CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS"

Transcript

1 CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) = x + 3x 5 then, using functional notation: f(0) = 5 f(1) = = 1 f() = = +5 Since there is a change of sign from negative to positive there must be a root of the equation between x = 1 and x = The method of bisection suggests that the root is at 1 + = 1.5, i.e. the interval between 1 and has been bisected Hence f(1.5) = (1.5) + 3(1.5) 5 = 1.75 Since f(1) is negative, f(1.5) is positive, and f() is also positive, a root of the equation must lie between x = 1 and x = 1.5, since a sign change has occurred between f(1) and f(1.5) i.e. 1.5 as the next root Hence f(1.5) = (1.5) + 3(1.5) 5 = Since f(1) is negative and f(1.5) is positive, a root lies between x = 1 and x = i.e Hence f(1.15) = (1.15) + 3(1.15) 5 = Since f(1.15) is negative and f(1.5) is positive, a root lies between x = 1.15 and x = i.e Hence f(1.1875) = (1.1875) + 3(1.1875) 5 = , John Bird

2 Since f(1.1875) is negative and f(1.5) is positive, a root lies between x = and x = i.e Hence f(1.1875) = (1.1875) + 3(1.1875) 5 = Since f(1.1875) is positive and f(1.1875) is negative, a root lies between x = and x = = Hence f(1.0315) = Since f(1.0315) is positive and f(1.1875) is negative, a root lies between x = and x = = Hence f( ) = Since f( ) is positive and f(1.1875) is negative, a root lies between x = and x = = Hence, f( ) = Since f( ) is negative and f( ) is positive, a root lies between x = and x = = The last two values obtained for the root are and The last two values are both 1.19, correct to 3 significant figures. We therefore stop the iterations here. Thus, correct to 3 significant figures, the positive root of x + 3x 5 = 0 is Using the bisection method solve e x x =, correct to 4 significant figures. Let f(x) = ex x then f(0) = 1 0 = , John Bird

3 f(1) = e 1 1 = 0.8 f() = e = 3.38 Hence, a root lies between x = 1 and x = Let the root be x = 1.5 f(1.5) = e = Hence, a root lies between x = 1 and x = 1.5 due to a sign change = 1.5 f(1.5) = e = Hence, a root lies between x = 1 and x = 1.5 due to a sign change = 1.15 f(1.15) = e = Hence, a root lies between x = 1.15 and x = 1.5 due to a sign change f(1.1875) = = Hence, a root lies between x = and x = 1.15 due to a sign change f(1.1565) = = Hence, a root lies between x = and x = 1.15 due to a sign change f( ) = = Hence, a root lies between x = and x = due to a sign change = f( ) = , John Bird

4 Hence, a root lies between x = and x = due to a sign change = f( ) = Hence, a root lies between x = and x = due to a sign change f( ) = = Hence, a root lies between x = and x = due to a sign change = The last two values are both 1.146, correct to 4 significant figures. We therefore stop the iterations here Thus, correct to 4 significant figures, the positive root of ex x = is Determine the positive root of x = 4 cos x, correct to decimal places using the method of bisection. Let f(x) = x 4 cos x then f(0) = 0 4 = 4 f(1) = = f() = = Hence, a root lies between x = 1 and x = Let the root be x = 1.5 f(1.5) = 1.5 4cos1.5 = 1.97 Hence, a root lies between x = 1 and x = 1.5 due to a sign change = 1.5 f(1.5) = 1.5 4cos1.5 = , John Bird

5 Hence, a root lies between x = 1 and x = 1.5 due to a sign change = 1.15 f(1.15) = cos1.15 = Hence, a root lies between x = 1.15 and x = 1.5 due to a sign change f(1.1875) = = Hence, a root lies between x = and x = 1.5 due to a sign change f(1.165) = = Hence, a root lies between x = and x = due to a sign change f( ) = = Hence, a root lies between x = and x = due to a sign change f( ) = = Hence, a root lies between x = and x = due to a sign change f( ) = = Hence, a root lies between x = and x = due to a sign change = The last two values are both 1.0, correct to 4 decimal places. We therefore stop the iterations here Thus, correct to decimal places, the root of x = 4 cos x is , John Bird

6 4. Solve x ln x = 0, correct to 3 decimal places using the bisection method. Let f(x) = x ln x f() = ln = f(3) = 3 ln 3 = f(4) = 4 ln 4 = Hence, the root lies between x = 3 and x = 4 because of the sign change. Table 1 shows the results in tabular form. Table 1 x 1 x x1+ x x = f ( x 3 ) Correct to 3 decimal places, the solution of x ln x = 0 is Solve, correct to 4 significant figures, x sin x = 0 using the bisection method. Let f(x) = x sin x then f(0) = 0 0 = 0 f(1) = 1 (sin 1) = f() = (sin 4) = Hence, a root lies between x = 1 and x = Let the root be x = 1.5 f(1.5) = 1.5 (sin 1.5) = 0.49 Hence, a root lies between x = 1.5 and x = due to a sign change , John Bird

7 1.5 + = 1.75 f(1.75) = 1.75 (sin 1.75) = Hence, a root lies between x = 1.75 and x = due to a sign change = f(1.875) = (sin 1.875) = Hence, a root lies between x = 1.75 and x = due to a sign change f(1.815) = = Hence, a root lies between x = and x = due to a sign change f( ) = = Hence, a root lies between x = and x = due to a sign change f( ) = = Hence, a root lies between x = and x = due to a sign change f( ) = = Hence, a root lies between x = and x = due to a sign change f( ) = = Hence, a root lies between x = and x = due to a sign change , John Bird

8 f( ) = = Hence, a root lies between x = and x = due to a sign change f( ) = = Hence, a root lies between x = and x = due to a sign change = The last two values are both 1.849, correct to 4 significant figures. We therefore stop the iterations here Thus, correct to 4 significant figures, the root of x sin x = 0 is , John Bird

9 EXERCISE 105 Page Use an algebraic method of successive approximation to solve: 3x + 5x 17 = 0, correct to 3 significant figures. Let f(x) = 3x + 5x 17 f(0) = 17 f(1) = = 11 f() = = 5 Hence a root lies between x = 1 and x = Since f(3), f(4), and so on do not produce a change of sign, then there is only one positive root First approximation Let the first approximation be 1.7 Second approximation Let the true value of the root, x, be (x 1 + δ 1 ) Let f(x 1 + δ 1 ) = 0, then since x 1 = 1.7, 3(1.7 + δ 1 ) + 5(1.7 + δ 1 ) 17 = 0 Neglecting terms containing products of δ 1 and using the binomial series gives: 3[(1.7) + (1.7) δ 1 ] δ δ δ δ δ Thus x = Third approximation Let the true value of the root, x 3, be (x + δ ) Let f(x + δ ) = 0, then since x = , 3( δ ) + 5( δ ) 17 = 0 Neglecting terms containing products of δ and using the binomial series gives: , John Bird

10 3[(1.6888) + (1.6888) δ ] δ δ δ δ δ Thus x 3 (x + δ ) = Since x and x 3 are the same when expressed to the required degree of accuracy, then the required positive root is 1.69, correct to 3 significant figures Now for the negative root: f( 1) = = 19 f( ) = = 15 f( 3) = = 5 f( 4) = = 11 Hence a root lies between x = 3 and x = 4 Since f( 5), f( 6), and so on do not produce a change of sign, then there is only one negative root First approximation Let the first approximation be 3.4 Second approximation Let the true value of the root, x, be (x 1 + δ 1 ) Let f(x 1 + δ 1 ) = 0, then since x 1 = 3.4, 3( δ 1 ) + 5( δ 1 ) 17 = 0 Neglecting terms containing products of δ 1 and using the binomial series gives: 3[( 3.4) + ( 3.4) δ 1 ] δ δ δ δ δ = Thus x = Third approximation , John Bird

11 Let the true value of the root, x 3, be (x + δ ) Let f(x + δ ) = 0, then since x = , 3( δ ) + 5( δ ) 17 = 0 Neglecting terms containing products of δ and using the binomial series gives: 3[( ) + ( ) δ ] δ δ δ δ δ Thus x 3 (x + δ ) = Since x and x 3 are the same when expressed to the required degree of accuracy, then the required negative root is 3.36, correct to 3 significant figures Thus, the two solutions of the equation 3x + 5x 17 = 0 are 1.69 and 3.36, correct to 3 significant figures. Use an algebraic method of successive approximation to solve: x 3 x + 14 = 0, correct to 3 decimal places. Let f(x) = x3 x+ 14 f(0) = 14 f(1) = = 13 f() = = 18 (There are no positive values of x) f( 1) = = 15 f( ) = = 10 f( 3) = = 7 Hence a root lies between x = and x = 3 First approximation Let the first approximation be.6 Second approximation , John Bird

12 Let the true value of the root, x, be (x 1 + δ 1 ) Let f(x 1 + δ 1 ) = 0, then since x 1 =.6, (.6 + δ 1 ) 3 (.6 + δ 1 ) + 14 = 0 Neglecting terms containing products of δ 1 and using the binomial series gives: [(.6) 3 + 3(.6) δ 1 ] + 5. δ δ δ δ δ Thus x =.6888 Third approximation Let the true value of the root, x 3, be (x + δ ) Let f(x + δ ) = 0, then since x =.6888, ( δ ) 3 ( δ ) + 14 = 0 Neglecting terms containing products of δ gives: ( ) ( ) δ δ δ δ δ δ Thus x 3 (x + δ ) = Fourth approximation Let the true value of the root, x 4, be (x 3 + δ 3 ) Let f(x 3 + δ 3 ) = 0, then since x 3 =.6857, ( δ 3 ) 3 ( δ 3 ) + 14 = 0 Neglecting terms containing products of δ 3 gives: ( ) ( ) δ δ , John Bird

13 δ δ δ δ Thus x 4 (x 3 + δ 3 ) = Since x 3 and x 4 are the same when expressed to the required degree of accuracy, then the required root is.686, correct to 3 decimal places 3. Use an algebraic method of successive approximation to solve: x 4 3x 3 + 7x 5.5 = 0, correct to 3 significant figures. Let f(x) = x4 3x3+ 7x 5.5 f(0) = 5.5 f(1) = = 0.5 f() = = 0.5 Hence a root lies between x = 1 and x = First approximation Let the first approximation be 1.5 Second approximation Let the true value of the root, x, be (x 1 + δ 1 ) Let f(x 1 + δ 1 ) = 0, then since x 1 = 1.5, (1.5 + δ 1 ) 4 3(1.5 + δ 1 ) 3 + 7(1.5 + δ 1 ) 5.5 = 0 Neglecting terms containing products of δ 1 and using the binomial series gives: [(1.5) 4 + 4(1.5) 3 δ 1 ] 3[(1.5) 3 + 3(1.5) δ 1 ] δ δ δ δ δ δ Thus x = 1.75 Third approximation , John Bird

14 Let the true value of the root, x 3, be (x + δ ) Let f(x + δ ) = 0, then since x = 1.75, ( δ ) 4 3( δ ) 3 + 7( δ ) 5.5 = 0 Neglecting terms containing products of δ gives: ( ) ( ) ( ) ( ) δ δ δ [ ] + 7( ) δ δ δ δ 0.875δ Thus x 3 (x + δ ) = Fourth approximation Let the true value of the root, x 4, be (x 3 + δ 3 ) Let f(x 3 + δ 3 ) = 0, then since x 3 = 1.69, ( δ 3 ) 4 3( δ 3 ) 3 + 7( δ 3 ) 5.5 = 0 Neglecting terms containing products of δ 3 gives: ( ) ( ) ( ) ( ) δ3 δ3 δ [ ] + 7( ) δ δ δ δ δ Thus x 4 (x 3 + δ 3 ) = Fifth approximation Let the true value of the root, x 5, be (x 4 + δ 4 ) Let f(x 4 + δ 4 ) = 0, then since x 4 = , ( δ 4 ) 4 3( δ 4 ) 3 + 7( δ 4 ) 5.5 = 0 Neglecting terms containing products of δ 4 gives: ( ) ( ) ( ) ( ) δ4 δ4 δ [ ] + 7( ) δ δ δ δ , John Bird

15 δ Thus x 5 (x 4 + δ 4 ) = Since x 4 and x 5 are the same when expressed to the required degree of accuracy, then the required root is 1.68, correct to 3 decimal places From earlier, f(x) = x4 3x3+ 7x 5.5 f(0) = 5.5 f( 1) = = 8.5 f( ) = = 0.5 Hence, a root lies between x = 1 and x = This root, x = 1.53, may be found in exactly the same way as for the positive root above 4. Use an algebraic method of successive approximation to solve: x 4 + 1x 3 13 = 0, correct to 4 significant figures. Let f(x) = x 4 + 1x 3 13 f(0) = 13 f(1) = = 0 f() = = 99 Hence, x = is a root of the equation There are no further positive roots f( 1) = = 4 f( ) = 93 f( 3) = 56 f( 4) = 55 f( 5) = 888 f( 6) = 1303 f( 7) = 178 f( 8) = 061 f( 9) = 00 f( 10) = 013 f( 11) = 1344 f( 1) = 13 f( 13) = 184 (Since the sign of f( 14) onwards does not change, there are no further negative roots) Hence a root lies between x = 1 and x = 13 First approximation , John Bird

16 Let the first approximation be 1.0 Second approximation Let the true value of the root, x, be (x 1 + δ 1 ) Let f(x 1 + δ 1 ) = 0, then since x 1 = 1.0, ( δ 1 ) 4 + 1( δ 1 ) 3 13 = 0 Neglecting terms containing products of δ 1 and using the binomial series gives: [( 1.0) 4 + 4( 1.0) 3 δ 1 ] + 1[( 1.0) 3 + 3( 1.0) δ 1 ] δ δ δ 1 178δ Thus x = Third approximation Let the true value of the root, x 3, be (x + δ ) Let f(x + δ ) = 0, then since x = , ( δ ) 4 + 1( δ ) 3 13 = 0 Neglecting terms containing products of δ gives: ( ) ( ) δ ( ) ( ) δ [ ] δ δ 13 0 δ δ Thus x 3 (x + δ ) = Since x and x 3 are the same when expressed to the required degree of accuracy, then the required root is 1.01, correct to 4 significant figures Thus, the two solutions of the equation x 4 + 1x 3 13 = 0 are and 1.01, correct to 4 significant figures , John Bird

17 EXERCISE 106 Page Use Newton s method to solve: x x 13 = 0, correct to 3 decimal places. Let f(x) = x x 13 f(0) = 13 f(1) = 1 13 = 14 f() = = 13 f(3) = = 10 f(4) = = 7 f(5) = = Hence a root lies between x = 4 and x = 5. Let r 1 = 4.7 A better approximation is given by: ( 1) f r r = r1 f f '( r) '( x ) = x 1 Hence, (4.7) (4.7) r = 4.7 = 4.7 = (4.7) 7.4 f (4.7419) r3 = = = f '(4.7419) Hence, correct to 3 decimal places, x = 4.74 Since f(6), f(7), and so on do not change sign, there are no further positive roots f( 1) = = 10 f( ) = = 5 f( 3) = = Hence a root lies between x = and x = 3. Let r 1 =.7 A better approximation is given by: ( 1) f r r = r1 f f '( r) '( x ) = x 1 Hence, (.7) (.7) r =.7 =.7 =.7401 (.7) 7.71 f (.7401) r3 =.7401 =.7401 = f '(.7401) f (.73876) r4 = = = f '(.73876) f (.74166) r5 = = =.7417 f '(.74166) Hence, correct to 3 decimal places, x =.74 i.e. the two roots of x x 13 = 0 are 4.74 and.74. Use Newton s method to solve: 3x 3 10x = 14, correct to 4 significant figures. Let f(x) = 3x3 10x 14 f(0) = 14 f(1) = = , John Bird

18 f() = = 10 f(3) = = 36 Hence, a root lies between x = and x = 3 Let r 1 =. A better approximation is given by: ( 1) f r r = r1 f '( x) = 9x 10x f '( r) 1 Hence, 3(.) 3 10(.) (.) 10(.) 1.56 r =. =. =.3881 f (.3881) r3 =.3881 =.3881 =.796 f '(.3881) f (.796) r4 =.796 =.796 =.331 f '(.796) f (.331) r5 =.331 =.331 =.3036 f '(.331) r6 =.3036 = r 7 =.3183 = r8 =.3105 = r 9 =.3146 = r10 =.314 = r 11 =.3136 = r =.319 = Hence, correct to 4 significant figures, x = Use Newton s method to solve: x 4 3x 3 + 7x = 1, correct to 3 decimal places. Let f(x) = x 4 3x 3 + 7x 1 f(0) = 1 f(1) = = 7 f() = = 6 f(3) = = 9 Hence, a root lies between x = and x = 3 Let r 1 =.6 (Since f(4), f(5), and so on do not change sign, there are no further positive roots) , John Bird

19 A better approximation is given by: ( 1) f r r = r1 f '( x) = 4x 3 9x + 7 f '( r) 1 Hence, (.6) 4 3(.6) 3 + 7(.6) (.6) 3 9(.6) r =.6 =.6 = f (.65044) r3 = = = f '(.65044) f (.64799) r4 = = = f '(.64799) Hence, correct to 3 decimal places, x =.648 f( 1) = = 15 f( ) = = 14 Hence a root lies between x = 1 and x =. Let r 1 = 1.5 (Since f( 3), f( 4), and so on do not change sign, there are no further negative roots). A better approximation is given by: ( 1) f r r = r1 f '( x) = 4x 3 9x + 7 f '( r) 1 Hence, ( 1.5) 4 3( 1.5) 3+ 7( 1.5) ( 1.5) 3 9( 1.5) r = 1.5 = 1.5 = f ( ) r3 = = = f '( ) f ( 1.776) r4 = = = f '( 1.776) f ( ) r5 = = = f '( ) Hence, correct to 3 decimal places, x = 1.71 i.e. the two roots of x 4 3x 3 + 7x = 1 are.648 and Use Newton s method to solve: 3x 4 4x 3 + 7x 1 = 0, correct to 3 decimal places. Let f(x) = 3x4 4x3+ 7x 1 f(0) = 1 f(1) = = 6 f() = = 18 Hence, a root lies between x = 1 and x = There are no further positive roots since the x 4 term predominates. f( 1) = = 1 f( ) = = , John Bird

20 Hence, a root lies between x = 1 and x = There are no further negative roots since, once again, the x 4 term predominates. For the root between x = 1 and x = : Let r 1 = 1.5 f '( x) = 1x3 1x ( ) ( ) ( ) ( ) f( r1 ) (1.5) r = r1 = 1.5 = 1.5 = f '( r1 ) r 3 = = r 4 = = r 5 = = Hence, correct to 3 decimal places, the positive root is: x = For the root between x = 1 and x = : Let r 1 = ( ) ( ) ( ) ( ) f( r1 ) ( 1.) r = r1 = 1. = 1. = f '( r1 ) r 3 = = r 4 = = r 5 = = Hence, correct to 3 decimal places, the negative root is: x = Use Newton s method to solve: 3 ln x + 4x = 5, correct to 3 decimal places. Let f(x) = 3 ln x + 4x 5 f(1) = = 1 f() = 3 ln = Hence, a root lies between x = 1 and x = Let r 1 = , John Bird

21 (Since f(3), f(4), and so on do not change sign, there are no further positive roots) A better approximation is given by: r = r 1 ( 1) f r f '( r) 1 f 3 '( x) = + 4 x 3ln (1.) + 4(1.) Hence, r = 1. = 1. = / f (1.1466) r3 = = = f '(1.1466) Hence, correct to 3 decimal places, x = Use Newton s method to solve: x 3 = 5 cos x, correct to 3 decimal places. Let f(x) = x 3 5 cos x f(0) = 0 5 cos 0 = 5 f(1) = 1 5 cos = (note: cos means cos( rad)) Hence, a root lies between x = 0 and x = 1 Let r 1 = 0.7 (Since f(), f(3), and so on do not change sign, there are no further positive roots) A better approximation is given by: ( 1) f r r = r1 f '( x) = 3x + 10sin x f '( r) 1 Hence, (0.7) 3 5cos(1.4) (0.7) + 10sin(1.4) r = 0.7 = 0.7 = f ( ) r3 = = = f '( ) f ( ) r4 = = = f '( ) Hence, correct to 3 decimal places, x = f(0) = 0 5 cos 0 = 5 f( 1) = 1 5 cos( ) = Hence, a root lies between x = 0 and x = 1 Let r 1 = 0.8 A better approximation is given by: ( 1) f r r = r1 f '( x) = 3x + 10sin x f '( r) 1 Hence, ( 0.8) 3 5cos( 1.6) r = 0.8 = 0.8 = ( 0.8) + 10sin( 1.6) , John Bird

22 f ( ) r3 = = = f '( ) f ( ) r4 = = = f '( ) Hence, correct to 3 decimal places, x = From above, f(0) = 5 and f( 1) = f( ) = 8 5 cos( 4) = Hence, a root lies between x = 1 and x = Let r 1 = 1.7 (Since f( 3), f( 4), and so on do not change sign, there are no further roots) A better approximation is given by: ( 1) f r r = r1 f '( x) = 3x + 10sin x f '( r) 1 Hence, ( 1.7) 3 5cos( 3.4) ( 1.7) + 10sin( 3.4) r = 1.7 = 1.7 = f ( ) r3 = = = f '( ) Hence, correct to 3 decimal places, x = Thus, the solutions to x 3 = 5 cos x, correct to 3 decimal places, are 0.744, and θ 7. Use Newton s method to solve: 300e θ + = 6, correct to 3 significant figures. θ Let f(θ) = 300e θ + 6 f(0) = = 94 f(1) = 35.1 f() = f(3) = Hence, a root lies between x = and x = 3, very close to x = There are no further positive roots since the 300e θ term predominates. There are no negative roots since f(x) will always be positive Let r 1 = f '( x) = 600e θ f r r = r1 = = =.049 f ( 1) 300 e '( r1 ) 600 e r3 =.049 = , John Bird

23 Hence, correct to 3 significant figures, x = Solve the equations in Problems 1 to 5, Exercise 104, page 8 and Problems 1 to 4, Exercise 105, page 31 using Newton s method This is left as further practise at using Newton s method. 9. A Fourier analysis of the instantaneous value of a waveform can be represented by y = π t sin t + 1 sin 3t 8 Use Newton s method to determine the value of t near to 0.04, correct to 4 decimal places, when the amplitude, y, is When y = 0.88, then π = t+ + sin t+ sin 3t 4 8 or π 1 t+ + sin t+ sin 3t 0.88 = Let f(t) = π 1 t+ + sin t+ sin 3t Let r 1 = 0.04 f '( t) = 1+ cost+ cos3t 8 π sin sin 3(0.04) 0.88 f( r1 ) r = r1 = 0.04 = 0.04 f '( r1 ) 3 1+ cos cos 3(0.04) = r3 = = Hence, correct to 4 decimal places, t = A damped oscillation of a system is given by the equation: y = 7.4e 0.5t sin 3t. Determine the value of t near to 4., correct to 3 significant figures, when the magnitude y of the oscillation is zero , John Bird

24 Let f(t) = 7.4e0.5t sin 3t ( )( ) ( )( ) f '( t) = 7.4e0.5 t 3cos3t + sin 3t 3.7 e0.5 t =.e0.5 t cos3t 3.7 e0.5 t sin 3t Let r 1 = 4. ( ) = e0.5t (.cos3t+ 3.7sin 3t) f r r = r1 = 4. = 4. = f '( ) e. cos sin ( 1) 7.4 e.1 sin r1.1 + f (4.189) r3 = = = f '(4.189) (Note, sin 1.6 is sin 1.6 rad) Hence, correct to 3 significant figures, t = The critical speeds of oscillation, λ, of a loaded beam are given by the equation: λ3 λ λ = 0 Determine the value of λ which is approximately equal to 3.0 by Newton s method, correct to 4 decimal places. Let f(λ) = λ λ + λ f λ λ λ '( ) = Let r 1 = ( ) ( ) ( ) ( ) f (3.0) r = 3.0 = 3.0 = 3.0 = f '(3.0) r 3 = = r 4 = = Hence, correct to 4 decimal places, λ = , John Bird

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα