ S_Q_ U S_Q_ V S_Q_ S_Q_ S_Q_ J S_Q_0 S_Q_ S_Q_ U0 S_Q_ V S_Q_ S_Q_ S_Q_ Y S_Q_ S_Q_ V S_Q_ V S_Q_ J0 S_Q_0 T S_Q_ N S_Q_ U S_Q_ U S_Q_ T S_Q_ N0 S_Q_ M S_Q_ M S_Q_ J S_Q_ J S_Q_ M S_Q_0 N S_Q_ M S_Q_ J S_Q_ J S_Q_ M S_Q_ N S_Q_ N S_S_0 S_S_ G S_S_ T S_S# 0 S_M_0 M S_M_ T S_M_ Y S_M_ U S_M_ S_M_ Y S_M_ T S_QS_0 J S_QS_ T S_QS_ S_QS_ S_QS_ W S_QS_ S_QS_ U S_QS_ M S_M_ J S_QS#_0 J S_QS#_ T S_QS#_ S_QS#_ S_QS#_ Y S_QS#_ S_QS#_ U S_QS#_ M S_M_0 S_M_ S_M_0 S_M_ G S_M_ H S_M_ H S_M_ G S_M_ H S_M_ G S_M_ S_M_ S_M_ G S_M_ F S_M_ W S_RS# 0 S_WE# Y0 S_M_ Y R SYSTEM MEMORY UE NTIG_PM R SYSTEM MEMORY UE NTIG_PM S_Q_0 K S_Q_ H S_Q_0 S_Q_ Y S_Q_ T S_Q_ R S_Q_ S_Q_ S_Q_ S_Q_ S_Q_ G S_Q_ F S_Q_ P S_Q_0 E S_Q_ S_Q_ F0 S_Q_ F S_Q_ G S_Q_ F S_Q_ H S_Q_ G S_Q_ H0 S_Q_ G S_Q_ P S_Q_0 G S_Q_ H S_Q_ H S_Q_ G S_Q_ H S_Q_ G S_Q_ H S_Q_ F S_Q_ F S_Q_ G S_Q_ J S_Q_0 S_Q_ S_Q_ Y S_Q_ Y S_Q_ F S_Q_ F S_Q_ S_Q_ S_Q_ V S_Q_ U S_Q_ J S_Q_0 R S_Q_ N S_Q_ Y S_Q_ V S_Q_ P S_Q_ R S_Q_ L S_Q_ L S_Q_ J S_Q_ H S_Q_ M S_Q_0 M S_Q_ M S_Q_ H S_Q_ J S_Q_ P S_Q_ U S_Q_ U S_S_0 S_S_ S_S_ S_S# G S_M_0 M S_M_ Y S_M_ 0 S_M_ F S_M_ G S_M_ S_M_ P S_M_ K S_QS_0 L S_QS_ V S_QS_ G S_QS_ G S_QS_ H S_QS_ S_QS_ U S_QS_ N S_QS#_0 L S_QS#_ V S_QS#_ H S_QS#_ H S_QS#_ G S_QS#_ S_QS#_ T S_QS#_ N S_M_0 V S_M_ S_M_0 S_M_ W S_M_ Y S_M_ H S_M_ S_M_ U S_M_ W S_M_ S_M_ U S_M_ W S_M_ T S_M_ S_M_ U S_RS# U S_WE# F

9 +VR_SUS Power consumption reference to Intel antiga chipset ES Volume. Section 0 GM TP 0.~W GS TP ~W PM TP W UG +.0V_XG Intel check list(rev 0.) No description for V_SM bulk P Intel R(Rev 0.) 0U* Reserve near to power 0U* near to N Intel check list(rev 0.) 0U* near to power(+v.0m). 0U* near to N Intel R(Rev 0.) 0U* near to power(+v.0m). 0U* near to N ESR=m ohm u_ u_.u_ V_SM(.V) R(00M) 000m_S0, m_s R(M) : 00m_S0 R(0M) : 0m_S0.0V Graphics core V_XG V_XG_NTF.m Voltage regulator is shared between the Graphics ore Rail, V_HPLL,V_MPLL,V_PEG_PLLV_PEG_PLL, V_SM_K, V_PLL, V_PLL, V_HPLL, V_SM, V_XF IV@ + 0u_ +.0V_XG R R +.0V_XG I@0/F_ I@0/F_ P N H G F Y W V U T R P N H G F G0 H G F Y W V U T R P W W T Y E E Y E J G E Y H0 F0 E T T M L E J H G F Y V U N M U T J H V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_0 V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_0 V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_0 V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_/N V_SM_/N V_SM_/N V_SM_/N V_SM_0/N V_SM_/N V_SM_/N V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_0 V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_0 V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_0 V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_ V_XG_0 V_XG_ V_XG_ V_XG_SENSE VSS_XG_SENSE POWER V SM V GFX V GFX NTF V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_0 V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_0 V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_0 V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_0 V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_0 V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_ V_XG_NTF_0 V_SM_LF V_SM_LF V_SM_LF V_SM_LF V_SM_LF V_SM_LF V_SM_LF V SM LF W V W V W V W V W V M L K W V U M0 K0 W0 U0 M L K J H G F E Y W V U M K H G F E Y W V M L K J H G F E Y W V U V M0 V Y M0 V_SM_LF V_SM_LF V_SM_LF V_SM_LF V_SM_LF V_SM_LF V_SM_LF IV@ +.0V_XG + I@0u_.V Internal connect to power.u_ +.0V R R R I@0_ +.0V_XG Place close to the GMH Intel check list(rev 0.) 0U* near to N(ESR=m ohm) Intel R(Rev 0.) 0U* near to power(+v.0s). 0U* near to N.u_ +.0V IV&EV is/enable setting esign guide(table ) For INT VG diasble.v_xg power can connect to + I@0u_.u_ I@0_ I@0_ 0.u_ I@.u_.u_ SP@ SP@u_ SP@:IV Sutff uf EVstuff 0 ohm u_ 0 u_.u_ I@0u_.u_ I@u_.u_ I@.u_ u_ Place close to the GMH I@.u_ avity apacitors + 0u_ 0 I@.u_ UF G V_ V_ V_ V_ Y V_ V V_ U V_ M V_ K V_ J V_0 G V_ F V_ E V_ V_ V_ Y V_ W V_ V V_ U V_ H V_0 F V_ V_ V_ J V_ G V_ E V_ V_ H V_ G V_ F V_0 G V_ J V_ H V_ F V_ T V_ NTIG_PM V ORE POWER V NTF V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_0 V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_0 V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_0 V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_ V_NTF_0 V_NTF_ V_NTF_ V_NTF_ V_NTF_ +.0V M L K J H G E Y W U M0 L0 K0 H0 G0 F0 E Y0 W0 V0 U0 L K J H G E Y W V L K L K K K K V V_NTF 0.m_EV 0.m_IV ME Engine 0.m Total Max=.m NTIG_PM. Route V_XG_SENSE and VSS_XG_SENSE differentially. V_XG_SENSE PU to +VGFX_ORE_INT with 0ohm and VSS_XG_SENSE P with 0ohm for Intel suggest GMH (NTIG) Quanta omputer Inc. PROJET : ZK Size ocument Number Rev GMH V,NTF Friday, June, 00 ate: Sheet of

10 Power consumption reference to Intel antiga chipset ES Volume. Section 0 0 0UH, 0% 0. R_max = V +.0V +.0V.V.m for V_TV_.m for V_TV_.m for V_TV_ Total.m +.V +.V.V.m for RT m for TV.0V.m for PLL_/ 0 0.uH, 0%,, R_max=0.0Ω 0 0UH, 0% 0. R_max = 0. L +.0VM_MPLL_R F 0@00 MHz, %..V R_max=0 m m +V L I@LMPGSN_ I@0u_ R no 0U heck list need min 0U~00U for V_TV_ R L L I@0uh_ R0 0_ u_ I@0_ V_TV always keep 0.U/0.0U/0U to +.V R 0_ ESR= m ESR= m.v 0m.V m F 0@00 MHz, %. R_max=0 m L I@0uh_.u_ LMPGSN_ R +V_RT_TV_ IV&EV is/enable setting SP@:INT use 0.U EXT use 0 ohm + I@0u_ + I@0u_ 0./F_.u_ I@LMPGSN_ I@.u_ SP@.u_ +.0V.0V m.0v.m 0.u_ +.0V +V_V_RT_ I@.u_ SP@.0u_ +V G I@.u_ V_PLL/ always keep to +.0V (If no use IV dynamic core power) +.V. nh, 0. nh,, R_max= m IV&EV is/enable setting SP@:INT use 0.U EXT use 0 ohm SP@.u_.u_ 0 SP@.u_.V 0.m R R0 R 0_ I@0_ SP@:INT use 0.0U SP@.0u_ EXT use 0 ohm.0u/v_ I@0_.V.m.0V R-00 m R : 0 ohm heck list :.nh +.0V IV&EV is/enable setting SP@:INT use 0.0U EXT use 0 ohm SP@.0u_ R 0_ R 0_.0V R-00 0m +.0VM SM u_ R 0_.0V.m +.0VM_PLL +.0VM_PLL +.0VM_HPLL +.0VM_MPLL +.VSUS_TXLVS +V_PEG_G.0V.u_ 0m +.0VM_PEGPLL V_PEG_PLL +.V for Teenah use(00m) R0 P0 N0 R.u_ u_ P N T R P +.0VM SM_K *.u_ u_ V_Q share to TV and RT.V m.v m I@0u_ USE same plane 0 I@000p/0V_.u_ I@0u_.V u.u_ +V_RT_TV_ +V_H +.V_TV +.V_Q +.0VM_MH_PLL +.0VM_PEGPLL F L E J J P N P N N M M M L M L M L M L F M L UH V_RT V_RT V G VSS G V_PLL V_PLL V_HPLL V_MPLL V_LVS VSS_LVS V_PEG_G V_PEG_PLL V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_SM_ V_TV V_TV V_HPLL V_PEG_PLL NTIG_PM RT PLL LVS PEG SM V_SM_K_ V_SM_K_ V_SM_K_ V_SM_K_ V_SM_K_ V_SM_K_NTF_ V_SM_K_NTF_ V_SM_K_NTF_ V_SM_K_NTF_ V_SM_K_NTF_ V_SM_K_NTF_ V_SM_K_NTF_ V_SM_K_NTF_ V_H V_TV V_Q V_LVS_ V_LVS_ TV H LVS POWER K TV/RT XF SM K MI HV PEG VTT VTTLF VTT_ VTT_ VTT_ VTT_ VTT_ VTT_ VTT_ VTT_ VTT_ VTT_0 VTT_ VTT_ VTT_ VTT_ VTT_ VTT_ VTT_ VTT_ VTT_ VTT_0 VTT_ VTT_ VTT_ VTT_ VTT_ V_XF_ V_XF_ V_XF_ V_SM_K_ V_SM_K_ V_SM_K_ V_SM_K_ V_TX_LVS V_HV_ V_HV_ V_HV_ V_PEG_ V_PEG_ V_PEG_ V_PEG_ V_PEG_ V_MI_ V_MI_ V_MI_ V_MI_ VTTLF VTTLF VTTLF U T U T U T U0 T0 U T U T U T U T U T V U V U T V U F H0 G0 F0 K V U V U U H F H G L.u_.0V.m +.0VM_XF u_ +.VSUS_V_SM_K.u_ IV&EV is/enable setting +.VSUS_TXLVS.u_ SP@:INT use 000pf EXT use 0 ohm.u_.v 0.m.0V m.0v m 0.u_.u_ /F_.u_.u_ *0u_ ESR = 0 m SP@000p/0V_ +V.u_ R.u_.0V FS-0 m.v R-00 m L uh_ +.VSUS_SMK_R.V.m L0 +.0V ESR= m ohm heck list : 0.UH R : 0 ohm 0 0.?H, 0% R max = m L.u_ + 0u_ I@u_ R 0_ 0.uh_ +.0V_S +.0V.0V Internal connect to power +.0V 00 UH, Rdc = Max rated current = 0 m +VR_SUS nh, R=0 m I@0.uh_ u_ 0u_ +VR_SUS + 0u_ External Graphics (GMH Integrated Graphics isable) VSYN_RT V_RT_ V_LVS V_TX_LVS V_LVS V_TV V_Q V G V_XG V_XG_NTF H +.0V 0 0u_ R no 0U heck list need min 0U~00U for V_Q I@.u_ SP@:INT use 0.0U SP@.0u_ EXT use 0 ohm IV&EV is/enable setting Power Net Name V_XG_# V_XG_NTF_# antiga(v).0v +.0V F MHz, %, L LMPGSN_.0V 0m V_PEG_G V_PLL V_PLL V_SM_#.V.0V.0V.0V GMH (NTIG) +.0VM_PEGPLL_R R0 0u_ ESR=0m ohm /F_.u_.u_ +VR_SUS R I@0_.V 0.m IV&EV is/enable setting +.VSUS_LVS SP@:INT use U EXT use 0 ohm SP@u_ V_HPLL V_MPLL V_SM_K_# V_PEG_PLL V_XF_# V_HPLL V_PEG_PLL.0V.0V.0V.0V.0V.0V.0V Quanta omputer Inc. PROJET : ZK Size ocument Number Rev GMH POWER Friday, June, 00 ate: Sheet of 0

11 Size ocument Number Rev ate: Sheet of Quanta omputer Inc. PROJET : GMH VSS Friday, June, 00 ZK Size ocument Number Rev ate: Sheet of Quanta omputer Inc. PROJET : GMH VSS Friday, June, 00 ZK Size ocument Number Rev ate: Sheet of Quanta omputer Inc. PROJET : GMH VSS Friday, June, 00 ZK GMH (NTIG) VSS VSS NTF VSS S N UJ NTIG_PM VSS VSS NTF VSS S N UJ NTIG_PM VSS_ G VSS_0 W VSS_0 U VSS_0 P VSS_0 N VSS_0 H VSS_0 F VSS_0 VSS_0 R VSS_0 M VSS_0 J VSS_ G VSS_ 0 VSS_ 0 VSS_ W0 VSS_ T0 VSS_ J0 VSS_ G0 VSS_ Y0 VSS_ N0 VSS_0 K0 VSS_ F0 VSS_ 0 VSS_ 0 VSS_ G VSS_ VSS_ G VSS_ VSS_ W VSS_ T VSS_0 R VSS_ M VSS_ H VSS_ VSS_ VSS_ U VSS_ N VSS_ N VSS_0 K VSS_ G VSS_ E VSS_ G VSS_ W VSS_ VSS_ G VSS_ VSS_ VSS_0 G VSS_ VSS_ VSS_ N VSS_ J VSS_ E VSS_ N VSS_ L VSS_0 G VSS_ E VSS_ F VSS_ V VSS_ T VSS_ M VSS_ VSS_ J VSS_ VSS_ VSS_0 VSS_ Y VSS_ N VSS_ H VSS_ Y VSS_ N VSS_ G VSS_ VSS_ G0 VSS_0 V0 VSS_ T0 VSS_ J0 VSS_ E0 VSS_ 0 VSS_ H VSS_ VSS_ G VSS_0 VSS_ M VSS_ N VSS_ VSS_ M0 VSS_ F VSS_ H VSS_ Y VSS_ L VSS_00 E VSS_0 VSS_0 Y VSS_0 U VSS_0 N VSS_0 J VSS_0 E VSS_0 VSS_0 N VSS_0 J VSS_0 G VSS_ VSS_ V VSS_ T VSS_ VSS_ M VSS_ M VSS_ VSS_ VSS_ H VSS_ VSS_0 Y VSS_ L VSS_ J VSS_ H VSS_ F VSS_ E VSS_ VSS_ V VSS_ L VSS_NTF_ F VSS_NTF_ VSS_NTF_ V VSS_NTF_ J0 VSS_NTF_ M VSS_NTF_ F VSS_NTF_ VSS_NTF_ U VSS_NTF_ U VSS_NTF_0 L0 VSS_NTF_ V0 VSS_NTF_ VSS_NTF_ L VSS_NTF_ J VSS_NTF_ VSS_NTF_ U VSS_S_ H VSS_S_ H VSS_S_ VSS_S_ VSS_S_ N_ E N_ N_ N_ N_0 N_ N_ N_ N_ N_ N_ N_ N_ N_ F N_0 E N_ N_ VSS_0 R VSS_ P VSS_ VSS_ R VSS_ U VSS_ P VSS_ F VSS_ W VSS_ E VSS_0 F VSS_ H VSS_ J VSS_ VSS_ VSS_ Y VSS_ M VSS_ K VSS_ M VSS_ VSS_ P VSS_0 H VSS_ VSS_ V VSS_ T VSS_ U VSS_ U VSS_ U VSS_ U VSS_00 L VSS_ J N_ VSS UI NTIG_PM VSS UI NTIG_PM VSS_ U VSS_ VSS_ R VSS_ L VSS_ VSS_ W VSS_ N VSS_ J VSS_ F VSS_ VSS_0 VSS_ Y VSS_ T VSS_ N VSS_ L VSS_ G VSS_ VSS_ VSS_ V VSS_0 R VSS_ M VSS_ V VSS_ R VSS_ P VSS_ H VSS_ F VSS_ F VSS_ H VSS_ VSS_0 VSS_ Y VSS_ U VSS_ T VSS_ M VSS_ F VSS_ VSS_ V VSS_ U VSS_ M VSS_0 J VSS_ VSS_ G VSS_ Y VSS_ T VSS_ N VSS_ J VSS_ E VSS_ N VSS_ L VSS_0 VSS_ U VSS_ M VSS_ H VSS_ VSS_ VSS_ Y VSS_ U VSS_ T VSS_ M VSS_0 G VSS_ VSS_ G0 VSS_ 0 VSS_ V0 VSS_ N0 VSS_ H0 VSS_ E0 VSS_ T VSS_ M VSS_0 J VSS_ E VSS_ N VSS_ L VSS_ VSS_ H VSS_ VSS_ VSS_ U VSS_ H VSS_0 VSS_ VSS_ Y VSS_ U VSS_ T VSS_ J VSS_ F VSS_ VSS_ VSS_00 M VSS_0 E VSS_0 P VSS_0 L VSS_0 J VSS_0 F VSS_0 VSS_0 H VSS_0 VSS_0 Y VSS_0 U VSS_ T VSS_ F VSS_ M VSS_ J VSS_ F VSS_ E VSS_ W VSS_ VSS_ VSS_0 G VSS_ VSS_ VSS_ V VSS_ R VSS_ L VSS_ H VSS_ VSS_ P VSS_ L VSS_0 H VSS_ N VSS_ K VSS_ F VSS_ VSS_ VSS_ N VSS_ T VSS_ N VSS_ K VSS_0 H VSS_ F VSS_ VSS_ G VSS_ VSS_ VSS_ V VSS_ T VSS_ R VSS_ J VSS_0 G VSS_ E VSS_ VSS_ Y VSS_ P VSS_ K VSS_ H VSS_ F VSS_ VSS_ F VSS_0 H VSS_ F VSS_ VSS_ VSS_ VSS_ VSS_ H VSS_ VSS_ VSS_ V VSS_0 R VSS_ J VSS_ VSS_ Y VSS_ N VSS_ L VSS_ J VSS_ G VSS_ E VSS_ F VSS_ F VSS_ VSS_0 W VSS_ T VSS_ N VSS_ J VSS_ H VSS_ VSS_ G VSS_ U VSS_ T VSS_ H VSS_ VSS_ L VSS_ Y VSS_ G VSS_ E VSS_ G VSS_ VSS_ Y VSS_ J VSS_ F VSS_ R VSS_ K VSS_0 J VSS_ F VSS_ H VSS_ Y VSS_ K VSS_0

