Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα"

Transcript

1 Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική & Στοιχειώδη Ι, Αριστοτέλειο Παν. Θ/νίκης, 18 Νοεμβρίου 2011

2 β-διάσπαση Σήμερα Βιβλίο C&G, Κεφ. 4, παρ Κεφ. 12, παρ Σημειώσεις Πυρηνικής, Κεφ. 5, παρ. 5.2, Χαρακτηριστικά πυρήνων πέρα από το μέγεθος και τη μάζα: σπιν (spin), ομοτιμία (parity), μαγνητική ροπή, ηλεκτρική τετραπολική ροπή Βιβλίο C&G, Κεφ. 2, παρ. 2, Κεφ. 5, παρ Σημειώσεις Πυρηνικής, Κεφ. 1, σελ. 4-5 (μαγνητική ροπή) Ιστοσελίδα: Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 2

3 Χαρακτηριστικά ενός πυρήνα Α Ζ Χ Ήδη έχουμε δεί: 1) Το μέγεθός του: 2) Τη μάζα του: V A R=1.1fm A 1 /3 M= m p m n B 3) Σχετικά με το αν είναι σταθερός ή όχι: Το μέσο χρόνο ζωής του: τ = 1/λ, όπου λ = σταθερά διάσπασης πληθυσμός Ν μετά από χρόνο t: N t =N 0 e λt ενεργότητα Α (=αριθμός διασπάσεων ανά μονάδα χρόνου) μετά από χρόνο t : A t = dn d t = λn t = λn 0 e λt Άλλα χακτηριστικά να τον περιγράψουμε (όσο υπάρχει, φυσικά); Ας δούμε λίγο ένα άλλο σύστημα δέσμιων σωματιδίων για να κάνουμε αναλογίες: το άτομο Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 3

4 Ας δούμε λίγο ένα πρότυπο δέσμιου συστήματος τα άτομα Α.Π.Θ - 18 Νοεμβ. Κ. Κορδάς Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 4

5 Άτομο: ηλεκτρόνιο δέσμιο κβάντωση στροφορμής Αν έχουμε κάποιο ηλεκτρόνιο σε ατομική τροχιά, και σκεφτούμε το ηλεκτρόνιο ως κύμα με: λ= h p το κύμα αυτό πρέπει να είναι στάσιμο μέσα στα όρια του ατόμου (δηλαδή, στο άτομο να χωράνε 1 λ ή 2 λ ή 3 λ, κλπ του κύματος): Η στροφορμή είναι ακέραιο πολλαπλάσιο του ħ μπορεί να έχει μόνο συγκεκριμένες τιμές (= είναι κβαντισμένη) Συνθήκη κβάντωσης του Bohr Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 5

6 Άτομο: ηλεκτρόνιο δέσμιο κβάντωση στροφορμής κβάντωση ενέργειας Στροφορμ ή l= r x p=rp=n ħ F=m u2 r = Z e2 r 2 Σταθερά λεπτής υφής a= p 2 m r = Z r= e2 r 2 e 2 ħ /m c = 1 m c e2 =a ħ c Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 6 ħ 2 m Z e 2 n2 r= ħ c e 2 =α ħ c, α= 1 137, m c2 =0.511 MeV a Z m c 2 Ενέργεια ηλεκτρονίου (μάζας m, φορτίου -e) αν ο πυρήνας (μάζας Μ, φορτίου +Ζe) ήταν σημειακός και ακίνητος: E= 1 2 m u2 Z e e r = 1 2 Όπου χρησιμοποιήσαμε: Z e 2 = Z 2 1 r 2 a2 m c 2 1 n E 2 = Z ev 1 n 2 Σημείωση: Αν ο πυρήνας (M) ΔΕΝ έχει πολύ μεγαλύτερη μάζα από το περιστρεφόμενο σωματίδιο (m), τότε ΔΕΝ μπορούμε να τον θεωρήσουμε ακίνητο. Τότε, στις παραπάνω εξισώσεις πρέπει να χρησιμοποιούμε την ανηγμένη μάζα (μ) του συστήματος αντί για το m (όπου 1/μ = 1/m + 1/M) n2 Φανταστικό! Η ενέργεια κβαντισμένη

7 Άτομο υδρογόνου: κβαντισμένη ενέργεια Μηδέν ενέργεια σύνδεσης σημαίνει ελεύθερο ηλεκτρόνιο Ενέργεια σύνδεσης (ev) Κύριος κβαντικός αριθμός: n=1,2,3,... Αυτάαα... μέχρι εδώ μας πάει η ημικλασσική προσέγγιση του πράγματος. Για την πλήρη περιγραφή, χρειαζόμαστε την Κβαντομηχανική. Επόμενα: Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 7

8 Το σωματίδιο ως κύμα - τι κύμα; De Broglie: E=h f E =ħ ω ω= E ħ p= h λ p=ħ k k= p ħ Ένα κύμα μπορεί να γραφεί σαν άθροισμα επίπεδων κυμάτων σαν κι αυτό: ψ x,t =e i kx ωt i px Et / ħ =e ψ t = ie ħ ψ i ħ t ψ=e ψ ψ x = ip ħ ψ i ħ x ψ= p ψ Τελεστής ενέργειας = μια πράξη πάνω στην κυματοσυνάρτηση ψ, που δίνει πάλι την ψ, αλλά πολλαπλασιασμένη με την ενέργεια Ε. Η Ε είναι μια ιδιοτιμή του τελεστή ενέργειας, και η ψ είναι μια ιδιοσυνάρτηση του τελεστή της ενέργειας. Τελεστής ορμής Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 8

