Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 15
|
|
- Μελέτη Ταρσούλη
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις) Πετρίδου Χαρά Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πυρηνική & Στοιχειώδη Ι, Αριστοτέλειο Παν. Θ/νίκης, 1 Δεκεμβρίου 2016
2 Σήμερα β-διάσπαση - διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις Βιβλίο C&G: Κεφ. 4, παρ. 4.6., Κεφ. 2, παρ (σελ ), Κεφ. 12, παρ. 12.1, παρ 12.6 (σελ ) Σημειώσεις Πυρηνικής, Κεφ. 5, παρ. 5.2, , και ειδικά για σήμερα σελ Ιστοσελίδα: 2
3 Κοιλάδα β-σταθερότητας Σχήμα 4.6 στο βιβλίο σας Ν Ζ < Α/2 Για κάθε Α, τα β-σταθερά νουκλίδια είναι στη μαύρη ζώνη ( κοιλάδα σταθερότητας - valley of stability ). Αυτά που είναι μακρυά απ'την κοιλάδα, πάνε προς αυτήν με διασπάσεις β + (= e + ) ή β - (= e - ) Για A=σταθερό: Οι πυρήνες διαφέρουν ως προς το Ζ (και N) Ζ N unstable to β- decay valley of stability α unstable to β+ decay (or e- capture) Z 3
4 β-διασπάσεις: ενεργειακές συνθήκες 1) Ενεργειακή συνθήκη β - : Σηµείωση: Μ ατόµου ( Α Χ) = Μ(Α,Ζ) Ζ Θα πρέπει Q>0 2) Ενεργειακή συνθήκη β + : >= 0 3) Ενεργειακή συνθήκη σύλληψης ηλεκτρονίου (EC, K- σύλληψη ): 4
5 β-διάσπαση: εκτός από το να έχουμε διατήρηση φορτίου και ενέργειας, έχουμε κι άλλες συνθήκες: διατήρηση σπιν και επίσης: τι γίνεται με την ομοτιμία (parity)? 5
6 Spin και ομοτιμία ενός πυρήνα (J και πάριτυ: J π ) Σπιν πυρήνα, J = ολικό τροχιακό σπίν των νουκλεονίων + το άθροισμα των σπιν τους. Parity = +1 ή -1 Οπότε για κάθε πυρήνα έχουμε σπιν (J) και parity (π): J π π.χ., 2 + 6
7 Spin και ομοτιμία ενός πυρήνα (J και ομοτιμία: J π ) Σπιν πυρήνα, J = ολικό τροχιακό σπίν των νουκλεονίων + το άθροισμα των σπιν τους. 7ΚΑΝΟΝΑΣ που δουλεύει στα περισσότερα!
8 Κβάντωση στροφορμής Άθροισμα στροφορμών: 8
9 Spin και ομοτιμία ενός πυρήνα (J και ομοτιμία: J π ) Σπιν πυρήνα, J = ολική τροχιακή στροφορμή των νουκλεονίων + το άθροισμα των σπιν τους. J J J J J J J J Parity = +1 ή -1 Οπότε για κάθε πυρήνα έχουμε σπιν (J) και parity (π): J π π.χ., 2 + 9
10 10
11 Είδαμε ότι η ενέργεια ενός συστήματος εξαρτάται και από το σπιν του: ΟΚ. Ερώτηση: Η ομοτιμία / πάριτυ / parity επηρεάζει κάτι μετρήσιμο/παρατηρίσιμο; Βεβαίως και ναι. 11
12 α) Parity #1: η αναστροφή του χώρου και η Αρχή του Pauli (1) Όλα τα σωματίδια με ακέραιο σπιν (s=0, 1, 2, ) - τα αποκαλούμενα μποζόνια περιγράφονται από συμμετρικές κυματοσυναρτήσεις (Parity = +1), ενώ όλα τα σωματίδια με ημι-ακέραιο σπιν (s=1/2, 3/2, ) - τα αποκαλούμενα φερμιόνια περιγράφονται από αντισυμμετρικές κυματοσυναρτήσεις (Parity = -1) ως προς την εναλλαγή των μεταβλητών τους (=αναστροφή του χώρου) 12
13 α) Parity #1: η αναστροφή του χώρου και η Αρχή του Pauli (2) 13
14 α) Parity #1: η αναστροφή του χώρου και η Απαγορευτική Αρχή του Pauli Παρατηρίσιμο; Μα, έτσι ακριβώς εξηγούμε τη δομή των ατόμων!!! 14
15 β) Parity #2: Πείραμα της Wu: 1957 Αν υπάρχει προτίμηση στην κατεύθυνση των ηλεκτρονίων, τότε η πάριτυ δεν είναι καλή συμμετρία (δηλ. παραβιάζεται) Γιατί η προτιμητέα κατεύθυνση έχει σχέση με την πάριτυ; Πείραμα Wu: ΟΛΑ τα ηλεκτρόνια πήγαιναν αντίθετα από το σπίν του πυρήνα. Όχι μόνο υπήρχε ασυμμετρία, αλλά μέγιστη ασυμμετρία. Όχι μόνο η πάριτυ δεν διατηρείται, αλλά παραβιάζεται στο μέγιστο βαθμό! 15
16 Το πείραμα της Wu 16
17 γ) Parity #3: Σε τί διαφέρουν τα νετρίνα (ν) από τα αντινετρίνα (ν) που είδαμε στις β- διασπάσεις); Δεν έχουν φορτίο => Δεν έχουν ηλεκτρομαγνητικές αλληλεπιδράσεις Τα νετρίνα είναι αριστερόστροφα => Το σπίν έχει διέυθυνση αντίθετη από το διάνυσμα της ορμής Τα αντι- νετρίνα είναι δεξιόστροφα => το σπιν έχει διεύθυνση ομόρροπη με το διάνυσμα της ορμής ορµή νετρίνο σπίν ορµή αντι-νετρίνο σπίν 17