12 IHM +VRT. Ohm pull up to.v for GLN_OMPI/O is required, no matter intel LN is used or not. ST H +.V Internal pull-down resistors that are always enabled O (ST) p/0v_ p/0v_ R +V_S () Z_SIN0 () Z_SIN () ST_LE# () ST_RXN () ST_RXP () ST_TXN () ST_TXP () ST_RXN () ST_RXP () ST_TXN () ST_TXP Y.KHZ LK_KX LK_KX RT_RST# SRT_RST# SM_INTRUER# R K/F_ IH_INTVRMEN Internal VRM enabled for VccSus_0, VccSus_, E VccL_, VccLN_0 and VccL_0. F G R R T T0 R 0M_ M/F_ 0K_ IH_GPIO./F_ H_IT_LK_R H_SYN_R H_RST#_R H_SIN H_SIN H_SOUT_R U RTX RTX RTRST# F0 SRTRST# INTRUER# INTVRMEN LN00_SLP GLN_LK LN_RSTSYN LN_RX0 LN_RX LN_RX LN_TX0 LN_TX E LN_TX 0 F H_IT_LK H H_SYN E H_RST# F H_SIN0 G H_SIN H H_SIN E H_SIN G G GLN_OK#/GPIO GLN_OMPI GLN_OMPO H_SOUT STLE# J ST0RXN H ST0RXP F ST0TXN G ST0TXP H STRXN J STRXP G STTXN F STTXP IHM REV.0 RT LP LN / GLN PU IH G H_OK_EN#/GPIO E H_OK_RST#/GPIO ST FWH0/L0 FWH/L FWH/L FWH/L FWH/LFRME# LRQ0# LRQ#/GPIO 0GTE 0M# PRSTP# PSLP# FERR# PUPWRG IGNNE# INIT# INTR RIN# NMI SMI# STPLK# THRMTRIP# TP STRXN STRXP STTXN STTXP STRXN STRXP STTXN STTXP ST_LKN ST_LKP STRIS# STRIS K K L K K J J N J J E J F E G L F F H G G H J G F H J E0 F0 H J J H H_FERR#_R T T0 H_THERMTRIP_R T ST_RIS_PN STIS L<0." LRQ0/# : Internal PU R R _ R R0./F_.K_ 0K_ +V ST_RXN0 () ST_RXP0 () ST_TXN0 () ST_TXP0 () ST_RXN () ST_RXP () ST_TXN () ST_TXP () +V LK_PIE_ST# () LK_PIE_ST () L0 (,) L (,) L (,) L (,) LFRME# (,) GTE0 () H_0M# () H_PWRG () H_IGNNE# () H_INIT# () H_INTR () RIN# () H_NMI () H_SMI# () H_STPLK# () N ST H est +.0V R *_ R R *_ R _ *0_ Layout note: PRSTP#, aisy hain (S>Power>N>PU) IH_PRSTP# (,,) H_PSLP# () +.0V PM_THRMTRIP# (,) +.0V R _ Intel IHM H_FERR# () No use Thermal trip S side still PU ohm.(serial R use 0ohm) Use Thermal trip can share PU for PU and S side(nd Serial R use. ohm) PU L<" JSLQ0T0 H udio Pin Name H_OK_EN/ GPIO H_SOUT_R Weak integrated P on the H_SOUT pin. H_SYN_R R *E@_ R I@_ R _ R _ R *E@_ R I@_ R0 _ R _ Weak integrated P on the H_SYN pins South ridge Strap Pin (/) MXM_SOUT_HMI () H_SOUT_HMI () Z_SOUT_M () Z_SOUT_UIO () H_IT_LK_R.000 MHz is output from the IHM. MXM_IT_LK_HMI () H_IT_LK_HMI () IT_LK_M () IT_LK_UIO () R *E@_ MXM_SYN_HMI () MXM_RST#_HMI () R I@_ H_SYN_HMI () H_RST#_HMI () R _ Z_SYN_M () Z_RST#_M () H_RST#_R R _ Z_SYN_UIO () Z_RST#_UIO () *0p/0V_ H_SIN R *E@0_ MXM_SIN_HMI () H_SIN R I@0_ H_SIN_HMI () Strap description Sampled onfiguration PU/P Flash escriptor Security Override Strap *0p/0V_ PWROK R *E@_ R I@_ R _ R _ 0 = The Flash escriptor Security will be overridden. = The security measures defined in the Flash escriptor will be in effect *0p/0V_ *0p/0V_ *0p/0V_ This strap should only be enabled in manufacturing environments using an external pull-up resistor. RT +VPU VRT_ VRT_ 0MIL R K_ Pjt: TZ0 Ons: TZ0 T RT_N0 RT_T N Pitch:,mm; Height:.mm 0MIL RT_N0 R Q 0MIL MMT0 +VRT R u_ R K_ +VPU R.K/F_ R 0K/F_ 0K_ 0 u_ 0K_ u_ SRT_RST# RT_RST# G *SHORT_ P G *SHORT_ P STLE# PI Express Lane Reversal (Lanes -) PWROK Internal PU hange type TP H_SOUT XOR hain Entrance XOR hain Entrance /PI Express* Port onfig bit (Port -) PWROK PWROK IH_TP H_SOUT RSV escription Enter XOR hain Normal opration(efault) Set PIE port config bit () IH_TP IH_TP H_SOUT_R R R *K_ *K_ +V Quanta omputer Inc. PROJET : ZK Size ocument Number Rev IHM HOST ate: Wednesday, July 0, 00 Sheet of

13 IHM T T T T INT# INT# INT# INT# U 0 E E E0 G 0 F F E F0 0 F 0 F F G H G H G 0 H J E J PI Interrupt I/F PIRQ# PIRQ# PIRQ# PIRQ# IHM REV.0 REQ0# GNT0# REQ#/GPIO0 GNT#/GPIO REQ#/GPIO GNT#/GPIO REQ#/GPIO GNT#/GPIO /E0# /E# /E# /E# IRY# PR PIRST# EVSEL# PERR# PLOK# SERR# STOP# TRY# FRME# PLTRST# PILK PME# PIRQE#/GPIO PIRQF#/GPIO PIRQG#/GPIO PIRQH#/GPIO F G F F E F E R E J F R H K F G REQ0# GNT0# REQ# GNT# REQ# GNT# REQ# GNT# IRY# EVSEL# PERR# LOK# SERR# STOP# TRY# FRME# PLT_RST# PME# internal PU K~K INTE# INTF# INTG# INTH# T T T T T T T T T T T T T T T T T T T T HP ROM +VSUS R PIRST# () PLT_RST# () PLK_IH () Reserve only (un-stuff) *.K_ S_SPI_H# NEW_R TV_R WLN GLN SPI_MISO SPI_MOSI () PIE_RXN () PIE_RXP () PIE_TXN () PIE_TXP () () () () () () () () (0) (0) (0) (0) PLE NER IH WITHIN 00 MIL PLE NER PIN SOI R *_ U0 V HOL SO SI PIE_RXN PIE_RXP PIE_TXN PIE_TXP PIE_RXN PIE_RXP PIE_TXN PIE_TXP GLN_RXN GLN_RXP GLN_TXN GLN_TXP R R0 R00 U N PERN MI0RXN N.u_ PIE_TXN_ PERP MI0RXP P.u_ PIE_TXP_ PETN MI0TXN P PETP MI0TXP L PERN MIRXN L.u_ PIE_TXN_ PERP MIRXP M.u_ PIE_TXP_ PETN MITXN M PETP MITXP J PERN MIRXN J PERP MIRXP K PETN MITXN K PETP MITXP G PERN MIRXN G 00.u_ PIE_TXN_ PERP MIRXP H.u_ PIE_TXP_ PETN MITXN H PETP MITXP E PERN MI_LKN E PERP MI_LKP F PETN F PETP MI_ZOMP MI_IROMP PERN/GLN_RXN.u_ GLN_TXN_S PERP/GLN_RXP USP0N 0.u_ GLN_TXP_S PETN/GLN_TXN USP0P PETP/GLN_TXP USPN *_ SPI_LK_R USPP *_ SPI_S0#_R SPI_LK USPN SPI_S# SPI_S0# USPP F SPI_S#/GPIO/LGPIO USPN *_ SPI_MOSI_R USPP SPI_MISO_R SPI_MOSI USPN E SPI_MISO USPP USO#0 USPN N USO# O0#/GPIO USPP N USO# O#/GPIO0 USPN N US USO# O#/GPIO USPP P USO# O#/GPIO USPN M USO# O#/GPIO USPP N USO# O#/GPIO USPN M USO# O#/GPIO0 USPP M USO# O#/GPIO USPN N USO# O#/GPIO USPP N USO#0 O#/GPIO USP0N P USO# O0#/GPIO USP0P P O#/GPIO USPN S_USIS USPP G USRIS G USRIS# PI-Express SPI irect Media Interface V V U U Y Y W W T T F F W W Y Y W W V V U U U U MI_IROMP_R R MI_RXN0 () MI_RXP0 () MI_TXN0 () MI_TXP0 () MI_RXN () MI_RXP () MI_TXN () MI_TXP () MI_RXN () MI_RXP () MI_TXN () MI_TXP () MI_RXN () MI_RXP () MI_TXN () MI_TXP () LK_PIE_IH# () LK_PIE_IH ()./F_ USP- () USP+ () USP- () USP+ () USP- () USP+ () USP0- () USP0+ () USP- () USP+ () USP- () USP+ () USP- () USP+ () USP- () USP+ () USP- () USP+ () USP- (0) USP+ (0) USP0- (0) USP0+ (0) USP- () USP+ () +.V US+eST NEW R EXT-US M/ US Port Wireless EXT-US MINI_TV ardreader LUETOOTH Finger Printer OKING MER *.u_ R *.K_ S_SPI_WP# WP VSS SK E *WXVSSIG SPI_LK_S SPI_S0# IHM REV.0 R00./F_ L<0.",void routing next to clock/high speed signals. +V South ridge Strap Pin (/).u_ Pin Name Strap description Sampled onfiguration PU/P REQ# TRY# STOP# EVSEL# +V INT# INT# SERR# INTE# +V 0 0 RN.K_0PR RN0.K_0PR +V +V REQ# FRME# REQ# INT# INTF# INTG# PLT_RST# USO# USO# USO# USO#0 +V_S 0 RN 0K_0PR U TSH0FU R 00K_ USO# USO# USO# USO# PLTRST# (,0,,,,) +V_S H_SYN GNT# / GPIO GNT# / GPIO GNT# / GPIO SPI_MOSI PI Express Port onfig bit 0 (Port -) PI Express Port onfig bit (Port -) ESI Strap(Server Only) Top-lock Swap Override Integrated TPM Enable PWROK PWROK PWROK PWROK LPWROK 0 = efault = Setting bit 0 0 = Setting bit = efault 0 = MI for ESI-compatible = efault 0 = "top-block swap" mode = efault 0 = INT TPM disable(efault) = INT TPM enable GNT# SPI_MOSI R0 R *K_ *0K_ +V_S LOK# REQ0# +V 0 RN.K_0PR +V IRY# PERR# INT# INTH# USO# USO# USO# USO#0 RN 0K_PR +V_S GNT0# SPI_S# / GPIO / LGPIO oot IOS Selection 0 oot IOS Selection PWROK LPWROK PI_GNT#0 0 SPI_S# 0 oot Location SPI PI LP(efault) GNT0# SPI_S# R R *K_ *K_ Quanta omputer Inc. PROJET : ZK Size ocument Number Rev IHM PIE / PI / US Friday, June, 00 ate: Sheet of

14 +V_S +V R R R R R R R R R R R R R R0 R.K_.K_.K_.K_ 0K_ 0K_ 0K_ 0K_ 0K_.K_ *0K_ 0K_ 0K_.K_ 0K_ SM_LK_ME SM_T_ME PLK_SM PT_SM RI# IH_GPIO0 SYS_RST# SM_LERT# PIE_WKE# PM_TLOW# NSWON# IH_GPIO IH_GPIO LKRUN# SERIRQ PWRTN : ms of internal debounce logic on this pin and internal PU K :(/) SF issue:when imt is not implemented, IHM SMus and SMLink should be connected together to support slave mode onnect SMLINK0 to SMLK and SMLINK to SMT (dd R,R for debug use) (,,,0,,) (,,,0,,) () () () () PLK_SM PT_SM SYS_RST# PM_SYN# PM_STPPI# PM_STPPU# () LKRUN# (0,,) PIE_WKE# () SERIRQ (,) THERM_LERT# PLK_SM PT_SM R R T T PLK_SM G PT_SM IH_GPIO0 E *0_ SM_LK_ME *0_ SM_T_ME RI# SYS_RST# SM_LERT# PM_STPPI# PM_STPPU# LKRUN# PIE_WKE# E0 M THERM_LERT# J VR_PWRG_LKEN F U SMLK SMT LINKLERT#/GPIO0/LGPIO SMLINK0 SMLINK R SUS_STT#/LPP# G SYS_RESET# M PMSYN#/GPIO0 SMLERT#/GPIO STP_PI# E STP_PU# L 0 RI# LKRUN# WKE# SERIRQ THRM# VRMPWRG TP SM ST GPIO locks SYS GPIO Power MGT ST[x]GP pins if unused require.-k to 0-k pull-up to Vcc_ or.-k to 0-k pull-down to ground R0.K_ THERM_LERT# S KSMI#_IH () KSMI# G K_PWRG () S LI#_IH GPIO K_PWRG R (,) LI# H R0 0K_ E_SI# GPIO T G GPIO LPWROK R MPWROK (,) () E_SI# IH_GPIO GPIO IH_GPIO LN_PHY_PWR_TRL/GPIO SLP_M# T0 R 0K_ STLKREQ# OR_I0 ENERGY_ETET/GPIO E L VREF L_LK0 () OR_I GPIO L_LK0 F K <hecklist ver0.> R0 *0K_ MH_IH_SYN# PNEL_I GPIO L_LK T () PNEL_I F The IHM ontroller OR_I GPIO0 VREF R connect to J L_T0 () +V_S R0 0K_ KSMI#_IH SLOK/GPIO L_T0 F Link VREF circuit is T R *0_ GPIO L_T T0 hecklist connect to required only if Intel () LP_ER R0 0K_ LI#_IH STLKREQ# GPIO L_VREF0_S +V(iMT reserve) () STLKREQ# L MT is to be supported. R_WKE# STLKREQ#/GPIO L_VREF0 E L_VREF_S R *0K_ PM_STPPI# SLO/GPIO L_VREF T G STOUT0/GPIO T F L_RST#0 () R *0K_ PM_STPPU# MI_TERM_SEL STOUT/GPIO L_RST0# F H +V +V IH_GPIO GPIO L_RST# T GPIO/LGPIO +V_S MEM_LE/GPIO T IH_GPIO0 R 0K_ () PSPK M +V_S MH_IH_SYN# SPKR GPIO0/SUS_PWR_K IH_GPIO R R () MH_IH_SYN# J R0 0K_ TPM Physical IH_TP GPIO/_PRESENT R0 0K_ MH_SYN# IH_GPIO () IH_TP IH_GPIO WOL_EN/GPIO 0 R 0K_ TP Presence for T H0 *.K/F_.K/F_ R *00/F_ TP itpm. T J0 TP0 ZS efault not T J L_VREF_S L_VREF0_S TP support IMT. So this IHM REV.0 interface follow R 0K_ R_WKE# R/hecklist PU R R only R 0K_ IH_PWROK */F_ *.u_ /F_.u_ MIS GPIO ontroller Link ST0GP/GPIO H STGP/GPIO F STGP/GPIO E STGP/GPIO 0 LK H LK F SUSLK P SLP_S# SLP_S# E SLP_S# G S_STTE#/GPIO PWROK PRSLPVR/GPIO TLOW# PWRTN# LN_RST# RSMRST# 0 G0 M R 0 OR_I PNEL_I0 IH_GPIO IH_GPIO IH_PWROK PM_TLOW# PM_LN_ENLE_R PM_RSMRST#_R R R0 T T T 0K_ 0K_ R 0_ R PNEL_I0 () *0_ M_IH () LKUS_ () SUS# () SUS# () +V PM_PRSLPVR (,) NSWON# () PM_RSMRST#_R <hecklist ver0.> If integrated LN is not used LN_RST# tie it to.n serial R from RSMRST#. If Intel LN is used with Wake On LN, tie LN_RST# to RSMRST# and N 0ohm. L_PWROK must not assert after PWROK asserts for IMT. L_PWROK to the N and S should be connected to existing PWROK inputs on the N and S on a platform with no IMT Panel I (UM only) IH PWROK Resume RST M/ I +V R I@0K_ PNEL_I0 R0 I@0K_ PNEL_I lose to L connector (N) P_I P_I0 (GPIO0) (GPIO) Resolution x 0x00 Reserved Reserved *.u_ IH_PWROK U TSH0FU +V_S R ELY_VR_PWRGOO need PU K to +V. ZS PU at power side PWROK_E 00K_ ELY_VR_PWRGOO (,,,) PWROK_E () PM_RSMRST#_R R 0K_ R0.K_ Q MMT0 R V V.K_ RSMRST# () +VSUS Z INTEL FE (0/) "dd RSMRST# isolation (important!!! See ww Santa Rosa MoW)" efault stuff for Teenah(Interposer) chipset ZS Intel FE suggestion to add for to protect RT/MOS data from corruption when system encounters an abnormal power down sequence +V R *0K_ OR_I R 0K_ oard I +V +V +V R0 *0K_ OR_I R 0K_ R *0K_ OR_I R 0K_ I I R *0K_ OR_I0 R 0K_ I I0 default South ridge Strap Pin (/) Pin Name Strap description Sampled onfiguration PU/P GPIO0 Reserved PWROK LK Enable U +V 0 *.u_ SPKR GPIO No Reboot MI Termination Voltage PWROK PWROK 0 = efault = No Reboot mode 0 = for desktop applications = for mobile applications Internal PU PSPK MI_TERM_SEL R R0 *K_ *K_ +V () VR_PWRG_K0# NSZ0 VR_PWRG_LKEN R 00K_ Quanta omputer Inc. PROJET : ZK Size ocument Number Rev IHM GPIO Friday, June, 00 ate: Sheet of

15 IHM PER INTEL SUGGESTION: HNGE TO 00OHM & UF +V +V +V_S +V_S +.V +.V +VRT H R 00_ H R 00_ 0 Ohms@ 00 MHz, 00 L LMPGSN V.V m + 0 0u_ +V +.V L.V m +.V V m V S0:m S//:m ~.v.u_g +.V_.0V, Powered by V_0 in S0.V S0:m S//:m L0 0 u_ If use S M for LN function. nd support wake up need connect to relation power. uh_.v 0m 0.u_ S_VREF u_ 0uh_ 0 0u_.u_ Power consumption reference to Intel IH Family ES Rev..u_ +VPU_IH_VREF_SUS u_ u_.v m.v m.u_ +.V_PLL_IH u_ u_ u_.v m 0.u_ 0.u_ VLN_0_INT_IH.u_ +.V_IH_GLNPLL_R 0u_.u_ E E E E E E F G H H J J K K L L L M M N N N P P R R R R T T T T U U V V U W W K Y Y J E F G H J E F G0 G H0 J0 G0 G J 0 E E UF VRT VREF VREF_SUS V [0] V [0] V [0] V [0] V [0] V [0] V [0] V [0] V [0] V [0] V [] V [] V [] V [] V [] V [] V [] V [] V [] V [0] V [] V [] V [] V [] V [] V [] V [] V [] V [] V [0] V [] V [] V [] V [] V [] V [] V [] V [] V [] V [0] V [] V [] V [] V [] V [] V [] V [] V [] V [] VSTPLL V [0] V [0] V [0] V [0] V [0] V [0] V [0] V [0] V [0] V [0] V [] V [] V [] V [] V [] V [] V [] V [] V [] V [0] V [] V [] V [] V [] V [] VUSPLL V [] V [] V [] V [] V [0] VLN_0[] VLN_0[] VLN_[] VLN_[] VGLNPLL VGLN_[] VGLN_[] VGLN_[] VGLN_[] VGLN_ IHM REV.0 VGP RX TX US ORE GLN POWER ORE VPSUS VPUS VP_ORE PI V_0[0] V_0[0] V_0[0] V_0[0] V_0[0] V_0[0] V_0[0] V_0[0] V_0[0] V_0[0] V_0[] V_0[] V_0[] V_0[] V_0[] V_0[] V_0[] V_0[] V_0[] V_0[0] V_0[] V_0[] V_0[] V_0[] V_0[] V_0[] VMIPLL V_MI[] V_MI[] V_PU_IO[] V_PU_IO[] V_[0] V_[0] V_[0] V_[0] V_[0] V_[0] V_[0] V_[0] V_[0] V_[0] V_[] V_[] V_[] V_[] VH VSUSH VSUS_0[] VSUS_0[] VSUS_[] VSUS_[] VSUS_[0] VSUS_[0] VSUS_[0] VSUS_[0] VSUS_[0] VSUS_[0] VSUS_[0] VSUS_[0] VSUS_[0] VSUS_[0] VSUS_[] VSUS_[] VSUS_[] VSUS_[] VSUS_[] VSUS_[] VSUS_[] VSUS_[] VSUS_[] VSUS_[0] VL_0 VL_ VL_[] VL_[] E F L L L L L L M M P P T T U U V V V V V V R W Y G J 0 F0 G 0 F G G J J K J J F F E F T T T T T T U U V V W W Y Y T G G +V_H_IO_IH +.V_IH_VMIPLL.0u/V_ +.0V_IH_MI 0.u_.u_.u_ +V_VSUSH TP_VSUS_0_IH_ TP_VSUS_0_IH_ TP_VSUS IH_ VSUS INT_IH VL_0_INT_IH VL INT_IH.u_.u_.u_.0u_ 0 *u_.u_.u_ 0u_ u_ T T0 T 0.u_.u_.u_ If use S M for LN function. nd support wake up need connect to relation power..0v m L.0u/V_ *.u_.u_.v m +.0V +V +.V.0V 0m L NQ00T-00Y-N +.0V 00 MHz, 0..V S0:m S//:m uh_ 00 m, 0% +.0V.0V m.u_.v 0m +V_S.V S0:m S//:m +V +V_S I@0_ +.V_S.V /.V S0:m S//:m +V.V /.V m +.V VSUS_0 power by V_0 in S0 / VSUS_ in S/S/S VSUS_ power by V in S0 / VSUS_ in S/S/S.u_ 0.u_.u_.u_ R0 R R R0 *E@0_ *E@0_ I@0_ VL_0 power by V_0_ in S0 VL_ power by V in S0 Impact IHM VH and VSUSH supply.v/.v Support INT HMI H interface. These power only support.v.evice must to meet. NOTE: If (G)MH's H udio signals are connected to IHM for ihmi, VH and VSUSH on IHM should be only on.v. These power pins on IHM can be supplied with.v if and only if (G)MH's H is not connected to IHM. onsequently, only.v audio/modem codecs can be used on the platform. UE VSS[00] VSS[00] VSS[00] VSS[00] VSS[00] VSS[00] VSS[00] VSS[00] VSS[00] VSS[00] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] 0 VSS[0] VSS[0] VSS[0] VSS[0] VSS[00] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] E VSS[00] E VSS[0] E VSS[0] E VSS[0] E VSS[0] E VSS[0] E0 VSS[0] E VSS[0] E VSS[0] E VSS[0] E VSS[00] E VSS[0] F VSS[0] F VSS[0] F VSS[0] F VSS[0] H VSS[0] F VSS[0] F VSS[0] F VSS[0] F VSS[00] F VSS[0] G VSS[0] G VSS[0] G VSS[0] G0 VSS[0] G VSS[0] G VSS[0] G VSS[0] G VSS[0] H VSS[00] H VSS[0] H VSS[0] H VSS[0] H VSS[0] H VSS[0] H VSS[0] H VSS[0] H VSS[0] H VSS[0] J VSS[00] J VSS[0] J VSS[0] J VSS[0] VSS[0] VSS[0] VSS[0] VSS[0] 0 VSS[0] VSS[0] VSS[00] VSS[0] VSS[0] VSS[0] E VSS[0] E VSS[0] E VSS[0] E VSS[0] E VSS[0] E VSS[0] E VSS[00] E VSS[0] F VSS[0] F VSS[0] F VSS[0] G VSS[0] G VSS[0] G VSS[0] G VSS[0] G VSS[0] G VSS[00] G VSS[0] G VSS[0] H VSS[0] H VSS[0] H VSS[0] H VSS[0] IHM REV.0 VSS[0] VSS[0] VSS[0] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[0] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS[] VSS_NTF[0] VSS_NTF[0] VSS_NTF[0] VSS_NTF[0] VSS_NTF[0] VSS_NTF[0] VSS_NTF[0] VSS_NTF[0] VSS_NTF[0] VSS_NTF[0] VSS_NTF[] VSS_NTF[] H J J J K K L L L L L L L M M M M M M M M M N N N N N N N N N N P P P P P P P P P P P P R R R R R R R R R T T T T T T T U U U U U U U U U V V V V V V V V W W W Y Y Y Y Y G H F H H J J J J.V m.u_ +V Quanta omputer Inc. PROJET : ZK Size ocument Number Rev IH POWER Friday, June, 00 ate: Sheet of

ZR6 SYSTEM BLOCK DIAGRAM

ZR6 SYSTEM BLOCK DIAGRAM OM MRK IV@: INT VG EV@: STUFF FOR EXT VG SP@: STUFF FOR UM or VG REV: X'TL.MHz LOK GENERTOR IS: SELGO: SLGSPTTR RIII SO-IMM 0 SO-IMM P ZR SYSTEM LOK IGRM P ual hannel R /00 MHz Penryn ufpg N antiga P,

Διαβάστε περισσότερα

CPU Merom 478 PIN (micro FC-PGA) P3,4. FSB 667 MHz(166X4) FSB 800MHz(200X4) UNBUFFERED DDRII SODIMM DDRII 533/667 UNBUFFERED DDRII SODIMM P11

CPU Merom 478 PIN (micro FC-PGA) P3,4. FSB 667 MHz(166X4) FSB 800MHz(200X4) UNBUFFERED DDRII SODIMM DDRII 533/667 UNBUFFERED DDRII SODIMM P11 WK lock iagram.mhz VRM GR P- Mx PS PU Merom PIN (micro F-PG) P, LOK GEN ISLPR P VI P FS MHz(X) FS MHz(X) TI M P- LVS R/G/ L P RT P PIE Lanes LVS R/G/ restline GM/PM PIN (micro FG) mm x mm P- RII / RII

Διαβάστε περισσότερα

Clapton (EL7) AIO Block Diagram

Clapton (EL7) AIO Block Diagram lapton (EL) IO lock iagram 0 iamondville S G Xmm FS/ P, VI[0:] /- PU_LK /- HLK PU VORE P lock Gengerator P." Panel P LVS H0 P SVO GSE(GMH) FG X mm R(00/) Single-SOIMM P P,,,, RJ- P in Speaker P Ext HP

Διαβάστε περισσότερα

intel <MCH Processor> intel <PCH>

intel <MCH Processor> intel <PCH> IV@ For UM EV@ For Pure is. SP@ For special setting SPI@ For Optimus & UM special setting SPE@ For Pure is.special setting V@ For udio version setting V@ For udio version setting @G For G setting PIV@

Διαβάστε περισσότερα

Tonga-e (ZN5) BOM Option Note INSTALL FOR UMA SKU INSTALL FOR DISCRETE GRAPHIC SKU NI UNINSTALL I INSTALL FOR ALL SKU

Tonga-e (ZN5) BOM Option Note INSTALL FOR UMA SKU INSTALL FOR DISCRETE GRAPHIC SKU NI UNINSTALL I INSTALL FOR ALL SKU Tonga-e (ZN) --SHMETS NE --LOK GRM --LK. GEN./K --PU(/) Host us --PU(/) Power --N(/) Host --N(/) VG,M,PE --N(/) R --N(/) Power --N(/) VSS --S(/) HOST --S(/) PE, P, US, M --S(/) ST, GPO --S(/) Power, VSS

Διαβάστε περισσότερα

Intel Calpella BlOCK DIAGRAM

Intel Calpella BlOCK DIAGRAM Intel alpella lok IGRM POWER /TT ONNETOR R-SOIMM H R-SOIMM H ST-O ST-H UIO/MP L SYSTEM RESET IRUIT TT HRGER RUN POWER SW +V_S/+V_S +V_SUS/+V_SUS +V_RUN/+V_RUN/+.V_RUN ual hannel R 0.V INTEL ISRETE SYSTEM

Διαβάστε περισσότερα

COMPONENTS LIST BASE COMPONENTS

COMPONENTS LIST BASE COMPONENTS ITLIN TEHNOLOGY grifo PPENIX : R SSEMLY The GP F can be ordered in two different mode: completely mounted, tested and ready to use or in assembly kit. In this final condition the user can directly use

Διαβάστε περισσότερα

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ. Surface Mount Monolithic Amplifiers High Directivity, 50Ω, 0.5 to 5.9 GHz Features 3V & 5V operation micro-miniature size.1"x.1" no external biasing circuit required internal DC blocking at RF input &

Διαβάστε περισσότερα

INT_LVDS. Pineview. Graphics Interfaces CPU P4,5,6,7 CRT DMI DMI. PCI-Express(Port1~4) Tigerpoint PCI-E P8,9,10,11,12,13 PN : AJSLGXX0T14 LPC LPC

INT_LVDS. Pineview. Graphics Interfaces CPU P4,5,6,7 CRT DMI DMI. PCI-Express(Port1~4) Tigerpoint PCI-E P8,9,10,11,12,13 PN : AJSLGXX0T14 LPC LPC ZE lock iagram 0 K0 RIII-SOIMM P MT/s R SYSTEM MEMORY Pineview PU P,,, MI Graphics Interfaces INT_LVS RT 0. "Panel Up to 0*00 or * P RT P P N0.G: JSLXEVT0 N.G: JSLXUT0 N.G: JSLXVT0 MI(x) harger P US port*

Διαβάστε περισσότερα

UM8 UMA SYSTEM DIAGRAM

UM8 UMA SYSTEM DIAGRAM +V/+V PG. PG. +.0V/+.V PG. PU ore PG. VG ore/+.v PG. +.V/+0.V PG. +.0VTT PG. UM VGORE harger LN PG. LNE theros/r 0/00 K ITE 0 PG. UM UM SYSTEM IGRM SOIMM Max. G PG. SOIMM Max. G PG. M ROM PG. LNEO WWN

Διαβάστε περισσότερα

DIS._eDP. edp N13P-GS N13P-GL N13M-GS PEG TX/RX GPU. Display P15~P19. DMI(x4) INT_LVDS INT_CRT. Display INT_HDMI USB3.0/2.0 USB3-2/USB2-1.

DIS._eDP. edp N13P-GS N13P-GL N13M-GS PEG TX/RX GPU. Display P15~P19. DMI(x4) INT_LVDS INT_CRT. Display INT_HDMI USB3.0/2.0 USB3-2/USB2-1. IS._eP OM IV@ : igpu EV@ : dgpu OP@ : Optimus O@ : iscrete only SP@ : Special SNP@: NPGS/GL IV@: UM GL@: NPGL GS@: NP/MGS ep on. P RIII-SOIMM RIII-SOIMM P, INT._eP ual hannel R III 0//00 MHZ ep IM FI IVY

Διαβάστε περισσότερα

Page Title of schematic page Rev. Date Page Title of schematic page Rev. Date

Page Title of schematic page Rev. Date Page Title of schematic page Rev. Date Page Title of schematic page Rev. ate Page ist lock iagram hange ist SN /(HOST&PIE) SN /(R I/F) SN /(POWER) SN /(/Strap) PH /(MI/FI/VIEO) PH /(ST/RT/H/P) PH /(PIE/US/K/NV) PH /(GPIO/PU/STRP) PH /(POWER)

Διαβάστε περισσότερα

C

C SVO TV LVS VGA Mero ufp RT Port H (SATA) O (PATA) Finger USB6 Page 9 Page 6 Page 6 USB Port x USB0~ Page 7 Bluetooth USB Page L ONN (."WXGA) Page 0 VI / 707 hrontel (only for ezock) Page S-VIEO ONN Page

Διαβάστε περισσότερα

Tablet SYSTEM BLOCK DIAGRAM

Tablet SYSTEM BLOCK DIAGRAM VER : OM P/N escription Tablet SYSTEM LOK IGRM Memory own Max. G P M* R III /00 MHZ IM FI Ivy ridge G 0 W P,,,, MI ep US- ep onn. TOUH PNEL P MI(x) mst - H P0 ST FI MI Gyroscope P ST LG0 e-compass/ G sensor

Διαβάστε περισσότερα

(#5 5::%%%$ " (#5 5::%%%$" %

(#5 5::%%%$  (#5 5::%%%$ % !" "#! " # $ "! "#" "" ""! % %! % " &"#!! "' (%)* (% (%! "' + "',! "' $% " %! "'% " %!"! #!" " $ #!" #$ #! #!#!" -%$!"#!".! "!"#!"! "!" " " "!!" "! %!"!#/ "%! %! #! )0+! *.." )0)!- % 67&* 6**&7*0.8 67&*67&*90&0.8

Διαβάστε περισσότερα

Modbus basic setup notes for IO-Link AL1xxx Master Block

Modbus basic setup notes for IO-Link AL1xxx Master Block n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that

Διαβάστε περισσότερα

FM9 XXXX Intel Discrete GFX

FM9 XXXX Intel Discrete GFX FM XXXX Intel iscrete GFX VER : PW: PW: POWER /TT ONNETOR PG R-SOIMM PG R-SOIMM SYSTEM RESET IRUIT TT HRGER RUN POWER SW +.V_SUS/+V_SUS +V/+.V/+.V PG PG PG ual hannel R //.V uburndale/ larksfield ( rpg

Διαβάστε περισσότερα

LGA H61 + DDR3 SHEET

LGA H61 + DDR3 SHEET VS-00 Pro Rev:. LG H R SHEET TITLE SHEET TITLE 0 0 0 0 0 0 0 0 0 0 0 OVER SHEET LOK IGRM POWER SEQUENE- POWER SEQUENE- POWER MP- POWER MP- PU LG_R_/ PU LG_PEG/FI/VI_/ PU LG_POWER / PU LG_GN/RSV_/ RIII

Διαβάστε περισσότερα

Siemens AG Rated current 1FK7 Compact synchronous motor Natural cooling. I rated 7.0 (15.4) 11.5 (25.4) (2.9) 3.3 (4.4)

Siemens AG Rated current 1FK7 Compact synchronous motor Natural cooling. I rated 7.0 (15.4) 11.5 (25.4) (2.9) 3.3 (4.4) Synchronous motors Siemens 2009 FK7 Compact motors Nural cooling Selection and ordering da Red speed Shaft height n red S P red ΔT=00 K rpm kw (P) Red power Stic torque M 0 ΔT=00 K Red torque ) M red ΔT=00

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Digital motor protection relays

Digital motor protection relays Digital motor protection relays Specification DMP -S & DMP -Sa DMP -T & DMP -Ta Model No. DMP06-S/Sa DMP60-S/Sa DMP06-T/Ta DMP60-T/Ta Wiring Screw type Tunnel type Panel mount Unit or Extension Note1)

Διαβάστε περισσότερα

CYTA Cloud Server Set Up Instructions

CYTA Cloud Server Set Up Instructions CYTA Cloud Server Set Up Instructions ΕΛΛΗΝΙΚΑ ENGLISH Initial Set-up Cloud Server To proceed with the initial setup of your Cloud Server first login to the Cyta CloudMarketPlace on https://cloudmarketplace.cyta.com.cy

Διαβάστε περισσότερα

+3V3 Supply. +3V0 Flash + VCCPGMy +2V5 FPGA VCC + FPGA I/O +1V1 FPGA Core. Overview. abaxor engineering GmbH

+3V3 Supply. +3V0 Flash + VCCPGMy +2V5 FPGA VCC + FPGA I/O +1V1 FPGA Core. Overview. abaxor engineering GmbH 6 7 8 Supply +V0 Flash + PGMy +V FPG + FPG I/O +V FPG ore Overview 6 7 8 6 7 8 I0NK_ IO H IO P IO L IO J VRFN0 N IO/IFFIO_TX_L9N/IFFOUT_L9N IO/IFFIO_RX_L0N/IFFOUT_L0N/QL J IO/IFFIO_TX_L9P/IFFOUT_L9P/QL

Διαβάστε περισσότερα

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC ~ A File Name:IDLV65SPEC 07050 SPECIFICATION MODEL OUTPUT OTHERS NOTE DC VOLTAGE RATED CURRENT RATED POWER DIMMING RANGE VOLTAGE TOLERANCE PWM FREQUENCY (Typ.) SETUP TIME Note. AUXILIARY DC OUTPUT Note.

Διαβάστε περισσότερα

First Sensor Quad APD Data Sheet Part Description QA TO Order #

First Sensor Quad APD Data Sheet Part Description QA TO Order # Responsivity (/W) First Sensor Quad PD Data Sheet Features Description pplication Pulsed 16 nm laser detection RoHS 211/65/EU Light source positioning Laser alignment ø mm total active area Segmented in

Διαβάστε περισσότερα

DESKTOP - Intel processor reference chart

DESKTOP - Intel processor reference chart DESKTOP - Intel processor reference chart Family Intel Turbo Boost 7 - Max Turbo 4th Generation Intel Core i7 and i5 Family (22nm) Cores / Intel HD Graphics Intel vpro 1, i7-4960x 3.6 4.0 1866 15 MB L3

Διαβάστε περισσότερα

Bulletin 1489 UL489 Circuit Breakers

Bulletin 1489 UL489 Circuit Breakers Bulletin 489 UL489 Circuit Breakers Tech Data 489-A Standard AC Circuit Breaker 489-D DC Circuit Breaker 489-A, AC Circuit Breakers 489-D, DC Circuit Breakers Bulletin 489-A Industrial Circuit Breaker

Διαβάστε περισσότερα

K72JK Schematic R2.0

K72JK Schematic R2.0 PGE ontent lock iagram System Setting PU()_MI,PEG,FI,LK,MIS PU()_R PU()_FG,RSV, PU()_PWR PU()_XP R SOIMM_0 R SOIMM_ R _Q VOLTGE 9 VI controller 0 PH_IEX()ST,IH,RT,LP PH_IEX()_PIE,LK,SM,PEG PH_IEX()_FI,MI,SYS

Διαβάστε περισσότερα

RSDW08 & RDDW08 series

RSDW08 & RDDW08 series /,, MODEL SELECTION TABLE INPUT ORDER NO. INPUT VOLTAGE (RANGE) NO LOAD INPUT CURRENT FULL LOAD VOLTAGE CURRENT EFFICIENCY (Typ.) CAPACITOR LOAD (MAX.) RSDW08F-03 344mA 3.3V 2000mA 80% 2000μF RSDW08F-05

Διαβάστε περισσότερα

ULX Wireless System USER GUIDE SUPPLEMENT RENSEIGNEMENT SUPPLÉMENTAIRES INFORMACION ADICIONAL. M1 ( MHz)

ULX Wireless System USER GUIDE SUPPLEMENT RENSEIGNEMENT SUPPLÉMENTAIRES INFORMACION ADICIONAL. M1 ( MHz) ULX Wireless System USER GUIDE SUPPLEMENT RENSEIGNEMENT SUPPLÉMENTAIRES INFORMACION ADICIONAL M1 (662 698 MHz) 2003, Shure Incorporated 27B8733A (Rev. 4) Printed in U.S.A. SPECIFICATIONS ULX1 Transmitter

Διαβάστε περισσότερα

65W PWM Output LED Driver. IDPV-65 series. File Name:IDPV-65-SPEC

65W PWM Output LED Driver. IDPV-65 series. File Name:IDPV-65-SPEC IDPV65 series ~ A File Name:IDPV65SPEC 07060 IDPV65 series SPECIFICATION MODEL OUTPUT OTHERS NOTE DC VOLTAGE RATED CURRENT RATED POWER DIMMING RANGE VOLTAGE TOLERANCE PWM FREQUENCY (Typ.) SETUP TIME Note.

Διαβάστε περισσότερα

LS01-15B09SS LS01-15B12SS LS01-15B15SS LS01-15B24SS LS03-15B03SR2S LS03-15B05SR2S LS03-15B09SR2S LS03-15B12SR2S LS03-15B15SR2S LS03-15B24SR2S

LS01-15B09SS LS01-15B12SS LS01-15B15SS LS01-15B24SS LS03-15B03SR2S LS03-15B05SR2S LS03-15B09SR2S LS03-15B12SR2S LS03-15B15SR2S LS03-15B24SR2S LS0 SS & LS0RS _ onverter. W SIP economic LS series.... W High performance & compact size series.... W ~0V wide input voltage LH series.... W 0 Low temperature & high reliability L0_LT series.... 00W LH

Διαβάστε περισσότερα

Monolithic Crystal Filters (M.C.F.)

Monolithic Crystal Filters (M.C.F.) Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

THICK FILM LEAD FREE CHIP RESISTORS

THICK FILM LEAD FREE CHIP RESISTORS Features Suitable for lead free soldering. Compatible with flow and reflow soldering Applications Consumer Electronics Automotive industry Computer Measurement instrument Electronic watch and camera Configuration

Διαβάστε περισσότερα

ichip CO2128 with EBI Flash and Siemens HC25 GSM Modem

ichip CO2128 with EBI Flash and Siemens HC25 GSM Modem Reference Design ichip CO with EBI Flash and Siemens HC GSM Modem Revision History Version Date Description.0 May 00 Initial version.0 September 00 Changed from Mb Flash to Mb Flash Introduction This Reference

Διαβάστε περισσότερα

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE SPECIFICATION ORDER NO. LDD-00L LDD-0L LDD-00L LDD-00L LDD-700L CURRENT RANGE 00mA 0mA 00mA VOLTAGE RANGE Note. ~ VDC for LDD-00~700L/LW ; ~ 8VDC for LDD-00~700LS CURRENT ACCURACY (Typ.) ±% at VDC input

Διαβάστε περισσότερα

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance .635mm Pitch Board to Board Docking Connector Lead-Free Compliance MINIDOCK SERIES MINIDOCK SERIES Features Specifications Application.635mm Pitch Connector protected by Diecasted Zinc Alloy Metal Shell

Διαβάστε περισσότερα

DISPLAY SUPPLY: FILTER STANDBY

DISPLAY SUPPLY: FILTER STANDBY ircuit iagrams and PW Layouts. ircuit iagrams and PW Layouts J.0 P. 0 isplay Supply P: ilter Standby MNS NPUT -Vac 00 P-V- V_OT 0 0 0 0 0 0 0 0 SPLY SUPPLY: LT STNY 0 M0 V 0 T,/0V MSU -VOLTS NOML... STNY

Διαβάστε περισσότερα

3 V, 1500 MHz Si MMIC WIDEBAND AMPLIFIER

3 V, 1500 MHz Si MMIC WIDEBAND AMPLIFIER V, MHz Si MMIC WIDEBAND AMPLIFIER UPC7T FEATURES WIDE FREQUENCY RESPONSE: MHz LOW VOLTAGE OPERATION: V NOMINAL (. MIN) LOW POWER CONSUMPTION:. mw TYP SUPER SMALL PACKAGE TAPE AND REEL PACKAGING OPTION

Διαβάστε περισσότερα

PortSip Softphone. Ελληνικά Ι English 1/20

PortSip Softphone. Ελληνικά Ι English 1/20 PortSip Softphone Ελληνικά Ι English 1/20 1. Περιεχόμενα 2. Εγκατάσταση σε Smartphone & Tablet (Android ή ios)... 1 3. Εγκατάσταση σε ηλεκτρονικό υπολογιστή (Windows ή Mac).... 5 4. Installation in Smartphone

Διαβάστε περισσότερα

!!! )!)(!,!! )!! )! (!!)!

!!! )!)(!,!! )!! )! (!!)! ! # %&!!!!! # %& (!!! # %&! ( ) # %&!! )! )!!!!! (! )! +!!! )!)(!,!! )!! )! (!!)!!!!,!!!!! + (!!)! ).!!!)( / ) 0!!!!!!! + (!!!,! + ( ( 5 % 6! & ) & 7 8!+ 9 ## 78 ## # #5! 7! /, #:6 ;! 7 )! & 9 ) 5< 7 )

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

RT-178 / ARC-27 All schematics

RT-178 / ARC-27 All schematics RT / ARC All schematics J I K P0 L A B M C P N D O E H G F P0 RT /ARC F L P0 A C D G J M P S B E K R H N SQ OFF GUARD REC MOD I k I B E i DRVR I g FINAL I g I ant SQ OFF MAIN REC SENS PHONE METER MIC SENS

Διαβάστε περισσότερα

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of Product: Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520 official distributor of Current Sensing Chip Resistor (SMDL Series) 1. Features -3 Watts

Διαβάστε περισσότερα

IDPV-45 series. 45W PWM Output LED Driver. File Name:IDPV-45-SPEC S&E

IDPV-45 series. 45W PWM Output LED Driver. File Name:IDPV-45-SPEC S&E IDPV5 series S&E ~ A File Name:IDPV5SPEC 0805 IDPV5 series SPECIFICATION MODEL OUTPUT INPUT OTHERS NOTE DC VOLTAGE RATED CURRENT RATED POWER DIMMING RANGE VOLTAGE TOLERANCE PWM FREQUENCY (Typ.) SETUP TIME

Διαβάστε περισσότερα

T1/CEPT/ISDN-Pri Transformers

T1/CEPT/ISDN-Pri Transformers IRELESS I sales@eddywireless.com T//ISDN-Pri Transformers Dual SMT package Isolation voltage: 00 Vrms For - part add suffix NLE For - part add suffix NL For detail of Compliance,please refer to Page 00//EC

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS FEATURE Operating Temperature: -55 ~ +155 C 3 Watts power rating in 1 Watt size, 1225 package High purity alumina substrate for high power dissipation Long side terminations with higher power rating PART

Διαβάστε περισσότερα

NMBTC.COM /

NMBTC.COM / Common Common Vibration Test:... Conforms to JIS C 60068-2-6, Amplitude: 1.5mm, Frequency 10 to 55 Hz, 1 hour in each of the X, Y and Z directions. Shock Test:...Conforms to JIS C 60068-2-27, Acceleration

Διαβάστε περισσότερα

VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!!

VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!! VBA ΣΤΟ WORD Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!! Μου παρουσιάστηκαν δύο θέματα. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Εγραφα σε ένα αρχείο του Word τις

Διαβάστε περισσότερα

MIL-DTL Micro-D Connector R04J Series Straight to PCB Type

MIL-DTL Micro-D Connector R04J Series Straight to PCB Type MIL-TL-353 Micro- onnector R4J Series Straight to P Type Specication MIL-TL-353 Micro- onnector nvironment temperature: ~ Vibration: Hz~Hz, 6m/s Random vibration: Power spectrum density.4g Hz root mean

Διαβάστε περισσότερα

FEATURE EXPANSION BOARD TYPE 2018 B658 PARTS LOCATION AND LIST

FEATURE EXPANSION BOARD TYPE 2018 B658 PARTS LOCATION AND LIST FEATURE EXPANSION BOARD TYPE 2018 B658 PARTS LOCATION AND LIST This section instructs you as to the numbers and names of parts on this machine. 1.RA2K Expansion Unit 1 (B658) Rev. 08/04/2004 B658 2 Parts

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

INDEX HOESUNG COIL PARTS

INDEX HOESUNG COIL PARTS 1. Metal Molding High Current SMD Power Inductor PART NO DEMINSION(mm) Inductance Range Rated DC Current Page MMI 06518 SERIES 6.5 7.1 1.8 1.0uH ~ 4.7uH 9.8A ~ 5.0A 5 MMI 06524 SERIES 6.5 7.1 2.4 0.47uH

Διαβάστε περισσότερα

7. Schematic Diagram. 7-1 Overall Block Diagram FRONT MAIN MAIN CD SMPS (MAX-A54U)...

7. Schematic Diagram. 7-1 Overall Block Diagram FRONT MAIN MAIN CD SMPS (MAX-A54U)... 7. Schematic Diagram 7- Overall Block Diagram... 7-7- FRONT... 7-7- MAIN-... 7-7- MAIN-... 7-5 7-5 CD... 7-7- SM (MAX-A5U)... 7-7 7-7 SM (MAX-A55U)... 7- Samsung Electronics This Document can not be used

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

ichip CO2128 with EBI Flash and Siemens MC39i GSM Modem

ichip CO2128 with EBI Flash and Siemens MC39i GSM Modem Reference Design 0 ichip CO with EBI Flash and Siemens MCi GSM Modem Revision History Version Date Description.0 May 00 Initial version.0 September 00 Changed from Mb Flash to Mb Flash Introduction This

Διαβάστε περισσότερα

Quick Installation Guide

Quick Installation Guide A Installation 1 F H B E C D G 2 www.trust.com/17528/faq Quick Installation Guide C C D Freewave Wireless Audio Set 17528/ 17529 D Installation Configuration Windows XP 4 5 8 Windows 7/ Vista 6 7 9 10

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK CSK series Current Sensing Chip Resistor Features» 3 Watts power rating in 1 Watt size, 1225 Package» Low TCR of ±100 PPM/ C» Resistance values from 1m to 1 ohm» High purity alumina substrate for high

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors

Aluminum Electrolytic Capacitors Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47

Διαβάστε περισσότερα

QUANTA COMPUTER. Page Title of schematic page Rev. Date

QUANTA COMPUTER. Page Title of schematic page Rev. Date Page of schematic page Rev. ate 0 0 0 0 0 0 0 0 0 0 0 Index lock iagram hange ist OK NRTOR PROSSOR /(MI&HOST&PI) PROSSOR /(R) PROSSOR /(POWR) PROSSOR /() PH / (MI&VIO) PH / (ST/P/zalia) PH / (PI/PI/K/US)

Διαβάστε περισσότερα

SMD Transient Voltage Suppressors

SMD Transient Voltage Suppressors SMD Transient Suppressors Feature Full range from 0 to 22 series. form 4 to 60V RMS ; 5.5 to 85Vdc High surge current ability Bidirectional clamping, high energy Fast response time

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE SPECIFICATION ORDER NO. LDD-00L LDD-0L LDD-00L LDD-00L LDD-700L CURRENT RANGE 00mA 0mA 00mA 00mA VOLTAGE RANGE Note. ~ VDC for LDD-00~700L/LW ; ~ 8VDC for LDD-00~700LS CURRENT ACCURACY (Typ.) ±% at VDC

Διαβάστε περισσότερα

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Scope -This specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. Features

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

Unshielded Power Inductor / PI Series

Unshielded Power Inductor / PI Series .Features: 1. Excellent solderability and high heat resistance. 2. Excellent terminal strength construction. 3. Packed in embossed carrier tape and can be used by automatic mounting machine..applications:

Διαβάστε περισσότερα

Project: 296 File: Title: CMC-E-600 ICD Doc No: Rev 2. Revision Date: 15 September 2010

Project: 296 File: Title: CMC-E-600 ICD Doc No: Rev 2. Revision Date: 15 September 2010 Project: 296 File: Title: CMC-E-600 ICD Doc No: 21029100-406 Rev 2. Revision Date: 15 September 2010 Contract No.: Revisions Table ECR/ECN LTR Description Date 0 Pre Contract draft 29 July 2010 1 Replace

Διαβάστε περισσότερα

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4) FEATURE High Self Resonant Frequency Superior temperature stability Monolithic structure for high reliability Applications: RF circuit in telecommunication PART NUMBERING SYSTEM HIS 160808 - R12 (1) (2)

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

RS306 High Speed Fuse for Semiconductor Protection

RS306 High Speed Fuse for Semiconductor Protection Product Information Standard square body fuse, comply with GB13539/IEC60269/UL-248/VDE-0636 Protection: ar (GB\IEC), short circuit or backup Rated : 250-4000VAC Very low I 2 t/high current-limiting/high

Διαβάστε περισσότερα

NEC Silicon RFIC Amplifiers Low Power, Wideband & SiGe/SiGeC

NEC Silicon RFIC Amplifiers Low Power, Wideband & SiGe/SiGeC NEC Silicon RFIC Amplifiers Low Power, Wideband & SiGe/SiGeC Low Power Amplifiers ELECTRICAL CHARACTERISTICS (TA = 25 C) Range VCC ICC NF Gain RLIN RLOUT PdB ISOL @ 3dB (V) (ma) (dbm) Part down Package

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* PART NUMBER SYSTEM

Διαβάστε περισσότερα

ISM 868 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3013

ISM 868 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3013 W0 Datasheet version.. Ceramic Antenna. (0/08). Ceramic Antenna Ground cleared under antenna, clearance area 0.80 mm x 8.5 mm. Pulse Part Number: W0 Features - Omni directional radiation - Low profile

Διαβάστε περισσότερα

3 V, 900 MHz Si MMIC AMPLIFIER

3 V, 900 MHz Si MMIC AMPLIFIER V, 9 MHz Si MMIC AMPLIFIER UPC77T FEATURES LOW VOLTAGE - LOW CURRENT: ma at V LOW POWER CONSUMPTION: mw TYP SUPER SMALL PACKAGE TAPE AND REEL PACKAGING OPTION AVAILABLE DESCRIPTION The UPC77T is a Silicon

Διαβάστε περισσότερα

HΛΕΚΤΡΙΚΟΣ ΙΑ ΡΟΜΟΣ UPOWER 202

HΛΕΚΤΡΙΚΟΣ ΙΑ ΡΟΜΟΣ UPOWER 202 HΛΕΚΤΡΙΚΟΣ ΙΑ ΡΟΜΟΣ UPOWER 202 Ευχαριστούµε που διαλέξατε τα όργανα γυµναστικής µας. Για καλύτερα αποτελέσµατα και για αποφυγή τραυµατισµών, πάντα να κάνετε ασκήσεις προθέρµανσης πριν χρησιµοποιήσετε τον

Διαβάστε περισσότερα

3 V, 900 MHz LOW NOISE SI MMIC AMPLIFIER

3 V, 900 MHz LOW NOISE SI MMIC AMPLIFIER V, 9 MHz LOW NOISE SI MMIC AMPLIFIER UPC78T FEATURES.8 db NOISE FIGURE LOW VOLTAGE - LOW CURRENT: ma at V LOW POWER CONSUMPTION: 8 mw TYP SUPER SMALL PACKAGE TAPE AND REEL PACKAGING OPTION AVAILABLE DESCRIPTION

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΠΕ ΙΟΜΕΤΡΟ TRIMAX SM 2500

ΨΗΦΙΑΚΟ ΠΕ ΙΟΜΕΤΡΟ TRIMAX SM 2500 ΨΗΦΙΑΚΟ ΠΕ ΙΟΜΕΤΡΟ TRIMAX SM 2500 ΤΕΧΝΙΚΟ ΕΓΧΕΙΡΙ ΙΟ www.trimaxmeters.com Παρακαλούµε διαβάστε το εγχειρίδιο αυτό προσεκτικά πριν χρησιµοποιήσετε το πεδιόµετρο για πρώτη φορά. Τα τεχνικά χαρακτηριστικά

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

SAW FILTER - RF RF SAW FILTER

SAW FILTER - RF RF SAW FILTER FEATURES - Frequencies from 0MHz to 700MHz - Custom specifications available - Industry standard package configurations - Low-loss saw component - Low amplitude ripple - RoHS compliance - Electrostatic

Διαβάστε περισσότερα

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu Current Status of PF SAXS beamlines 07/23/2014 Nobutaka Shimizu BL-6A Detector SAXS:PILATUS3 1M WAXD:PILATUS 100K Wavelength 1.5Å (Fix) Camera Length 0.25, 0.5, 1.0, 2.0, 2.5 m +WAXD Chamber:0.75, 1.0,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors (Large Can Type)

Aluminum Electrolytic Capacitors (Large Can Type) Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction

Διαβάστε περισσότερα

SPBW06 & DPBW06 series

SPBW06 & DPBW06 series /,, MODEL SELECTION TABLE INPUT ORDER NO. INPUT VOLTAGE (RANGE) NO LOAD INPUT CURRENT FULL LOAD VOLTAGE CURRENT EFFICIENCY (TYP.) CAPACITOR LOAD (MAX.) SPBW06F-03 310mA 3.3V 0 ~ 1500mA 81% 4700μF SPBW06F-05

Διαβάστε περισσότερα

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Electrical and Computer Engineering Graduate Theses Spring 5-2015 Development and Verification of Multi-Level Sub- Meshing Techniques

Διαβάστε περισσότερα

Technical Specifications

Technical Specifications FLX-8X8A Chassis Technical Specifications Modular Input Cards... FLX-BI4, FLX-DI4, FLX-HI4, FLX-RI4 Analog Audio... Balanced or Unbalanced Stereo Audio (20 Hz to 20 khz) Supported Outputs Modular Output

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition MA MA Series Silicon planer e For stabilization of power supply ø.56. Unit : mm Features Color indication of VZ rank classification High reliability because of combination of a planer chip and glass seal

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

TRC ELECTRONICS, INC LED Driver Constant Voltage 45W MEAN WELL IDLV-45 Series

TRC ELECTRONICS, INC LED Driver Constant Voltage 45W MEAN WELL IDLV-45 Series LED Driver Constant Voltage 5W MEAN WELL IDLV5 Series ~ A File Name:IDLV5SPEC 0707 TRC ELECTRONICS, INC..888.6.95 LED Driver Constant Voltage 5W MEAN WELL IDLV5 Series TRC ELECTRONICS, INC. SPECIFICATION

Διαβάστε περισσότερα

BMA SERIES Subminiature Blind Mate Connectors

BMA SERIES Subminiature Blind Mate Connectors SERIES Subminiature Blind Mate Connectors FEATURES The blindmate connectors are designed for blindmate applications up to Ghz. They have a slide-on, non-locking interface which ensures frequent matings

Διαβάστε περισσότερα

! " # $ &,-" " (.* & -" " ( /* 0 (1 1* 0 - (* 0 #! - (#* 2 3( 4* 2 (* 2 5!! 3 ( * (7 4* 2 #8 (# * 9 : (* 9

!  # $ &,-  (.* & -  ( /* 0 (1 1* 0 - (* 0 #! - (#* 2 3( 4* 2 (* 2 5!! 3 ( * (7 4* 2 #8 (# * 9 : (* 9 "# " # $ "%%" & '" (' )' * & + (' )' * &,-" " (.* & -" " ( /* 0 (1 1* 0 - (* 0 # - (#* 2 # - (#* 2 3( 4* 2 (* 2 5 3 ( * 2 6 3 (7 4* 2 #8 (# * 9 : (* 9 #" " 5,1 < = " = #+ +# 9 ' :> # &? + # & ISD i " @

Διαβάστε περισσότερα