9 Kυματική εξίσωση Schroedinger Schroedinger: ψάχνει κυματική εξίσωση όπου τα επίπεδα κύματα είναι λύση, οπότε και και το άθροισμά τους είναι λύση, και επίσης η εξίσωση να ικανοποιεί: Όπου: Ε ψ= p2 2m ψ i ħ t Ε= p2 2m ψ= ħ2 2m 2 ψ όπου p 2 = p x 2 p y 2 p z 2 ψ 2 = πυκνότητα πιθανότητας = πιθανότητα ανά μονάδα όγκου να βρούμε το σωματίδιο σε μιά περιοχή του χώρου Για να βρούμε την ενέργεια Ε ενός συστήματος λύνουμε: E= p2 2m 2 2 x 2 2 y 2 2 z 2 V r Ε ψ= ħ2 2m 2 ψ V r ψ 2 ψ 2m ħ Εξίσωση Schroedinger. την εφαρμόζουμε σε οποιαδήποτε συνάρτηση ψ E V r ψ=0 Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 9

10 Άτομο υδρογόνου κβαντομηχανικά (1) Η εξίσωση Schroedinger 2 ψ 2m ħ E V r ψ=0 με το δυναμικό Coulomb: V r =V r = q 1 q 2 r =e e = e2 r r και ψ r =R r Y θ, φ,και y=r R r γίνεται: 2 r y 2m 2 ħ E V l r y=0 Οπότε έχουμε να λύσουμε την πιό πάνω μονοδιάστατη εξίσωση του Schroedinger, όπου το ενεργό δυναμικό έιναι ίσο με το άθροισμα του Coulomb κι ενός όρου λόγω στροφορμής V l r = e2 r ħ 2 l l 1 2 m e r 2 Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 10

11 Άτομο υδρογόνου κβαντομηχανικά (2) Λύση της εξίσωσης Schroedinger 2 ψ 2m ħ E V r ψ=0 με το δυναμικό Coulomb: V r =V r = q 1 q 2 r =e e = e2 r r και Δίνει: ψ r =R r Y θ, φ κβάντωση της ενέργειας ίδια με την κατά Bohr: E= 1 2 a2 m c 2 1 n 2 κβάντωση της στροφορμής: L= r x p L= l l 1 ħ, όπου: l=0,1,...,n 1 κβάντωση προβολής της στον άξονα z: L z =m l ħ, όπου: m l = l,..., 0,...l Ε, L, L z διατηρούνται, άρα οι αριθμοί n, l, m l χαρακτηρίζουν την κατάσταση του συστήματος είναι καλοί κβαντικοί αριθμοί Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 11

12 Κβάντωση στροφορμής Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 12

13 Υδρογόνο: Ακτινικές ιδιοσυναρτήσεις R n l (r) Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 13

14 Yδρογόνο: Γωνιακές ιδιοσυναρτήσεις Υ(θ,φ) Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 14

15 Ενεργειακό διάγραμμα υδρογόνου Διαφορετικές καταστάσεις {n,l} με ίδια ενέργεια: εκφυλισμένες καταστάσεις Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 15

16 Ενεργειακές στάθμες υδρογόνου σε μαγνητικό πεδίο Β κατά τον άξονα z Ενέργεια λόγω αλληλεπίδρασης του ηλεκτρονίου (της τροχιακής μαγνητικής ροπής του, μ) με το μαγνητικό πεδίο Β: U= μ B μ = q 2 m e c L= e 2 m e c L μ= e 2 m e c ħ l l 1 Μαγνητόνη του Bohr, μ Β : μ Β e ħ 2 m e c μ= μ B l l 1 μ z = μ B m l U=m l μ B Β Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 16

17 Μαγνητική ροπή λόγω ιδιοστροφορμής (spin) Στην προηγούμενη σελίδα είδαμε τη μαγνητική ροπή που έχει το ηλεκτρόνιο λόγω περιστροφής γύρω από τον πυρήνα (λόγω τροχιακής στροφορμής, l ). Το ηλεκτρόνιο έχει όμως και μια εσωτερική στροφορμή, μια ιδιοστροφορμή (= spin = σπίν) ανεξάρτητα από το αν κινείται ή όχι. Το σπίν είναι μια ιδιότητα του ηλεκτρονίου, όπως το φορτίο που έχει μ Β S= s s 1 ħ, όπου: s=1/2 S z =m s ħ, όπου: m s = 1/2, 1/2 Λόγω του σπίν, το υδρογόνο έχει μια μαγνητική ροπή μ s : e ħ 2 m e c μ s =g e q 2m e c S=g e μ s = g e μ B s s 1 e 2 m e c S S= g e μ B ħ μ s, z = g e μ B m s Το ηλεκτρόνιο είναι στοιχειώδες g e =2 U s = μ s B U s =±μ B Β Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 17