18 γ) Parity #3: νετρίνο (ν) και αντινετρίνο (ν) Μετασχηματισμός Parity (P): αναστροφή του χώρου Η β-διάσπαση, έχοντας είτε μόνο νετρίνα (στις διασπάσεις β+), είτε μόνο αντινετρίνα (στις β-), παραβιάζει τη συμμετρία της Parity, αφού υπάρχει διαφορετική συμπεριφορά του νετρίνο και αντινετρίνο: Σε αναστροφή του χώρου, το νετρίνο γίνεται δεξιόστροφο γιατί το σπίν δεν αλλάζει φορά. Έτσι, η αναστροφή του χώρου δημιουργεί δεξιόστροφα νετρίνα και αριστερόστροφα αντινετρίνα. Κάτι που όμως ΔΕΝ παρατηρείται, οπότε η φύση (όσον αφορά τις β-διασπάσεις) δεν θεωρεί την Parity καλή συμμετρία, οπότε λέμε ότι παραβιάζει την Parity 18
19 Όλα τα προηγούμενα ήταν μια εισαγωγή για τους επιπλέον κανόνες για τη β-διάσπαση που αφορούν το σπιν και την ομοτιμία (πάριτυ) των πυρήνων. β-διάσπαση: Επιτρεπτές και απαγορρευμένες διασπάσεις Επιτρεπτές: Fermi ή Gamow-Teller 19
20 β-διασπάσεις: Επιτρεπτές και απαγορευμένες με βάση την αλλαγή του σπιν αρχικού και τελικού πυρήνα Οι αποδιεγέρσεις β κατηγοριοποιούνται σε επιτρεπτές ή απαγορευμένες όσον αφορά την μεταβολή του σπίν μεταξύ αρχικού και τελικού πυρήνα: Επιτρεπτές σημαίνει ότι έχουν πολύ μεγαλύτερη πιθανότητα να γίνουν, σε σχέση με άλλες που είναι πιό σπάνιες και λέγονται απαγορευμένες. Όσο μεγαλύτερου βαθμού απαγόρευση έχει μια διάσπαση, τόσο πιό σπάνιο είναι να γίνει. 20
21 Διατήρηση στροφορμής (σπιν) Γενικά, με διατήρηση του σπίν, γράφουμε για τη β-διάσπαση: Όπου: J i S ev J f i f +e+ν J i = J f + S ev + l ev και είναι το ολικό σπίν του αρχικού και του τελικού πυρήνα, αντίστοιχα, είναι το ολικό σπίν του συστήματος ηλεκτρονίουαντινετρίνο πού μπορεί να είναι 0 ή 1 (αφού συνδυάζω το ηλεκτρόνιο και το αντινετρίνο που έχουν σπίν 1/2 το καθένα), και l ev είναι η σχετική στροφορμή ηλεκτρονίου-αντινετρίνο. 21
22 Μεταβολή σπιν μεταξύ αρχικού και τελικού πυρήνα και σχετική τροχιακή στροφορμή ηλεκτρονίου-νετρίνο Οπότε γράφουμε: J i J f = S ev + l ev και Δπ = ΠάριτυΑρχικούΠυρήνα * ΠάριτυΤελικούΠυρήνα Δ J όπου η μεταβολή του σπιν (αρχικού πυρήνα - τελικού) μπορεί να έχει μέτρο οποιαδήποτε τιμή μέσα στα όρια: J i J f Δ J J i +J f Δ J= S ev + και το ολικό σπίν ηλετρονίου-νετρίνο (καθένα με σπίν 1/2): 1/2 1/2 S eν 1/2+1 /2 S eν = 0 ή 1 l ev Όσο μικρότερο το τόσο πιό εύκολα γίνεται η μετάβαση (δηλ. τόσο πιό επιτρεπτή είναι). Οπότε, από όλα τα ΔJ, το πιό πιθανό είναι αυτό με τη μικρότερη τιμή, δηλαδή το (J i J ) f l ev 22
23 Επιτρεπτές μεταπτώσεις: Fermi ή Gamow-Teller ανάλογα με S eν =0 ή 1 ΚΑΝΟΝΑΣ #1: Οι επιτρεπτές μεταπτώσεις ᄄ έχουν l ev = 0 Άν: S eν =0 (που έχει μόνο έναν τρόπο να γίνει, Sz=0), τότε η β- διάσπαση/μετάπτωση λέγεται μετάπτωση Fermi. Οπότε αφού το σπίν διατηρείται, σύμφωνα με τα παραπάνω, το ΔJ στις επιτρεπτές β-διασπάσεις είναι 0 ή 1, όσο και το S eν. 23
24 Επιτρεπτές μεταπτώσεις: Fermi ή Gamow-Teller ανάλογα με S eν =0 ή 1 ΚΑΝΟΝΑΣ #1: Οι επιτρεπτές μεταπτώσεις ᄄ έχουν l ev = 0 Άν: S eν =1 (που έχει Sz = +1, 0, -1), τότε η β-διάσπαση/μετάπτωση λέγεται μετάπτωση Gamow-Teller. Οπότε αφού το σπίν διατηρείται, σύμφωνα με τα παραπάνω, το ΔJ στις επιτρεπτές β-διασπάσεις είναι 0 ή 1, όσο και το S eν. 24
25 Επιτρεπτές μεταπτώσεις: μεταβολή της partity Εκτός από το σπιν, έχουμε να σκεφτούμε και την πάριτυ. Η πάριτυ του συστήματος ηλεκτρονίου-αντινετρίνο είναι: (εσωτερική πάριτυ eν)* = (-1)*(-1) leν Για τις επιτρεπτές μεταπτώσεις (l ev =0) δίνει: Άρα: Parity(eν)= -1, ( 1) l eν ( 1) l eν = ( 1) 0 = +1 ΑΝ: Parity(i) = - Parity(f)*Parity(eν)=> Parity(i) = Parity(f)=> ΕΠΙΤΡΕΠΤΕΣ ΚΑΝΟΝΑΣ #2: οι επιτρεπτές μεταπτώσεις [ που έχουν l eν =0 ] δεν έχουν μεταβολή της πάριτυ μεταξύ αρχικού και τελικού πυρήνα. Parity(i) = Parity(f) ᄄ i f +e+ν 25
26 Απαγορευμένες β-διασπάσεις Όταν δεν έχουμε ΔJ = 0 ή 1 και Δπάριτυ = Δπ = +1, τότε η β- διάσπαση ονομάζεται απαγορευμένη. Όπου: Δπ = ΠάριτυΑρχικούΠυρήνα * ΠάριτυΤελικούΠυρήνα Ερώτηση: Μια απαγορευμένη μετάπτωση (δηλαδή που δεν είναι ΔJΔπ = 1 + ή ΔJΔπ = 0 + ), τι τάξης απαγορευμένη είναι; Απάντηση: όση είναι η ελάχιστη τιμή της l ev που μας χρειάζεται για να εξηγήσουμε τη μετάπτωση που μας δίνεται. Βρίσκουμε την τιμή αυτή δοκιμάζοντας: 1) ποιό l ev χρειάζεται (άρτιο ή περιττό) για να εξηγήσει την Δπάριτυ, και 2) πόσο να είναι αυτό το l ev για να μας δώσει το ΔJ (σε συνδυσαμό με το S ev = 0 ή 1) 26
27 Οπότε: Τάξη β-διάσπασης ΚΑΝΟΝΑΣ #3: η τάξη της β-διαπασης είναι το μικρότερο l eν που εξηγεί και την μεταβολή της παριτυ [ Δπάριτυ = (-1) l ] και τη μεταβολή του σπιν ΔJ μεταξύ αρχικού και τελικού πυρήνα. Αν αυτό το l είναι το l=0, τότε η β-διάσπαση είναι επιτρεπτή, αλλιώς είναι απαγορευμένη τάξης l. 27
28 Άσκηση: αντιδράσεις β-διάσπασης: Q-values, επιτρεπτές, τάξη απαγόρευσης Για να βρίσκετε τις ατομικές μάζες των στοιχείων που σας χρειάζονται, χρησιμοποιείτε: Μ(Α,Ζ) = * Α + Δ (MeV), Όπου το Δ το βρίσκεται για κάθε στοιχείο και τα ισότοπά του στο: Δ( 66 Ga) = MeV, Δ( 66 Zn) = MeV Δ( 72 As) = MeV, Δ( 72 Ge) = MeV m(e) = ΜeV, m(ν) = 0 28
29 Άσκηση σημείωση για επιτρεπτή ή όχι α) με ΔJ Δπ = 2+ έχουμε αναγκαστικά l=άρτιο γιατί (-1) l = +1. * Αφού το Sev γίνεται το πολύ Sev=1, δεν μπορεί να γίνει η μετάβαση με l=0. Άρα δεν είναι επιτρεπτή η μετάβαση. * Η επόμενη άρτια τιμή είναι l=2. Με S=0, δίνουν ΔJ=2. Με S=1, δίνουν από ΔJ = 2-1 =1 μέχρι και 2+1=3, οπότε όντως το l=2 (και με S=0 και με S=1) μπορεί να εξηγήσει το ΔJ=2+ απαγορευμένη 2ης τάξης 29
30 Ενεργειακές στάθμες του πυρήνα Μερικά χαρακτηριστικά των διεγερμένων καταστάσεων Οι ισχυρές δυνάμεις είναι ανεξάρτητες του φορτίου 30 Οσο βαρύτερος ο πυρήνας τόσο περισσότερες στάθμες Το πρότυπο των φλοιών εξηγεί ποιοτικά τις διεγερμένες καταστάσεις του πυρήνα Πετρίδου Χαρά γ-διάσπαση Θεσσαλονίκη
31 Υπενθύμηση: Γωνιακή Ορμή του Πυρήνα: Πυρηνικό Spin 31 Οι πυρήνες, ακόμα και στη βασική κατάσταση μπορεί να έχουν Γωνιακή ορμή που καθορίζεται/συμβολίζεται με το κβαντισμένο διανυσμα J J=ħ J(J+1) J = [J(J+1)]ħ H αναμενόμενη τιμή του J δεν είναι παρατηρήσιμο μέγεθος. Η συνιστώσα του όμως J z=m j ħ κατά την διεύθυνση κβάντωσης μπορεί να μετρηθεί και βρέθηκε ότι παίρνει 2J+1 τιμές: J m j -J J z =mħ όπου m=+j.. -J J J Η μέγιστη τιμή του J ονομάζεται σπίν του πυρήνα Είναι το διανυσματικό άθροισμα ( διανυσματική σύζευξη ) των τροχιακών στροφορμών Πετρίδου Χαρά (l) και σπίν γ-διάσπαση (s) των νουκλεονίων Θεσσαλονίκη του πυρήνα
32 Υπενθύμηση: Γωνιακή Ορμή του Πυρήνα: Πυρηνικό Spin Διανυσματική σύζευξη των τροχιακών στροφορμών (l) και σπιν(s) των νουκλεονίων του πυρήνα Τα διάφορα πυρηνικά μοντέλα ορίζουν τον τρόπο σύζευξης των διανυσμάτων Λογικό να υποθέσουμε ότι όμοια νουκλεόνια: nn, pp, φτιάχνουν ζευγάρια με ίσα και αντίθετα σπιν και στροφορμή (σε συμφωνία και με την αρχή του Pauli, και λόγω ελάχιστης δυναμικής ενέργειας) Αν ο πυρήνας αποτελείται απο αρτιο-ζ και άρτιο-ν, ανεξαρτητα μοντέλου, εχει σπιν μηδέν στη βασική κατάσταση Αν όλα τα ζευγάρια νουκλεονίων έχουν συνιστώσα (s)=0 το σπιν J ενος περιττού-a πυρήνα θα είναι το J = l+s του περιττού νουκλεονίου 32 Η βασική κατάσταση του πυρηνικού σπιν ενος πυρήνα μετριέται με τις μεθόδους της Υπερλεπτης Πετρίδου Χαρά Υφής και γ-διάσπαση του Μαγνητικού Θεσσαλονίκη Συντονισμού
33 Σχετικιστική κινηματική: Σχετικιστική κινηματική E = mc 2 = η ενέργεια πού έχω επειδή απλά και μόνο έχω μάζα m ενέργεια μάζα c = ταχύτητα του φωτός Η μάζα είναι μια μορφή ενέργειας γενικά, µ ε κινητική ενέργεια Κ, έχουµε : E = Κ!m + c 2 E= m γ c 2, όπου γ = 1, και β= υ/c, µ ε υ= ταχύτητα σωµατιδίου 2!1 β p= m γ υ = m γ β c,ό π ο υ p= ο ρ µ ή E 2 ˆ p 2 c 2 m 2 c 4 : E [MeV], p [MeV/c], m [MeV/c 2 ] Σηµείωση: µε c = 1, γράφουµε : E 2 = p 2 +m 2,κλπ. 33