18 Eνέργεια: εξάρτηση και από τροχιακή στροφορμή Η ενέργεια εξαρτάται κι από την τροχιακή στροφορμή, L (orbital angular momentum): L= l l 1 ħ, όπου l=0,1,..., n 1 Ενέργεια σύνδεσης (ev) Υδρογόνο n=4 n=3 n=2 n=1 Κβαντικός αριθμός τροχιακής στροφορμής Συμβολισμός καταστάσεων: ns, np, nd, nf,... Π. χ,2p: n=2,l=1 s:l=0 ; p :l=1 ; d :l=2 ; f :l=3,... Στο υδρογόνο, οι ενεργειακές καταστάσεις με ίδιο n, αλλά διαφορρετική τροχιακή στροφορμή l έιναι διαφορετικές, αν και πολύ κοντά. Σε άλλα άτομα είναι πολύ πιό διακριτές όμως. Π.χ., Na Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 18

19 Eνέργεια: εξάρτηση και από τροχιακή στροφορμή Η ενέργεια εξαρτάται κι από την τροχιακή στροφορμή L= l l 1 ħ, όπου l=0,1,..., n 1 Συμβολισμός καταστάσεων: ns, np, nd, nf,... Π. χ,2p: n=2,l=1 s:l=0 ; p :l=1 ; d :l=2 ; f :l=3,... Νάτριο : Ενέργεια σύνδεσης για Na (ev) Ενεργειακές στάθμες με n=3, l=0 (s) και l=1 (p) έχουν ~2 ev διαφορά (κίτρινη γραμμή Na στο εργαστήριο ατομικής) Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 19

20 Eνέργεια: εξάρτηση και από σπίν Η ενέργεια όμως εξαρτάται κι από το σπίν του ηλεκτρονίου Κάθε ιδιοκατάσταση της ενέργειας, στροφορμής κ' σπιν στο άτομο χαρακτηρίζεται από 4 κβαντικούς αριθμούς {n, l, m l, m s } Ολική στροφορμή ατόμου: άθροισμα τροχιακής στροφορμής και σπίν J= L S, j=l±1/2 Διπλή κίτρινη γραμμή του Νατρίου (θυμάστε στο εργαστήριο ατομικής;) Αποτέλεσμα της σύζευξης σπίντροχιάς (Spin-orbit coupling = L S coupling): σύζευξη του σπιν του ηλεκτρονίου με το μαγνητικό πεδίο που δημιουργεί το πρωτόνιο (poy to θεωρούμε σαν περιστρεφόμενο γύρω από το ηλεκτρόνιο, όταν βρίσκόμαστε πάνω στο ηλεκτρόνιο) Συμβολισμός καταστάσεων: ns J, np J, nd J, nf J,... Π. χ,2p 1 /2 : n=2,l=1, j=1/2 Ενέργεια σύνδεσης για Na (ev) Νάτριο : Ενεργειακές στάθμες με n=3, l=0 (s) και l=1 (p) έχουν ~2 ev διαφορά (κίτρινη γραμμή Na στο εργαστήριο ατομικής) Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 20

21 Ακόμα ένας κβαντικός αριθμός: Ομοτιμία (parity) Είδαμε ότι κάθε ιδιοκατάσταση της ενέργειας, στροφορμής και σπιν στο άτομο χαρακτηρίζεται από 4 κβαντικούς αριθμούς {n, l, m l, m s }. Ο τρόπος που συμπεριφέρεται η αντίστοιχη κυματοσυνάρτηση σε αναστροφή του χώρου (που είναι το αποτέλεσμα της εφαρμογής του τελεστή της ομοτιμίας/partiy, P, πάνω της) μπορεί να ορίσει κι άλλον έναν κβαντικό αριθμό: την ομοτιμία ή parity P r = r P ψ r =ψ r =ψ r :άρτιασυνάρτιση Parity= 1 P ψ r =ψ r = ψ r :περιττήσυνάρτιση Parity= 1 Κι έτσι γράφουμε το σπίν και την ομοτιμία ως J P π.χ.,κατάσταση: 3 2 Σημείωση: για τις σφαιρικές συναρτήσεις του υδρογόνου (σελ 14): r r : P Y θ, φ =Y π θ, π φ = 1 l Y θ,φ, οπότε: Parity= 1 l Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 21

22 Αντίστοιχοι κβαντικοί αριθμοί ορίζονται και στο δέσμιο σύστημα που μας απασχολεί τους πυρήνες Α.Π.Θ - 18 Νοεμβ. Κ. Κορδάς Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 22

23 Spin πυρήνα, J, και μαγνητική ροπή Το ολικό τροχιακό σπίν των νουκλεονίων + το άθροισμα των σπιν τους. J πυρήνα= νουκλεόνια L νουκλεόνια S Κάθε πρωτόνιο έχει σπιν {+1/2, -1/2} όπως και τα νετρόνια. Κι έτσι έχει μαγνητική ροπή: μ p =g p q 2 m p c e J =g p 2 m p c J J=g p μ N ħ μ N e ħ 2 m p c μ p =g p μ N j j 1 μ p, z =g p μ N m j U p = g p μ N m j B μ p 2.79 μ N όχι στοιχειώδη Πυρηνική μαγνητόνη ~ 2000 μικρότερη της μαγνητόνης του μ n 1.91 μ Bohr N m j πάιρνει 2j+1 τιμές τόσες επι μέρους στάθμες Παλλόμενο ηλεκτρομαγνητικό πεδίο με συνχότητα ω αν: ħω = μβ/j προκαλεί μεταπτώσεις μεταξύ των σταθμών: Πυρηνικός Συντονισμός Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 23

24 Spin πυρήνα, J Το ολικό τροχιακό σπίν των νουκλεονίων + το άθροισμα των σπιν τους. J πυρήνα= νουκλεόνια L νουκλεόνια S To ολικό σπίν άρτιων-άρτιων πυρήνων έχει βρεθεί ότι έιναι 0 ισχυρό ζευγάρωμα των προς σπιν προς άθροισμα 0 το ασύζευκτο νουκλεόνιο καθορίζει το σπίν του πυρήνα Oι πυρήνες έχουν μαγνητικές ροπές ~ μ N Μικρό σε σχέση με τον αριθμό νουκλεονίων Μικρό σε σχέση με μαγνητόνη Bohr μάλλον όχι ηλεκτρόνια στους πυρήνες Α.Π.Θ - 18 Νοεμβ Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 6β: Χαρακτηρηστικά πυρήνων 24

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη

Διαβάστε περισσότερα

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό

Διαβάστε περισσότερα

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη

Διαβάστε περισσότερα

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό

Διαβάστε περισσότερα

Μάθημα 5 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 5 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 014-15) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 5 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β)

Διαβάστε περισσότερα

Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών

Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

Μάθημα 14 β-διάσπαση B' μέρος

Μάθημα 14 β-διάσπαση B' μέρος Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 015-16) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας Μάθημα 14 β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες

Διαβάστε περισσότερα

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά Πυρηνικές Δυνάμεις Διάλεξη 4η Πετρίδου Χαρά Η Ύλη στο βιβλίο: Cottingham & Greenwood 2 Κεφάλαιο 5: Ιδιότητες των Πυρήνων 5.5: Μαγνητική Διπολική Ροπή του Πυρήνα 5.7: Ηλεκτρική Τετραπολική του Πυρήνα 5.1:

Διαβάστε περισσότερα

Ο Πυρήνας του Ατόμου

Ο Πυρήνας του Ατόμου 1 Σκοποί: Ο Πυρήνας του Ατόμου 15/06/12 I. Να δώσει μία εισαγωγική περιγραφή του πυρήνα του ατόμου, και της ενέργειας που μπορεί να έχει ένα σωματίδιο για να παραμείνει δέσμιο μέσα στον πυρήνα. II. III.

Διαβάστε περισσότερα

Μάθημα 4 Mέγεθος πυρήνα

Μάθημα 4 Mέγεθος πυρήνα Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 4 Mέγεθος πυρήνα Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Διαβάστε περισσότερα

ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης

ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης Επικ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών. Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr Τις προσεχείς ώρες θα συζητήσουμε τα πέντε πρώτα

Διαβάστε περισσότερα

Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή

Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή Δομή Διάλεξης Λεπτή Υφή: Άρση εκφυλισμού λόγω σύζευξης spin με μαγνητικό πεδίο τροχιακής στροφορμής και λόγω σχετικιστικού

Διαβάστε περισσότερα

Κβαντική Μηχανική ΙΙ. Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Μηχανική ΙΙ. Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 2/ 25 Περιεχόµενα 6ης ενότητας Φαινόµενο

Διαβάστε περισσότερα

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο γ - διάσπαση Δήμος Σαμψωνίδης (6-12- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 γ - διάσπαση Τύποι διασπάσεων Ενεργειακά Ακτινοβολία πολυπόλων Κανόνες επιλογής Εσωτερικές

Διαβάστε περισσότερα

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β διάσπαση II Δήμος Σαμψωνίδης (30-11- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Fermi- Kurie plot (μάζα ν) Διάγραμμα της ρίζας του αριθμού των σωματίων β με ορμή

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου- Υδρογονοειδή άτομα

Το άτομο του Υδρογόνου- Υδρογονοειδή άτομα Το άτομο του Υδρογόνου- Υδρογονοειδή άτομα Το πιο απλό κβαντομηχανικό ρεαλιστικό σύστημα, το οποίο λύνεται ακριβώς, είναι το άτομο του Υδρογόνου (1 πρωτόνιο και 1 ηλεκτρόνιο) Το δυναμικό στην περίπτωση

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2013-14 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ

Διαβάστε περισσότερα

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κινούμενα ηλεκτρόνια συμπεριφέρονται σαν κύματα (κύματα de Broglie)

Διαβάστε περισσότερα

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

Συμπέρασμα: η Η/Μ ακτινοβολία έχει διπλή φύση, κυματική και σωματιδιακή.

Συμπέρασμα: η Η/Μ ακτινοβολία έχει διπλή φύση, κυματική και σωματιδιακή. ΑΤΟΜΙΚΗ ΦΥΣΙΚΗ Άτομα μόρια Από 10-10 m ως 10-6 m Συνήθεις μονάδες: 1 Å (Angstrom) = 10-10 m (~ διάμετρος ατόμου Υδρογόνου) 1 nm = 10-9 m 1 μm = 10-6 m Διαστάσεις βιομορίων. Πχ διάμετρος σφαιρικής πρωτεΐνης

Διαβάστε περισσότερα

Δευτερόνιο & ιδιότητες των πυρηνικών δυνάμεων μεταξύ δύο νουκλεονίων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Δευτερόνιο & ιδιότητες των πυρηνικών δυνάμεων μεταξύ δύο νουκλεονίων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Δευτερόνιο & ιδιότητες των πυρηνικών δυνάμεων μεταξύ δύο νουκλεονίων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής REF: ezphysics.nchu.edu.tw Αλληλεπίδραση νουκλεονίου-νουκλεονίου Οι πυρήνες αποτελούνται από

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 15

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 15 Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις)

Διαβάστε περισσότερα

Μάθημα 5 α) β-διάσπαση β) Ασκήσεις

Μάθημα 5 α) β-διάσπαση β) Ασκήσεις Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 5 α) β-διάσπαση β) Ασκήσεις Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Διαβάστε περισσότερα

Νουκλεόνια και ισχυρή αλληλεπίδραση

Νουκλεόνια και ισχυρή αλληλεπίδραση Νουκλεόνια και ισχυρή αλληλεπίδραση Πρωτόνια και νετρόνια. Το πρότυπο των κουάρκ για τα νουκλεόνια. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Κουάρκ: τα δομικά στοιχεία των αδρονίων ΑΣΚΗΣΗ Διασπάσεις σωματιδίων

Διαβάστε περισσότερα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση

Διαβάστε περισσότερα

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

γ-διάσπαση Διάλεξη 17η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

γ-διάσπαση Διάλεξη 17η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου γ-διάσπαση Διάλεξη 17η Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου 1 Τι θα μάθουμε σήμερα 2 Τι είναι η γ-διάσπαση γ-αποδιέγερση ηλεκτρόνια εσωτερικών μετατροπών εσωτερική δημιουργία ζεύγους (e + e - ) Πως προκύπτει?

Διαβάστε περισσότερα

Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή

Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή Πυρηνική Σταθερότητα Ο πυρήνας αποτελείται από πρωτόνια και νετρόνια τα οποία βρίσκονται συγκεντρωμένα σε έναν πάρα πολύ μικρό χώρο. Εύκολα καταλαβαίνουμε

Διαβάστε περισσότερα

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6β β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις)

Διαβάστε περισσότερα

Από τι αποτελείται το Φως (1873)

Από τι αποτελείται το Φως (1873) Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός

Διαβάστε περισσότερα

α) Θα χρησιμοποιήσουμε το μοντέλο του Bohr καθώς για την ενέργεια δίνει καλά αποτελέσματα:

α) Θα χρησιμοποιήσουμε το μοντέλο του Bohr καθώς για την ενέργεια δίνει καλά αποτελέσματα: Ιατρική Φυσική ΑΡΝΟΣ-2257 Δ1 α) Θα χρησιμοποιήσουμε το μοντέλο του Bohr καθώς για την ενέργεια δίνει καλά αποτελέσματα: E 3 E 2 =h f E n =E 1 /n 2 E 1 = 13.6eV c=λf hc λ= 1.89 1.6 10 19=656.886nm Εξαιρετικά

Διαβάστε περισσότερα

KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Κυματική εξίσωση Schrödiger Η δυνατότητα ενός σωματιδίου να συμπεριφέρεται ταυτόχρονα και ως κύμα, δηλαδή να είναι εντοπισμένο

Διαβάστε περισσότερα

γ-διάσπαση Διάλεξη 18η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

γ-διάσπαση Διάλεξη 18η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου γ-διάσπαση Διάλεξη 18η Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου 1 Τι θα μάθουμε σήμερα 2 Τι είναι η γ-διάσπαση γ-αποδιέγερση ηλεκτρόνια εσωτερικών μετατροπών εσωτερική δημιουργία ζεύγους (e + e - ) Πως προκύπτει?

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Φλοιώδης Δομή των Πυρήνων Η σύζευξη Spin Τροχιάς (L S)( Διέγερση και Αποδιέγερση

Διαβάστε περισσότερα

Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη

Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και

Διαβάστε περισσότερα

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις

Διαβάστε περισσότερα

Κβαντομηχανική ή κυματομηχανική

Κβαντομηχανική ή κυματομηχανική Κβαντομηχανική ή κυματομηχανική Ποια ήταν τα αναπάντητα ερωτήματα της θεωρίας του Bohr; 1. Φάσματα πολυηλεκτρονικών ατόμων 2. Κυκλικές τροχιές 3. Γιατί η ενέργεια του e είναι κβαντισμένη; Κβαντομηχανική

Διαβάστε περισσότερα

Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί

Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί Κώστας Κορδάς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 : ΜΑΓΝΗΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΤΟΥ ΠΥΡΗΝΑ. Η εξίσωση Schrödinger για ένα σωματίδιο χωρίς spin, έχει τη μορφή: ψ 4.1

ΚΕΦΑΛΑΙΟ 4 : ΜΑΓΝΗΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΤΟΥ ΠΥΡΗΝΑ. Η εξίσωση Schrödinger για ένα σωματίδιο χωρίς spin, έχει τη μορφή: ψ 4.1 ΚΕΦΑΛΑΙΟ 4 : ΜΑΓΝΗΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΤΟΥ ΠΥΡΗΝΑ Τροχιακή Στροφορμή Η εξίσωση Schrödinger για ένα σωματίδιο χωρίς spin, έχει τη μορφή: = + = M Hψ V r r ( ) ψ ( ) E ( r) ψ 4. Όπου η δυναμική ενέργεια V(r) είναι

Διαβάστε περισσότερα

Ηλεκτρονική φασματοσκοπία ατόμων

Ηλεκτρονική φασματοσκοπία ατόμων Ηλεκτρονική φασματοσκοπία ατόμων Εξίσωση του chrodger H H H µ µ m e e 4πε r Ζe 4πε r για το άτοµο του υδρογόνου για τα υδρογονοειδή άτοµα He Ζe 4πε r < j Ζe 4πε r j για πολυηλεκτρονικά άτοµα µ m m m e

Διαβάστε περισσότερα

ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7.

ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7. stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 01. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ Στέλιος Τζωρτζάκης ΚΕΦ. 2. ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ΚΕΦ.

Διαβάστε περισσότερα

Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα

Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα ΦΥΕ 40 Κβαντική Φυσική Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα Μαθημα 5.1 - διασπάσεις Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα

Διαβάστε περισσότερα

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr Ε ΟΥΑΡ ΟΣ ΛΑΓΑΝΑΣ, Ph.D KENTΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ &

Διαβάστε περισσότερα

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ) Κυματική εξίσωση του Schrödinger (196) Η Ψ = Ε Ψ Η: τελεστής Hamilton (Hamiltonian operator) εκτέλεση μαθηματικών πράξεων επί της κυματοσυνάρτησης Ψ. Ε: ολική ενέργεια των ηλεκτρονίων δυναμική ενέργεια

Διαβάστε περισσότερα

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2015-16) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Κώστας Κορδάς Αριστοτέλειο

Διαβάστε περισσότερα

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα,

Διαβάστε περισσότερα

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί

Διαβάστε περισσότερα

Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή, μέγεθος πυρήνων

Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή, μέγεθος πυρήνων Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & X. Πετρίδου Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή,

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής REF: Σ. Δεδούσης, Μ.Ζαμάνη, Δ.Σαμψωνίδης Σημειώσεις Πυρηνικής Φυσικής Πυρηνικά μοντέλα Βασικός σκοπός της Πυρηνικής Φυσικής είναι η περιγραφή των

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΑΚΤΙΝΕΣ γ

ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΑΚΤΙΝΕΣ γ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΑΚΤΙΝΕΣ γ Η πιθανότητα μετάπτωσης: Δεύτερος Χρυσός κανόνα του Feri, οι κυματοσυναρτήσεις της αρχικής τελικής κατάστασης ο τελεστής της μετάπτωσης γ (Ηλεκτρομαγνητικός τελεστής). Κυματική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Διάλεξη 5: Ατομική Δομή. Σύζευξη Σπιν-Τροχιάς

Διάλεξη 5: Ατομική Δομή. Σύζευξη Σπιν-Τροχιάς Σύζευξη Σπιν-Τροχιάς Θεωρούμε το άτομο του υδρογόνου με το ηλεκτρόνιο να «περιστρέφεται» γύρω από τον πυρήνα. Ισοδύναμα θεωρούμε τον πυρήνα να περιστρέφεται γύρω από το ηλεκτρόνιο. Στο σύστημα αυτό η μαγνητική

Διαβάστε περισσότερα

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου Κεντρικά Δυναμικά Δομή Διάλεξης Εύρεση ακτινικού μέρους εξίσωσης Schrödinger Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους Εφαρμογή σε άτομο υδρογόνου Ακτινική Συνιστώσα Ορμής Έστω Χαμιλτονιανή

Διαβάστε περισσότερα

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης Χημεία Γ Λυκείου Θετικής Κατεύθυνσης Κεφάλαιο 1 Ηλεκτρονιακή δομή των ατόμων 1 Εισαγωγή Δομή του ατόμου Δημόκριτος Αριστοτέλης Dalton Thomson 400 π.χ. 350π.χ. 1808 1897 Απειροελάχιστα τεμάχια ύλης (τα

Διαβάστε περισσότερα

Κβαντικοί αριθμοί. l =0 υποφλοιός S σφαίρα m l =0 ένα τροχιακό με σφαιρική συμμετρία

Κβαντικοί αριθμοί. l =0 υποφλοιός S σφαίρα m l =0 ένα τροχιακό με σφαιρική συμμετρία Κβαντικοί αριθμοί Η θεωρία του Bohr χρειάζεται μόνο τον κύριο κβαντικό αριθμό η, για να καθορίσει ενέργεια για το άτομο του υδρογόνου Ε η =-2,18.10-18 /η 2 κυκλική τροχιά. και επιτρεπτή Στην κβαντομηχανική

Διαβάστε περισσότερα

το ένα με ηλεκτρικό φορτίο Ζe και το άλλο με e. Η χαμιλτονιανή του συστήματος (στο πλαίσιο της προσέγγισης Coulomb) μπορεί να έλθει στη μορφή

το ένα με ηλεκτρικό φορτίο Ζe και το άλλο με e. Η χαμιλτονιανή του συστήματος (στο πλαίσιο της προσέγγισης Coulomb) μπορεί να έλθει στη μορφή ΚΕΦΑΛΑΙΟ 9: ΑΤΟΜΑ, Σελ. 19 έως 14 του βιβλίου ΚΣ ENOTHTA 1 Η, 13 ο VIDEO, 15/11/013, Από 55λ έως 1ω,5λ (τέλος), Σελ. 19 έως 13 του βιβλίου ΚΣ: ΙΔΙΟΤΗΤΕΣ Της ΒΑΣΙΚΉΣ ΚΑΤΑΣΤΑΣΗΣ ΥΔΡΟΓΟΝΟΕΙΔΟΥΣ ΔΥΝΑΜΙΚΟΥ

Διαβάστε περισσότερα

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κινούμενα ηλεκτρόνια συμπεριφέρονται σαν κύματα (κύματα de Broglie)

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 20η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 15 Δεκ

Διαβάστε περισσότερα

Κύριος κβαντικός αριθμός (n)

Κύριος κβαντικός αριθμός (n) Κύριος κβαντικός αριθμός (n) Επιτρεπτές τιμές: n = 1, 2, 3, Καθορίζει: το μέγεθος του ηλεκτρονιακού νέφους κατά μεγάλο μέρος, την ενέργεια του τροχιακού τη στιβάδα στην οποία κινείται το ηλεκτρόνιο Όσομεγαλύτερηείναιητιμήτουn

Διαβάστε περισσότερα

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6 Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 β-διάσπαση Α' μέρος (νετρίνα και ενεργειακές συνθήκες) Πετρίδου Χαρά Αριστοτέλειο Πανεπιστήµιο

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Να υπολογιστεί η πιθανότερη ακτίνα, *, στην οποία θα βρίσκεται

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: Ε. Βιτωράτος

ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: Ε. Βιτωράτος ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: 016-017 Ε. Βιτωράτος Υπολογισμός της ενέργειας αλληλεπίδρασης σπιν-τροχιάς στην περίπτωση του υδρογόνου Η τιμή της ενέργειας αλληλεπίδρασης σπιν-τροχιάς

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Ζήτηµα 1ο Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα µε το πρότυπο

Διαβάστε περισσότερα

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 4: Οπτικό θεώρημα και συντονισμοί

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 4: Οπτικό θεώρημα και συντονισμοί Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 4: Οπτικό θεώρημα και συντονισμοί Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 21 Μαρτίου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση. 1. Σύμφωνα με την ηλεκτρομαγνητική

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα

Διαβάστε περισσότερα

Μάθημα 15 β-διάσπαση Α' μέρος (νετρίνα και ενεργειακές συνθήκες)

Μάθημα 15 β-διάσπαση Α' μέρος (νετρίνα και ενεργειακές συνθήκες) Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & X. Πετρίδου Μάθημα 15 β-διάσπαση Α' μέρος (νετρίνα και ενεργειακές συνθήκες) Κώστας Κορδάς Αριστοτέλειο

Διαβάστε περισσότερα

ασθενέστερες αλληλεπιδράσεις στο άτομο που προέρχονται από μαγνητικά φαινόμενα. Θα ασχοληθούμε αρχικά με τα φαινόμενα εκείνα που προκαλούνται από

ασθενέστερες αλληλεπιδράσεις στο άτομο που προέρχονται από μαγνητικά φαινόμενα. Θα ασχοληθούμε αρχικά με τα φαινόμενα εκείνα που προκαλούνται από 1 Λεπτή Υφή (Fi Structur) [FS] Μέχρι τώρα έχουμε μελετήσει το χοντρικό διάγραμμα των ενεργειακών σταθμών των ατόμων. Στην χαμιλτονιανή παίρνουμε μόνο τους μεγαλύτερους όρους, δηλαδή την κινητική ενέργεια,

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση. ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΜΑΙΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια

Διαβάστε περισσότερα

Μάθημα 7ο. Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία

Μάθημα 7ο. Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία Μάθημα 7ο Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία h m U(x,y,z, t) ih t (x, y,z,t) (x, y,z)e iet / h H E Γενική & Ανόργανη Χημεία 06-7 Ewin Schöinge Η ανεξάρτητη από τον χρόνο εξίσωση Schöinge U m H E E

Διαβάστε περισσότερα

Κεφάλαιο 16: Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο

Κεφάλαιο 16: Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο Κεφάλαιο 16: Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο Περιεχόμενα Κεφαλαίου Στο κεφάλαιο αυτό, θα θεωρήσουμε ως αδιατάρακτη Hamiltonian, εκείνη του ατόμου του υδρογόνου και θα μελετήσουμε τρία είδη διαταραχών.

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 4: Εξίσωση Schro dinger. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 4: Εξίσωση Schro dinger. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 4: Εξίσωση Schro dinger Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η εξαγωγή της εξίσωσης Schro dinger καθώς και μια πρώτη

Διαβάστε περισσότερα

Κβαντομηχανική εικόνα του ατομικού μοντέλου

Κβαντομηχανική εικόνα του ατομικού μοντέλου Κβαντομηχανική εικόνα του ατομικού μοντέλου 1. Ερώτηση: Τι είναι η κβαντομηχανική; H κβαντομηχανική, είναι η σύγχρονη αντίληψη μιας νέας μηχανικής που μπορεί να εφαρμοστεί στο μικρόκοσμο του ατόμου. Σήμερα

Διαβάστε περισσότερα

H εικόνα του ατόμου έχει αλλάξει δραστικά

H εικόνα του ατόμου έχει αλλάξει δραστικά Δομή Ατόμου και Ατομικά Τροχιακά Α Τα κλασσικά πρότυπα Η ιστορία της δομής του ατόμου (1/2) ατομική θεωρία Δημόκριτου (άτομοι) ατομική θεωρία Dalton Πλανητικό πρότυπο Rutherford πρότυπο Schrodinger 460

Διαβάστε περισσότερα

Μάθημα 3 'Ατομο υδρογόνου

Μάθημα 3 'Ατομο υδρογόνου ΦΥΕ 40 Κβαντική Φυσική Μάθημα 3 'Ατομο υδρογόνου Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΦΥΕ 40 Κβαντική Φυσική, ΕΑΠ 3η συνάντηση, 17 Ιανουαρίου 015 Άτομο υδρογόνου πρότυπο δέσμιου συστήματος

Διαβάστε περισσότερα

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που

Διαβάστε περισσότερα

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις 1 ο Κεφάλαιο Χημείας Θετικής Κατεύθυνσης Γ Λυκείου 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις 1. Η εξίσωση E = h v μας δίνει την ενέργεια μιας ηλεκτρομαγνητικής ακτινοβολίας 2. H κβαντική

Διαβάστε περισσότερα

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ Στέλιος Τζωρτζάκης 1 3 4 Ο νόμος της χρονικής μεταβολής των μέσων τιμών και το

Διαβάστε περισσότερα

Ατομικός αριθμός = Αριθμός πρωτονίων. Μαζικός αριθμός = Αριθμός πρωτονίων + Αριθμός νετρονίων (nucleon number)

Ατομικός αριθμός = Αριθμός πρωτονίων. Μαζικός αριθμός = Αριθμός πρωτονίων + Αριθμός νετρονίων (nucleon number) Δομή Ατόμου και Ατομικά Τροχιακά Ατομικός και μαζικός αριθμός Ατομικός αριθμός = Αριθμός πρωτονίων (proton number) Μαζικός αριθμός = Αριθμός πρωτονίων + Αριθμός νετρονίων (nucleon number) 2 Ισότοπα Ισοβαρή

Διαβάστε περισσότερα

Η θεωρία του Bohr (Ατομικά φάσματα)

Η θεωρία του Bohr (Ατομικά φάσματα) Η θεωρία του Bohr (Ατομικά φάσματα) Ποιο φάσμα χαρακτηρίζουμε ως συνεχές; Φωτεινή πηγή Σχισμή Πρίσμα Φωτογραφικό φιλμ Ερυθρό Ιώδες Φάσμα ορατού φωτός: πού αρχίζει και πού τελειώνει το πράσινο; Ποιο φάσμα

Διαβάστε περισσότερα

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 2-1 Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης Εδάφια: 2.a. Η σύσταση των ατόμων 2.b. Ατομικά φάσματα 2.c. Η Θεωρία του Bohr 2.d. Η κυματική συμπεριφορά των σωμάτων: Υλικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöding για το κεντρικό δυναμικό Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 3 k V ) Αποδεικνύεται ότι οι λύσεις της ακτινικής εξίσωσης

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paua

Διαβάστε περισσότερα

Σύγχρονες αντιλήψεις γύρω από το άτομο. Κβαντική θεωρία.

Σύγχρονες αντιλήψεις γύρω από το άτομο. Κβαντική θεωρία. Σύγχρονες αντιλήψεις γύρω από το άτομο. Κβαντική θεωρία. Η κβαντική θεωρία αναπτύχθηκε με τις ιδέες των ακόλουθων επιστημόνων: Κβάντωση της ενέργειας (Max Planck, 1900). Κυματική θεωρία της ύλης (De Broglie,

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

Ασκήσεις #1 επιστροφή 11/11/2011

Ασκήσεις #1 επιστροφή 11/11/2011 Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Ασκήσεις #1 επιστροφή 11/11/2011 Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ III. ΤΟ ΣΥΓΧΡΟΝΟ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ

ΕΙΣΑΓΩΓΗ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ III. ΤΟ ΣΥΓΧΡΟΝΟ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ Ν. ΜΠΕΚΙΑΡΗΣ ΕΙΣΑΓΩΓΗ Η εικόνα του ατόμου που είναι τόσο γνωστή, δηλαδή ο πυρήνας και γύρω του σε τροχιές τα ηλεκτρόνια σαν πλανήτες (το πρότυπο του Ruterford

Διαβάστε περισσότερα

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Κβαντική µηχανική Τύχη ή αναγκαιότητα Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Ηφυσικήστόγύρισµα του αιώνα «Όλοι οι θεµελιώδεις νόµοι και δεδοµένα της φυσικής επιστήµης έχουν ήδη ανακαλυφθεί και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Common.

Διαβάστε περισσότερα