34 c= 197 MeV fm, όπου = h 2π Μονάδες c= m/s µ ο ν ά δ α τ α χ ύ τ η τ α ς 1 µονάδα ενέργειας ev = C b V = Joule Συνήθως χρησιμοποιούμε το MeV (= 10 9 ev) Σταθερά του Plank = h = x J s α= e 2 e2 [mks]= 4 πε 0 c c [cgs]= α = η σταθερά λεπής υφής = 1/137 µονάδα δράσης!ενέργειας χρόνου! 1 Θα χρησιμοποιούμε παντού: ev για ενέργεια (ή MeV στην πυρηνική), 1/4πε 0 = 1 σε όλους τους τύπους, και θα βάζουμε: Μετράμε: c= 197 MeV fm Μάζα: MeV/c 2 (αφού Ε = mc 2 ) Ορμή: MeV/c (αφού p = mγβc) Χρόνο σε: 1/MeV (αφού η μονάδα δράσης = Ενέργεια * Xρόνος = 1) Μήκος σε: μονάδες χρόνου = 1/MeV (αφού η μονάδα ταχύτητας=1) 1 amu = 1/12 μάζας ουδέτρου ατόμου 12 C = MeV/c 2 Mάζα ηλεκτρονίου = MeV/c 2 Μάζα πρωτονίου = MeV/c 2, Μάζα νετρονίου = MeV/c 2 e 2 = α c, όπουα= 1/137 34
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6β β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις)
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 9
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2018-19 Τμήμα T3: Χ. Πετρίδου Μάθημα 9 β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις) Πετρίδου Χαρά
Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες διασπάσεις)
β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β διάσπαση II Δήμος Σαμψωνίδης (28-11- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Spin και πάριτυ ενός πυρήνα (J και πάριτυ: J p ) Σπιν πυρήνα, J = ολικό τροχιακό σπίν
Μάθημα 14 β-διάσπαση B' μέρος
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 015-16) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας Μάθημα 14 β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες
γ-διάσπαση Διάλεξη 17η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
γ-διάσπαση Διάλεξη 17η Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου 1 Τι θα μάθουμε σήμερα 2 Τι είναι η γ-διάσπαση γ-αποδιέγερση ηλεκτρόνια εσωτερικών μετατροπών εσωτερική δημιουργία ζεύγους (e + e - ) Πως προκύπτει?
β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β διάσπαση II Δήμος Σαμψωνίδης (30-11- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Fermi- Kurie plot (μάζα ν) Διάγραμμα της ρίζας του αριθμού των σωματίων β με ορμή
Μάθημα 5 α) β-διάσπαση β) Ασκήσεις
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 5 α) β-διάσπαση β) Ασκήσεις Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2013-14 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 7
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2016-17 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Άλφα διάσπαση β) Σχάση και σύντηξη Πετρίδου Χαρά Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης
Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2013-14 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ
Μάθημα 4 Mέγεθος πυρήνα
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 4 Mέγεθος πυρήνα Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική
Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2018-19 Τμήμα T3: Χ. Πετρίδου Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις
Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 β-διάσπαση Α' μέρος (νετρίνα και ενεργειακές συνθήκες) Πετρίδου Χαρά Αριστοτέλειο Πανεπιστήµιο
Aσκήσεις. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
Aσκήσεις Δήμος Σαμψωνίδης ( 26-11- 2014) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Ασκηση 2: Σχάση ουρανίου- 235 ( 235 U) Άσκηση 2: a) Πόση ενέργεια εκλύεται κατά την παρακάτω
Ασκήσεις #1 επιστροφή 11/11/2011
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Ασκήσεις #1 επιστροφή 11/11/2011 Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
ΠΥΡΗΝΙΚΗ 5ου εξαμήνου. 10 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη) Κ. Κορδάς, ακ. έτος 2013-14
ΠΥΡΗΝΙΚΗ 5ου εξαμήνου 10 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη) Κ. Κορδάς, ακ. έτος 2013-14 1. Ο αριθμός των πυρήνων που έχω σ' ένα δείγμα μειώνεται εκθετικά με το πέρασμα του χρόνου,
Ασκήσεις #1 επιστροφή 11/11/2011
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Ασκήσεις #1 επιστροφή 11/11/2011 Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
Μάθημα 4 α) Άλφα διάσπαση β) Σχάση και σύντηξη
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 4 α) Άλφα διάσπαση β) Σχάση και σύντηξη Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2015-16) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Κώστας Κορδάς Αριστοτέλειο
Μάθημα 4 Mέγεθος πυρήνα
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 4 Mέγεθος πυρήνα Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική
Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και
Μάθημα 15 β-διάσπαση Α' μέρος (νετρίνα και ενεργειακές συνθήκες)
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & X. Πετρίδου Μάθημα 15 β-διάσπαση Α' μέρος (νετρίνα και ενεργειακές συνθήκες) Κώστας Κορδάς Αριστοτέλειο
Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση το άτομο του υδρογόνου ΔΕΝ είναι προς εξέταση
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση
Ασκήσεις #1 επιστροφή 15/10/2012
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Ασκήσεις #1 επιστροφή 15/10/2012 Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
γ - διάσπαση Δήμος Σαμψωνίδης (6-12- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 γ - διάσπαση Τύποι διασπάσεων Ενεργειακά Ακτινοβολία πολυπόλων Κανόνες επιλογής Εσωτερικές
Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή, μέγεθος πυρήνων
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & X. Πετρίδου Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή,
γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
γ - διάσπαση Δήμος Σαμψωνίδης (21-11- 2017) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 γ - διάσπαση Τύποι διασπάσεων Ενεργειακά Ακτινοβολία πολυπόλων Κανόνες επιλογής Εσωτερικές
Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & X. Πετρίδου Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας Κώστας
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας. Μάθημα 7 α-διάσπαση
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2015-16) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας Μάθημα 7 α-διάσπαση Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική
Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα,
Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά
Πυρηνικές Δυνάμεις Διάλεξη 4η Πετρίδου Χαρά Η Ύλη στο βιβλίο: Cottingham & Greenwood 2 Κεφάλαιο 5: Ιδιότητες των Πυρήνων 5.5: Μαγνητική Διπολική Ροπή του Πυρήνα 5.7: Ηλεκτρική Τετραπολική του Πυρήνα 5.1:
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 8
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2016-17 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 8 α) Άλφα διάσπαση β) Σχάση και σύντηξη Πετρίδου Χαρά Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης
ΑΠΟΔΙΕΓΕΡΣΗ (ΔΙΑΣΠΑΣΗ)
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ6932 946778 ΑΠΟΔΙΕΓΕΡΣΗ (ΔΙΑΣΠΑΣΗ) β Η αποδιέγερση β, κατά την οποία έχουμε μεταστοιχείωση (αλλαγή ατομικού αριθμού Ζ Ζ ± 1) με ταυτόχρονη εκπομπή ηλεκτρονίου
Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό
Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια
Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί Κώστας Κορδάς
γ-διάσπαση Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Διάλεξη 8η Πετρίδου Χαρά Friday, December 2, 2011
γ-διάσπαση Διάλεξη 8η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου 1 Τι θα μάθουμε σήμερα 2 Τι είναι η γ-διάσπαση γ-αποδιέγερση ηλεκτρόνια εσωτερικών μετατροπών εσωτερική δημιουργία ζεύγους (e + e -
Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό
β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας
Μάθημα 3 α) QUIZ στην τάξη. Μέγεθος πυρήνα από μιονικά άτομα β) Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 3 α) QUIZ στην τάξη. Μέγεθος πυρήνα από μιονικά άτομα β) Μοντέλο σταγόνας:
β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β - διάσπαση Δήμος Σαμψωνίδης (29-11- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας
Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη
Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και
Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας
Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής
Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού
Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη
Μάθημα 7 Διαγράμματα Feynman
Στοιχειώδη Σωμάτια (M.Sc Υπολογιστικής Φυσικής) Μάθημα 7 Διαγράμματα Feynman Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη M.Sc. Υπολ. Φυσ., AΠΘ, 2 Δεκεμβρίου 2013 Κουάρκ και Λεπτόνια
Σχετικιστική Κινηματική
Σχετικιστική Κινηματική Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Ανακαπύπτουμε νέα σωματίδια, επειδή παράγονται κατά τις συγκρούσεις άλλοων σωματιδίων με μεγάλη ενέργεια Ενέργεια αντιδρόντων
Μάθημα 9 Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό Yukawa Δευτέριο Βάθος πηγαδιού δυναμικού νουλεονίνων Ενέργεια Fermi
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 017-18) Τμήμα T: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 9 Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό Yukawa
β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β - διάσπαση Δήμος Σαμψωνίδης (27-11- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 β - διάσπαση Βήτα διάσπαση (εκπομπή e - ή e + ) είναι ένας μηχανισμός αποκατάστασης
Πυρηνική Επιλογής. Τα νετρόνια κατανέμονται ως εξής;
Πυρηνική Επιλογής 1. Ποιος είναι ο σχετικός προσανατολισμός των σπιν που ευνοεί τη συνδεδεμένη κατάσταση μεταξύ p και n; Η μαγνητική ροπή του πρωτονίου είναι περί τις 2.7 πυρηνικές μαγνητόνες, ενώ του
Μάθημα 2 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 2 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί
Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
Ασκήσεις #7 αποδιεγέρσεις γ
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2014-15) Τμήμα Τ3: Κ. Κορδάς & Χ. Πετρίδου Ασκήσεις #7 αποδιεγέρσεις γ Κ. Κορδάς, Δ. Σαμψωνίδης Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Μάθηµα 2 Πείραµα Rutherford και µέγεθος πυρήνων, Πυρήνες-συµβολισµοί
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωµατιδίων (5ου εξαµήνου, χειµερινό 2016-17) Τµήµα T3: Χ. Πετρίδου Μάθηµα 2 Πείραµα Rutherford και µέγεθος πυρήνων, Πυρήνες-συµβολισµοί Πετρίδου Χαρά Αριστοτέλειο
Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2018-19 Τμήμα T3: Χ. Πετρίδου Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις
Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα,
Μάθημα 10 & 11 Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 10 & 11 Πυρηνικό μοντέλο των φλοιών Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
Μάθημα 12 α-διάσπαση
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 12 α-διάσπαση Κ. Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική &
ΠΥΡΗΝΙΚΗ. 12 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη, αλλά τα βασικότερα είναι εδώ) Κ. Κορδάς
ΠΥΡΗΝΙΚΗ 12 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη, αλλά τα βασικότερα είναι εδώ) Κ. Κορδάς 1. Ο αριθμός των πυρήνων που έχω σ' ένα δείγμα μειώνεται εκθετικά με το πέρασμα του χρόνου, με
Μάθημα 5 α) QUIZ στην τάξη β) Σχάση και σύντηξη γ) Πρώτο σετ ασκήσεων δ) β-διάσπαση (μέρος Α')
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 5 α) QUIZ στην τάξη β) Σχάση και σύντηξη γ) Πρώτο σετ ασκήσεων δ) β-διάσπαση
Μάθημα 5 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 014-15) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 5 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β)
Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 20η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 15 Δεκ
Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή
Στοιχειώδη Σωμάτια ΙΙ (8ου εξαμήνου, εαρινό 2011-12) Χ. Πετρίδου & Κ. Κορδάς Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη
Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Κώστας Κορδάς Αριστοτέλειο
Ξ. Ασλάνογλου Τμήμα Φυσικής Ακαδ. Έτος ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ
Ξ. Ασλάνογλου Τμήμα Φυσικής Ακαδ. Έτος 2016-17 ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ Το Δυναμικό του Πυρήνα Πυρηνικές δυνάμεις: Πολύ ισχυρές ελκτικές, μικρής εμβέλειας, σε μικρές αποστάσεις γίνονται απωστικές (Δυναμικό τοίχου)
Νουκλεόνια και ισχυρή αλληλεπίδραση
Νουκλεόνια και ισχυρή αλληλεπίδραση Πρωτόνια και νετρόνια. Το πρότυπο των κουάρκ για τα νουκλεόνια. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Κουάρκ: τα δομικά στοιχεία των αδρονίων ΑΣΚΗΣΗ Διασπάσεις σωματιδίων
ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής
ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής REF: Σ. Δεδούσης, Μ.Ζαμάνη, Δ.Σαμψωνίδης Σημειώσεις Πυρηνικής Φυσικής Πυρηνικά μοντέλα Βασικός σκοπός της Πυρηνικής Φυσικής είναι η περιγραφή των
Ενεργός διατοµή Χρυσός Κανόνας του Fermi
Μαθηµα 3 0 Ενεργός διατοµή Χρυσός Κανόνας του Fermi 12-3-2015 Μετρήσιμες ποσότητες Παρατηρώντας τη φύση για να καταλάβουμε ποιά είναι τα στοιχειώδη σωμάτια και πώς αλληλεπιδρούν μεταξύ τους, έχουμε τα
Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων
Στοιχειώδη Σωμάτια ΙΙ (8ου εξαμήνου, εαρινό 2011-12) Χ. Πετρίδου Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 6 Μαρτίου 2014 Μαθηµα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Φλοιώδης Δομή των Πυρήνων Η σύζευξη Spin Τροχιάς (L S)( Διέγερση και Αποδιέγερση
Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος μάζας (ή τύπος του Weitzecker). Κοιλάδα β-σταθερότητας
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος μάζας (ή τύπος του Weitzecker). Κοιλάδα
Μάθημα 2-3 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2018-19) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 2-3 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων,
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω
Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Επανάληψη μέσω ασκήσεων #2: Κοιλάδα σταθερότητας, ενέργεια σύνδεσης, φράγμα Coulomb
Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Επανάληψη μέσω ασκήσεων #2: Κοιλάδα σταθερότητας, ενέργεια σύνδεσης, φράγμα Coulomb Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική & Στοιχειώδη
Διάλεξη 5: Αποδιέγερσεις α και β
Σύγχρονη Φυσική - 206: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 05/04/6 Διάλεξη 5: Αποδιέγερσεις α και β Αποδιέγερση α Όπως ειπώθηκε και προηγουμένως κατά την αποδιέγερση α ένας πυρήνας μεταπίπτει
Διάλεξη 11-12: Ασκήσεις στην Πυρηνική Φυσική
Διάλεξη -: Ασκήσεις στην Πυρηνική Φυσική ) Υπολογισμός ενέργειας σύνδεσης ανά νουκλεόνιo για 56 Fe από τον πίνακα ατομικών μαζών και σύμφωνα με το πρότυπο της υγρής σταγόνας. (Ατομικές μάζες: M( 56 F)=55.934939,
Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά
Στοιχειώδη Σωματίδια Διάλεξη 2η Πετρίδου Χαρά Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 10-Jan-11 Πετρίδου Χαρά Στοιχειώδη Σωµάτια
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. «Πυρηνική Φυσική & Φυσική Στοιχειωδών Σωματιδίων» (5ο εξάμηνο)
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ «Πυρηνική Φυσική & Φυσική Στοιχειωδών Σωματιδίων» (5ο εξάμηνο) ΟΔΗΓΟΣ ΜΕΛΕΤΗΣ για τα προτεινόμενα βιβλία: Cottingham, W.N.,
Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή
Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή Πυρηνική Σταθερότητα Ο πυρήνας αποτελείται από πρωτόνια και νετρόνια τα οποία βρίσκονται συγκεντρωμένα σε έναν πάρα πολύ μικρό χώρο. Εύκολα καταλαβαίνουμε
γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
γ - διάσπαση Δήμος Σαμψωνίδης (25-11- 2014) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 γ - διάσπαση Τύποι διασπάσεων Ενεργειακά Ακτινοβολία πολυπόλων Κανόνες επιλογής Εσωτερικές
16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια
Ο Πυρήνας του Ατόμου
1 Σκοποί: Ο Πυρήνας του Ατόμου 15/06/12 I. Να δώσει μία εισαγωγική περιγραφή του πυρήνα του ατόμου, και της ενέργειας που μπορεί να έχει ένα σωματίδιο για να παραμείνει δέσμιο μέσα στον πυρήνα. II. III.
Ατομική δομή. Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2. Εξίσωση Schrodinger (1D)
Ατομική δομή Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (1D) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2 2m 2 ψ + V r ψ = Εψ Τελεστής Λαπλασιανής για σφαιρικές
Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου
Επταχθντές - Ανιχνευτές Δ. Σαμψωνίδης & Κ.Κορδάς Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
γ - διάσπαση Δήμος Σαμψωνίδης (17-12- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
γ - διάσπαση Δήμος Σαμψωνίδης (17-12- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 γ - διάσπαση Τύποι διασπάσεων Ενεργειακά Ακτινοβολία πολυπόλων Κανόνες επιλογής Εσωτερικές
Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα
Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα Ενέργεια σύνδεσης Η συνολική μάζα ενός σταθερού πυρήνα είναι πάντοτε μικρότερη από αυτή των συστατικών του. Ως παράδειγμα μπορούμε να θεωρήσουμε έναν πυρήνα
Δευτερόνιο & ιδιότητες των πυρηνικών δυνάμεων μεταξύ δύο νουκλεονίων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής
Δευτερόνιο & ιδιότητες των πυρηνικών δυνάμεων μεταξύ δύο νουκλεονίων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής REF: ezphysics.nchu.edu.tw Αλληλεπίδραση νουκλεονίου-νουκλεονίου Οι πυρήνες αποτελούνται από
γ-διάσπαση Διάλεξη 18η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
γ-διάσπαση Διάλεξη 18η Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου 1 Τι θα μάθουμε σήμερα 2 Τι είναι η γ-διάσπαση γ-αποδιέγερση ηλεκτρόνια εσωτερικών μετατροπών εσωτερική δημιουργία ζεύγους (e + e - ) Πως προκύπτει?
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 25-26 Διαγράμματα Feynman, Μποζονικός διαδότης, σταθερά σύζευξης, υπολογισμός
Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) α-διάσπαση
Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) α-διάσπαση Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική & Στοιχειώδη Ι, Αριστοτέλειο Παν. Θ/νίκης, 9 Νοεμβρίου 2010 Από το βιβλίο σας:
Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων
Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων Περιεχόμενα Κεφαλαίου 39 Τα άτομα από την σκοπιά της κβαντικής μηχανικής Το άτομο του Υδρογόνου: Η εξίσωση του Schrödinger και οι κβαντικοί αριθμοί ΟΙ κυματοσυναρτήσεις
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 23-24 Στοιχειώδη Σωμάτια και κβαντικοί αριθμοί τους - Αλληλεπίδραση σωματιδίων
Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000
Ζήτηµα 1ο Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα µε το πρότυπο
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 1γ Μια ματιά στα Στοιχειώδη Σωμάτια και τους κβαντικούς αριθμούς τους Κώστας
1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης 1 Stathis STILIARIS,
Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000
Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα