Προγραμματισμός Ι Εργαστήριο 8ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 8 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προγραμματισμός Ι Εργαστήριο 8ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 8 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ"

Transcript

1 ΕΡΓΑΣΤΗΡΙΟ 8 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ Στόχοι Φορμαρισμένη είσοδος και έξοδος Πίνακες Αλφαριθμητικά Συναρτήσεις Προσοχή: Απαγορεύεται αυστηρά η χρήση goto. Πριν ξεκινήσετε Πηγαίνετε στο φάκελο ce120 και κατασκευάστε μέσα σε αυτόν ένα φάκελο με όνομα lab8. Μέσα σε αυτό το φάκελο θα αποθηκεύσετε τις απαντήσεις σας για το σημερινό εργαστήριο.

2 Άσκηση 1 Το πρόγραμμα που θα γράψετε για την άσκηση 1 πρέπει να το αποθηκεύετε σε αρχείο με όνομα lab8a.c μέσα στο φάκελο lab8. Ένας παίκτης του beach-volley θέλει να καρφώσει την μπάλα στην ευθεία του γηπέδου (όχι στην διαγώνιο). Κάθε πλευρά του γηπέδου εκατέρωθεν του φιλέ (δίχτυ που χωρίζει το γήπεδο στη μέση) έχει διαστάσεις 8m x 8m και κάθε ο παίκτης βρίσκεται σε απόσταση Χ πίσω από το φιλέ. Ο παίκτης καρφώνει την μπάλα από ύψος 2.6m ενώ το φιλέ έχει ύψος 2.43m. Θεωρείστε ότι η μπάλα του volley είναι σημειακή. Ο παίκτης μπορεί να δώσει αρχική ταχύτητα στην μπάλα μεταξύ 2m/sec και 30m/sec και μπορεί να βάλει υπό γωνία μεταξύ -50 και +20 μοιρών. Ο παίκτης θέλει η μπάλα να φύγει από το χέρι του με την μέγιστη δυνατή ταχύτητα. Να βρείτε την μέγιστη ταχύτητα με την οποία

3 πρέπει να χτυπήσει την μπάλα, ώστε αυτή να βρεθεί εντός των ορίων του γηπέδου. Ποια είναι η γωνία βολής για την επιλεγμένη ταχύτητα; Γράψτε τη συνάρτηση pass_net() που λαμβάνει ως τυπικές παραμέτρους την γωνία βολής, την ταχύτητα βολής της μπάλας και την απόσταση του παίκτη από το δίχτυ (φιλέ) και υπολογίζει εάν η μπάλα θα περάσει το δίχτυ ή όχι επιστρέφοντας θετικές ή αρνητικές τιμές αντίστοιχα. Εάν η μπάλα ακουμπήσει στο δίχτυ θεωρούμε ότι δεν περνάει. Γράψτε τη συνάρτηση check_ball() που λαμβάνει ως τυπικές παραμέτρους την γωνία βολής, την ταχύτητα βολής της μπάλας και την απόσταση του παίκτη από το δίχτυ (φιλέ) και υπολογίζει εάν η μπάλα θα χτυπήσει εντός ή εκτός του γηπέδου. Υπενθυμίζεται ότι στο beach-volley εάν η μπάλα χτυπήσει πάνω στην γραμμή, το χτύπημα είναι έγκυρο. Γράψτε ένα πρόγραμμα που χρησιμοποιώντας τις παραπάνω δύο συναρτήσεις να εκτυπώνει την μέγιστη ταχύτητα βολής και την αντίστοιχη γωνία βολής για ένα έγκυρο χτύπημα. Το πρόγραμμα αρχικά εκτυπώνει το μήνυμα: Enter shot distance from net: Εφόσον ο χρήστης δώσει απόσταση μεγαλύτερη του μηδενός και μικρότερη των 15m τότε το πρόγραμμα υπολογίζει την μέγιστη ταχύτητα βολής και την γωνία βολής. Στη συνέχει εκτυπώνει Max Velocity: ΧΧ.ΧΧ m/sec, Angle: ΑΑ.ΑΑ degrees Για να βρείτε τη μέγιστη ταχύτητα συνιστάται να δοκιμάσετε εάν η μπάλα 1. περνάει πάνω από το φιλέ και 2. σκάει εντός του γηπέδου ή πάνω στην γραμμή για όλες τις ταχύτητες βολής και για όλες τις γωνίες βολής. Από τις ταχύτητες που πληρούν τα παραπάνω δύο κριτήρια επιλέξτε την μεγαλύτερη. Για τους υπολογισμούς σας δοκιμάστε να βρείτε τη μέγιστη ταχύτητα χρησιμοποιώντας βήμα ταχύτητας 0.01m/sec και βήμα γωνίας 0.1 μοίρες. Σημείωση (προαιρετικά): Με δεδομένη την απόσταση βολής από το φιλέ, εάν ο αθλητής μπορεί να χτυπήσει την μπάλα με την μέγιστη δυνατή ταχύτητα για δύο ή περισσότερες γωνίες βολής, επιθυμητή γωνία είναι εκείνη για την οποία η μπάλα σκάει στο έδαφος εντός του γηπέδου και πιο κοντά στο δίχτυ (μικρότερη γωνία), ώστε να είναι δυσκολότερη και η απόκρουση των αντιπάλων. Οι βασικές ποσότητες με τις οποίες θα δουλέψετε είναι: v0 : H αρχική ταχύτητα της μπάλας v0x : Η συνιστώσα της αρχικής ταχύτητας στον άξονα x v0y : Η συνιστώσα της αρχικής ταχύτητας στον άξονα y X : Η οριζόντια απόσταση από το φιλέ. Y : Το ύψος από το οποίο γίνεται η βολή (2.6m) Η : Το ύψος του φιλέ (2.43m)

4 θ : Η γωνία βολής. Θεωρείστε αρνητική τη γωνία βολής εάν ο παίκτης χτυπήσει την μπάλα προς τα κάτω και θετική αν τη χτυπήσει προς τα πάνω. t : Ο χρόνος από την αρχή της βολής μέχρι το τέρμα. Θα χρειαστείτε τις παρακάτω εξισώσεις: Για να μετατρέψετε τις μοίρες σε radians (που είναι η μονάδα που χρησιμοποιούν οι τριγωνομετρικές συναρτήσεις), πολλαπλασιάζετε τις μοίρες με π/180. Για το π, χρησιμοποιείστε την τιμή Για να υπολογίσετε τις συνιστώσες της ταχύτητας: v0x = v0 * cos(θ) και v0y = v0 * sin(θ) x = v0x * t y = v0y * t * g * t 2 όπου g είναι η επιτάχυνση της βαρύτητας κι έχει τιμή 9.8m/sec 2. Για περισσότερες πληροφορίες αναφορικά με τον τρόπο χρήστης των συναρτήσεων ημιτόνου (sin()), συνημιτόνου (cos()) μπορείτε να ανατρέξετε στην εκφώνηση του 4ου εργαστηρίου. Δείτε το παρακάτω παράδειγμα εκτέλεσης του προγράμματος:

5 Αποστολή του προγράμματος για διόρθωση και σχολιασμό Για να στείλετε το πρόγραμμά σας για βαθμολόγηση, ανοίξτε ένα τερματικό (ή χρησιμοποιήστε αυτό του Kate), πηγαίνετε στο φάκελο lab8, και χρησιμοποιήστε την εντολή mkdir για να κατασκευάσετε ένα νέο φάκελο μέσα στο lab8 με βάση τα ονόματα των δύο μελών της ομάδας. Για την ακρίβεια, το όνομα του φακέλου πρέπει να είναι (με λατινικούς χαρακτήρες) : επώνυμο1_am1_επώνυμο2_αμ2, όπου ΑΜ είναι ο τετραψήφιος αριθμός μητρώου σας. Για παράδειγμα, mkdir doufexi_1234_antonopoulos_5678 Αντιγράψτε τα lab8α.c και lab8b.c μέσα στο νέο φάκελο, όπως παρακάτω: cp -v lab8?.c doufexi_1234_antonopoulos_5678/ Tέλος, πακετάρετε και συμπιέστε το φάκελο με το πρόγραμμά σας. Η εντολή είναι: tar cvzf επώνυμο1_αμ1_επώνυμο2_αμ2.tgz επώνυμο1_αμ1_επώνυμο2_αμ2 Θα πρέπει να δημιουργηθεί το αρχείο με όνομα επώνυμο1_αμ1_επώνυμο2_αμ2.tgz. Αν εμφανιστεί κάποιο μήνυμα λάθους ή δε δημιουργηθεί το αρχείο, ζητήστε βοήθεια! Στη συνέχεια στείλτε ένα στη διεύθυνση: με τίτλο (subject): CE120 lab8 sectionx όπου X είναι ο αριθμός του τμήματος, πχ section6 για μια ομάδα του τμήματος 6. CC στο άλλο μέλος της ομάδας σας και στον εαυτό σας συνημμένο (attached) το αρχείο: επώνυμο1_αμ1_επώνυμο2_αμ2.tgz μέσα στο γράψτε τα ονόματα των δύο μελών της ομάδας. Αφού στείλετε το , επιβεβαιώστε ότι είχε σωστό attachment κι ότι έλαβε αντίγραφο και το άλλο μέλος της ομάδας. Το άλλο μέλος της ομάδας μπορεί να ξεπακετάρει το tgz αρχείο στο δικό του υπολογιστή με την εντολή tar xvzf επώνυμο1_αμ1_επώνυμο2_αμ2.tgz ΜΗΝ ΞΕΧΑΣΕΤΕ ΝΑ ΚΑΝΕΤΕ LOGOUT ΠΡΙΝ ΦΥΓΕΤΕ!!

ΣΕΤ ΑΣΚΗΣΕΩΝ 1. Προθεσμία: Τετάρτη 9/11/2016, 21:00

ΣΕΤ ΑΣΚΗΣΕΩΝ 1. Προθεσμία: Τετάρτη 9/11/2016, 21:00 ΣΕΤ ΑΣΚΗΣΕΩΝ 1 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2016-2017 Προθεσμία: Τετάρτη 9/11/2016, 21:00 Διαβάστε πριν ξεκινήσετε Διαβάστε ΟΛΗ την εκφώνηση προσεκτικά και σχεδιάστε το πρόγραμμά σας στο

Διαβάστε περισσότερα

ΣΕΤ ΑΣΚΗΣΕΩΝ 4. Προθεσµία: 13/1/13, 22:00

ΣΕΤ ΑΣΚΗΣΕΩΝ 4. Προθεσµία: 13/1/13, 22:00 ΣΕΤ ΑΣΚΗΣΕΩΝ 4 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2012-2013 Προθεσµία: 13/1/13, 22:00 Περιεχόµενα Διαδικαστικά Εκφώνηση άσκησης (Στάδιο 0, Στάδιο 1, Στάδιο 2, Στάδιο 3, Στάδιο 4, Στάδιο 5) Οδηγίες

Διαβάστε περισσότερα

ΣΕΤ ΑΣΚΗΣΕΩΝ 2. Προθεσµία: 15/11/10, 23:59

ΣΕΤ ΑΣΚΗΣΕΩΝ 2. Προθεσµία: 15/11/10, 23:59 ΣΕΤ ΑΣΚΗΣΕΩΝ 2 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010-2011 Προθεσµία: 15/11/10, 23:59 Στόχοι Πίνακες Συναρτήσεις Συµβολοσειρές Χρήση µεταβλητών και σταθερών Χρήση τελεστών Χρήση δοµών ελέγχου

Διαβάστε περισσότερα

ΣΕΤ ΑΣΚΗΣΕΩΝ 4. Προθεσµία: 22/12/10, 23:59

ΣΕΤ ΑΣΚΗΣΕΩΝ 4. Προθεσµία: 22/12/10, 23:59 ΣΕΤ ΑΣΚΗΣΕΩΝ 4 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010-2011 Προθεσµία: 22/12/10, 23:59 Στόχοι Λίστες Χρήση συναρτήσεων Χρήση δοµών ελέγχου Φορµαρισµένη είσοδος και έξοδος δεδοµένων Χρήση σχολίων

Διαβάστε περισσότερα

Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός

Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού,

Διαβάστε περισσότερα

lab1: Εισαγωγή σε Linux

lab1: Εισαγωγή σε Linux 2016-2017: Προγραµµατισµός 1 - Εργαστήριο 1 1/11 lab1: Εισαγωγή σε Linux Σκοπός του σημερινού εργαστηρίου είναι να εξοικειωθείτε με το περιβάλλον συγγραφής και εκτέλεσης προγραμμάτων C που θα χρησιμοποιήσουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 2: Εκφράσεις, πίνακες και βρόχοι 14 Απριλίου 2016 Το σημερινό εργαστήριο

Διαβάστε περισσότερα

s(t) = + 1 γ 2 (2 µονάδες)

s(t) = + 1 γ 2 (2 µονάδες) . ύο αυτοκίνητα Α και Β κινούνται σε ευθύ δρόµο µε την ίδια σταθερή ταχύτητα προς την ίδια κατεύθυνση. Την στιγµή t = (ο χρόνος µετρείται σε δευτερόλεπτα) το αυτοκίνητο Β προπορεύεται κατά s =3 (η απόσταση

Διαβάστε περισσότερα

lab2grades - Στη scanf υπολογίζετε τουλάχιστον 5 χαρακτήρες %5.2f προδιαγραφές που ζητούνται στην εκφώνηση. -

lab2grades - Στη scanf υπολογίζετε τουλάχιστον 5 χαρακτήρες %5.2f προδιαγραφές που ζητούνται στην εκφώνηση. - Α.Μ. ΒΑΘΜΟΣ ΣΧΟΛΙΑ 1375 - Καλή στοίχηση, σωστά ονόµατα µεταβλητών, όµως δεν έχετε δηλώσει ως σταθερές το ΦΠΑ και την τιµή ανά τετραγωνικό µέτρο για τη µοκέτα. - Στη scanf υπολογίζετε τουλάχιστον 5 χαρακτήρες

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2016-2017 ΕΡΓΑΣΙΑ ΕΞΑΜΗΝΟΥ Ποιος πρέπει να ολοκληρώσει αυτή την εργασία? Φοιτητές έτους >= 2 που

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.) ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας

Διαβάστε περισσότερα

Περίθλαση από διπλή σχισµή.

Περίθλαση από διπλή σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 81 8. Άσκηση 8 Περίθλαση από διπλή σχισµή. 8.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε τα φράγµατα περίθλασης και ειδικότερα

Διαβάστε περισσότερα

Σκοπός. Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL

Σκοπός. Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL Δυνατότητα ανάπτυξης, μεταγλώττισης και εκτέλεσης προγραμμάτων στη PASCAL. Κατανόηση της σύνταξης των προτάσεων της PASCAL. Κατανόηση της εντολής εξόδου για

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1. Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση Περιέχει: 1. Αναλυτική Θεωρία 2. Ερωτήσεις Θεωρίας 3. Ερωτήσεις Πολλαπλής Επιλογής 4.

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

Κίνηση σε δύο διαστάσεις

Κίνηση σε δύο διαστάσεις ΦΥΣ 131 - Διαλ.07 1 Κίνηση σε δύο διαστάσεις Διαδρομή του σώματος Τελική θέση Αρχική θέση Η κίνηση που κάνει το αυτοκίνητο καθώς στρίβει περιορίζεται σε ένα οριζόντιο επίπεδο - Η αλλαγή στο διάνυσμα θέσης

Διαβάστε περισσότερα

Λειτουργικά Συστήματα

Λειτουργικά Συστήματα Λειτουργικά Συστήματα Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:01 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ Lab. MEchanics Applied TECHNICAL UNIVERSITY OF CRETE ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ 1 η Συνέχεια διαλέξεων B Μέρος 1 ΒΑΣΙΚΑ ΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ

Διαβάστε περισσότερα

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011-12 Τοπικός διαγωνισμός στη Φυσική 10-12-2011 Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Κεντρική ιδέα της άσκησης Στην άσκηση μελετάμε την κίνηση ενός

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ: Φιλολάου & Εκφαντίδου 26 : 210/76.01.470 210/76.00.179 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ 1 Οι δυνάμεις μπορούν να χωριστούν σε δυο κατηγορίες: Σε δυνάμεις επαφής, που ασκούνται μόνο ανάμεσα σε σώματα που βρίσκονται σε επαφή, και σε δυνάμεις

Διαβάστε περισσότερα

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής: ΑΝΩΤΑΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:

Διαβάστε περισσότερα

Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2014 Μετατρέποντας AC σε DC Τάση Μέρος Β : Πορεία Εργασίας

Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2014 Μετατρέποντας AC σε DC Τάση Μέρος Β : Πορεία Εργασίας Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2014 Μετατρέποντας AC σε DC Τάση Μέρος Β : Πορεία Εργασίας. Συναρτήσεις στη PASCAL Σκοπός Προσομοίωση ενός Συστήματος / Κυκλώματος,

Διαβάστε περισσότερα

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Βασικές έννοιες, σχέσεις και διαδικασίες Αδρανειακό

Διαβάστε περισσότερα

Εργαστήριο 5. Εαρινό Εξάμηνο

Εργαστήριο 5. Εαρινό Εξάμηνο Τομέας Υλικού και Αρχιτεκτονικής Υπολογιστών ΗΥ134 - Εισαγωγή στην Οργάνωση και Σχεδίαση Η/Υ 1 Εργαστήριο 5 Εαρινό Εξάμηνο 2012-2013 Στό χόι τόυ εργαστηρι όυ Χρήση στοίβας Αναδρομή Δομές δεδομένων Δυναμική

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΠΕΙΚΟΝΙΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Εξετάσεις Προσομοίωσης 17/04/2016 Θέμα Α Α1. Να γράψετε στο τετράδιο σας τον αριθμό κάθε πρότασης και δίπλα τη λέξη Σωστό αν η πρόταση είναι σωστή και

Διαβάστε περισσότερα

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου.

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου. Κεφάλαιο : Μετασχηματισμοί Γαλιλαίου.. Γεγονότα, συστήματα αναφοράς και η αρχή της Νευτώνειας Σχετικότητας. Ως φυσικό γεγονός ορίζεται ένα συμβάν το οποίο λαμβάνει χώρα σε ένα σημείο του χώρου μια συγκεκριμένη

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015

ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 014-015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 015 ΤΑΞΗ : Α ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ: ΗΜΕΡΟΜΗΝΙΑ : 05/06/015 ΔΙΑΡΚΕΙΑ : ώρες ΒΑΘΜΟΣ ΟΛΟΓΡΑΦΩΣ:. ΩΡΑ : 07:45 09:45 ΥΠΟΓΡΑΦΗ

Διαβάστε περισσότερα

Αντικείμενα 2 ου εργαστηρίου

Αντικείμενα 2 ου εργαστηρίου 1.0 Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Διδάσκων: Δρ. Γκόγκος Χρήστος Μάθημα: Πληροφορική Ι (εργαστήριο) Ακαδημαϊκό έτος: 2013-2014 Εξάμηνο Α 2 ο Φυλλάδιο Ασκήσεων

Διαβάστε περισσότερα

21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι

21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι 21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB Αλγόριθμος Διαδικασία Παράμετροι Τι είναι Αλγόριθμος; Οι οδηγίες που δίνουμε με λογική σειρά, ώστε να εκτελέσουμε μια διαδικασία ή να επιλύσουμε ένα

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

7.1. Προσδοκώμενα αποτελέσματα Επιπλέον παραδείγματα

7.1. Προσδοκώμενα αποτελέσματα Επιπλέον παραδείγματα 7.1. Προσδοκώμενα αποτελέσματα Το κεφάλαιο αυτό ουσιαστικά αποτελεί την πρώτη σου επαφή με προγραμματιστικό περιβάλλον. Παρουσιάζονται τα βασικά στοιχεία προγραμματισμού και σταδιακά δομείται η προγραμματιστική

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου.

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 2.1 Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 1) Η τιμή του χ είναι,χ Ητιμή του χ είναι 5 Ηεντολή εμφανίζει ότι υπάρχει στα διπλά εισαγωγικά ως έχει.

Διαβάστε περισσότερα

Χρησιμοποιείται για να αποφασίσει το πρόγραμμα αν θα κάνει κάτι σε ένα σημείο της εκτέλεσής του, εξετάζοντας αν ισχύει ή όχι μια συνθήκη.

Χρησιμοποιείται για να αποφασίσει το πρόγραμμα αν θα κάνει κάτι σε ένα σημείο της εκτέλεσής του, εξετάζοντας αν ισχύει ή όχι μια συνθήκη. Εργαστήριο 4: 4.1 Η Δομή Ελέγχου if Χρησιμοποιείται για να αποφασίσει το πρόγραμμα αν θα κάνει κάτι σε ένα σημείο της εκτέλεσής του, εξετάζοντας αν ισχύει ή όχι μια συνθήκη. Γενική Μορφή: Παρατηρήσεις:

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ. Ακέραιοι αριθμοί (int) Πράξεις μεταξύ ακεραίων αριθμών

ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ. Ακέραιοι αριθμοί (int) Πράξεις μεταξύ ακεραίων αριθμών ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ 1 Τύποι δεδομένων Η γλώσσα προγραμματισμού C++ υποστηρίζει τους παρακάτω τύπους δεδομένων: 1) Ακέραιοι αριθμοί (int). 2) Πραγματικοί αριθμοί διπλής ακρίβειας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Συστήµατα µεταβλητής µάζας

ΚΕΦΑΛΑΙΟ 5. Συστήµατα µεταβλητής µάζας ΚΕΦΑΛΑΙΟ 5 Συστµατα µεταβλητς µάζας Μέχρι τώρα µελετσαµε την κίνηση υλικού σηµείου µε συγκεκριµένη µάζα m, η οποία παραµένει σταθερ. Θα εξετάσοµε τώρα την περίπτωση που η µάζα δεν είναι σταθερ, αλλά µεταβάλλεται

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #2: Αναπαράσταση δεδομένων Αβεβαιότητα και Ακρίβεια Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Αναπαράσταση δεδομένων (Data Representation), Αβεβαιότητα

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

1. Εισαγωγή στην Κινητική

1. Εισαγωγή στην Κινητική 1. Εισαγωγή στην Κινητική Σύνοψη Στο κεφάλαιο γίνεται εισαγωγή στις βασικές αρχές της Κινητικής θεωρίας. Αρχικά εισάγονται οι έννοιες των διανυσματικών και βαθμωτών μεγεθών στη Φυσική. Έπειτα εισάγονται

Διαβάστε περισσότερα

0 0 30 π/6 45 π/4 60 π/3 90 π/2

0 0 30 π/6 45 π/4 60 π/3 90 π/2 Βασικός Πίνακας Μοίρες (Degrees) Ακτίνια (Radians) ΓΩΝΙΕΣ 0 0 30 π/6 45 π/4 60 π/3 90 π/2 Έστω ότι θέλω να μετατρέψω μοίρες σε ακτίνια : Έχω μία γωνία σε φ μοίρες. Για να την κάνω σε ακτίνια, πολλαπλασιάζω

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 6/04/2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 6/04/2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 6/04/2014 ΘΕΜΑ 1 Ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm MinusXLRequirements Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm Γενικό πλαίσιο Μια από τις πιο γνωστές και ευρέως διαδεδομένες εμπορικές εφαρμογές για τη διαχείριση λογιστικών φύλλων είναι το

Διαβάστε περισσότερα

Παλέτα Κίνηση. Καλό είναι πριν ξεκινήσετε το παρακάτω φυλλάδιο να έχετε παρακολουθήσει τα παρακάτω δύο videos: a) Εισαγωγή στο περιβάλλον του Scratch

Παλέτα Κίνηση. Καλό είναι πριν ξεκινήσετε το παρακάτω φυλλάδιο να έχετε παρακολουθήσει τα παρακάτω δύο videos: a) Εισαγωγή στο περιβάλλον του Scratch Τάξη : Α Λυκείου Λογισμικό : Scratch Διάρκεια : 45 λεπτά Παλέτα Κίνηση Σε αυτό το φύλλο εργασίας θα εξοικειωθείτε με τις εντολές του Scratch που βρίσκονται στην παλέτα Κίνηση. Για τον σκοπό αυτό διαβάστε

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία

Διαβάστε περισσότερα

Ονοματεπώνυμο Τμήμα. Εισαγωγή στις Φυσικές Επιστήμες ( ) Τ 1y 5m Τ 1x. Τ 2x 5m Τ 2y Τ +Τ = = 0.8kg 3m 2.4s. Απάντηση

Ονοματεπώνυμο Τμήμα. Εισαγωγή στις Φυσικές Επιστήμες ( ) Τ 1y 5m Τ 1x. Τ 2x 5m Τ 2y Τ +Τ = = 0.8kg 3m 2.4s. Απάντηση Εισαγωγή στις Φυσικές Επιστήμες (3-7-5) Ονοματεπώνυμο Τμήμα Θέμα 1 1 ο Ερώτημα Ένα σώμα μάζας.8 kg περιστρέφεται γύρω από μία κάθετη ράβδο με τη βοήθεια δύο νημάτων όπως φαίνεται στο σχήμα. Τα νήματα συνδέονται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα

Χρησιμοποιώντας συναρτήσεις

Χρησιμοποιώντας συναρτήσεις Τετράδιο μαθητή ΘΕ18: Συναρτήσεις Όνομα(τα): Όνομα Η/Υ: Τμήμα: Ημερομηνία: Χρησιμοποιώντας συναρτήσεις Ξεκινήστε το Χώρο Δραστηριοτήτων, επιλέξτε τη θεματική ενότητα: ΘΕ18: Συναρτήσεις και επιλέξτε την

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-125 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΣΚΗΣΗ 1 Μικρή σφαίρα εκτοξεύεται τη χρονική στιγμή t=0 από ορισμένο ύψος με αρχική ταχύτητα

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Τύποι δεδομένων, μεταβλητές, πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ

METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν ΕΞΕΤΑΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ ΟΝΟΜΑTΕΠΩΝΥΜΟ ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ Χρησιμοποιώντας

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΠΡΟΣΒΑΣΗΣ ΣΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΣΕΜΙΝΑΡΙΑ ΤΟΥ ΤΗΛΕΠΡΟΜΗΘΕΑ

ΕΓΧΕΙΡΙΔΙΟ ΠΡΟΣΒΑΣΗΣ ΣΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΣΕΜΙΝΑΡΙΑ ΤΟΥ ΤΗΛΕΠΡΟΜΗΘΕΑ ΕΓΧΕΙΡΙΔΙΟ ΠΡΟΣΒΑΣΗΣ ΣΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΣΕΜΙΝΑΡΙΑ ΤΟΥ ΤΗΛΕΠΡΟΜΗΘΕΑ Το εγχειρίδιο αυτό απευθύνεται σε όλους τους Επαγγελματίες Υγείας, οι οποίοι είναι εγγεγραμμένοι χρήστες στην υπηρεσία Εκπαιδευτικών Σεμιναρίων.

Διαβάστε περισσότερα

Πετοσφαίριση. Γιάννης Λαμαρίνας Σάκης Κούδας Άννα Καρακόζογλου Γιάννης Κανελίδης

Πετοσφαίριση. Γιάννης Λαμαρίνας Σάκης Κούδας Άννα Καρακόζογλου Γιάννης Κανελίδης Πετοσφαίριση Γιάννης Λαμαρίνας Σάκης Κούδας Άννα Καρακόζογλου Γιάννης Κανελίδης Ιστορία της πετοσφαίρισης Η πετοσφαίριση επινοήθηκε το 1895 από τον Αμερικανό καθηγητή Γουίλιαμ Μόργκαν. Προσπαθώντας να

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις ΕΡΓΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις Α. Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο φύλλο των απαντήσεών

Διαβάστε περισσότερα

Έργο Ενέργεια. ΦΥΣ 131 - Διαλ.15 1

Έργο Ενέργεια. ΦΥΣ 131 - Διαλ.15 1 Έργο Ενέργεια ΦΥΣ 131 - Διαλ.15 1 ΦΥΣ 131 - Διαλ.15 2 Έργο, Κινητική Ενέργεια και Δυναμική Ενέργεια q Βέλος εκτοξεύεται από ένα τόξο: Ø Η δύναμη μεταβάλλεται καθώς το τόξο επανέρχεται στην αρχική του θέση

Διαβάστε περισσότερα

Τα αλφαριθμητικά αποτελούνται από γράμματα, λέξεις ή άλλους χαρακτήρες (π.χ. μήλο, Ιούλιος 2009, You win!).

Τα αλφαριθμητικά αποτελούνται από γράμματα, λέξεις ή άλλους χαρακτήρες (π.χ. μήλο, Ιούλιος 2009, You win!). ΑΛΦΑΡΙΘΜΗΤΙΚΑ Τα αλφαριθμητικά αποτελούνται από γράμματα, λέξεις ή άλλους χαρακτήρες (π.χ. μήλο, Ιούλιος 2009, You win!). Αποθηκεύονται σε μεταβλητές ή σε λίστες (όπως ή ). Μπορείτε να ενώσετε δυο αλφαριθμητικά

Διαβάστε περισσότερα

Εισαγωγή στο Πρόγραμμα Maxima

Εισαγωγή στο Πρόγραμμα Maxima Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί

Διαβάστε περισσότερα

3η Εργασία. (B t 2 ) /2 - (C t 3 )/3 + c

3η Εργασία. (B t 2 ) /2 - (C t 3 )/3 + c 1 3η Εργασία Άσκηση 1 (8 µονάδες) A) (4 µονάδες). Η επιτάχυνση µιας βενζινακάτου ως συνάρτηση του χρόνου δίνεται από την εξίσωση: = Bt Ct, όπου οι µονάδες της είναι m/s. α). Ποιες είναι οι µονάδες των

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO. Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος.

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO. Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος. ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος. Τετριμμένο παράδειγμα: Κατασκευάστε πρόγραμμα που θα εμφανίζει

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #1: Αναλυτική & Αλγοριθμική λύση Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Εισαγωγή στους Υπολογιστές Περιεχόμενο μαθήματος: Ενότητα 1: Αναλυτική

Διαβάστε περισσότερα

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1); 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

Εργαστήριο 4 ΔΗΜΙΟΥΡΓΙΑ ΓΡΑΦΗΜΑΤΩΝ ΜΕ ΤΟ EXCEL ΑΚ ΤΡΑΥΛΟΣ

Εργαστήριο 4 ΔΗΜΙΟΥΡΓΙΑ ΓΡΑΦΗΜΑΤΩΝ ΜΕ ΤΟ EXCEL ΑΚ ΤΡΑΥΛΟΣ Εργαστήριο 4 ΔΗΜΙΟΥΡΓΙΑ ΓΡΑΦΗΜΑΤΩΝ ΜΕ ΤΟ EXCEL ΑΚ ΤΡΑΥΛΟΣ Βήμα 1 ο : Από τα αποτελέσματα μιας στατιστικής ανάλυσης έχουμε τα παρακάτω περιγραφικά στατιστικά. Για τον σκοπό της εργασίας με την εντολή copy

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Α Λυκείου 9/11/2014

Διαγώνισμα Φυσικής Α Λυκείου 9/11/2014 1 Διαγώνισμα Φυσικής Α Λυκείου 9/11/2014 Ζήτημα 1 o Α) Να επιλέξτε την σωστή απάντηση 1) Η μετατόπιση ενός κινητού που κινείται ευθύγραμμα σε άξονα Χ ΟΧ είναι ίση με μηδέν : Αυτό σημαίνει ότι: α) η αρχική

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Κεφάλαιο 3 Κίνηση σε 2 και 3 διαστάσεις, Διανύσµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 3 Κίνηση σε 2 και 3 διαστάσεις, Διανύσµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 3 Κίνηση σε και 3 διαστάσεις, Διανύσµατα Copyright 009 Pearson ducation, Inc. Περιεχόµενα 3 Διανύσµατα και Βαθµωτές ποσότητες Πράξεις Διανυσµάτων Γραφικές Παραστάσεις Μοναδιαία διανύσµατα Κινηµατική

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Γ Γυμνασίου 9 Μαρτίου 013 Θεωρητικό Μέρος Θέμα 1 ο Α. Ας υποθέσουμε πως έχουμε τον ακόλουθο νόμο δυναμικής F = Ar, όπου με F συμβολίζεται το μέγεθος της δύναμης και με r το μέγεθος της απόστασης. Να βρεθούν

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 10-Οκτωβρίου-2009

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 10-Οκτωβρίου-2009 1 η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 131 1 η Πρόοδος: 10-Οκτωβρίου-2009 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Άσκηση 4: Σφάλματα φακών: Ι Σφαιρική εκτροπή Εξεταζόμενες γνώσεις: σφάλματα σφαιρικής εκτροπής. Α. Γενικά περί σφαλμάτων φακών Η βασική σχέση του Gauss 1/s +1/s = 1/f που

Διαβάστε περισσότερα

Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας

Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:02 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων

Διαβάστε περισσότερα

Θέµατα προς ανάλυση: Εισαγωγή. Εισαγωγή. Εισαγωγή ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ

Θέµατα προς ανάλυση: Εισαγωγή. Εισαγωγή. Εισαγωγή ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ «Αρχές Βιοκινητικής» Μάθηµα του βασικού κύκλου σπουδών (Γ εξάµηνο)

Διαβάστε περισσότερα

2 η Εργασία Ημερομηνία Αποστολής : 21 Ιανουαρίου Άσκηση 1. Να υπολογίσετε τα παρακάτω όρια χρησιμοποιώντας τον Κανόνα του L Hopital:

2 η Εργασία Ημερομηνία Αποστολής : 21 Ιανουαρίου Άσκηση 1. Να υπολογίσετε τα παρακάτω όρια χρησιμοποιώντας τον Κανόνα του L Hopital: η Εργασία Ημερομηνία Αποστολής : Ιανουαρίου 7 Άσκηση. Να υπολογίσετε τα παρακάτω όρια χρησιμοποιώντας τον Κανόνα του L Hopil: α. β. γ. lim 6 lim lim sin. (Υπόδειξη: χωρίς να την αποδείξετε, χρησιμοποιήστε

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Παράδειγμα 5 Παράδειγμα 6 ΔΤ3 ΔΤ4 151

ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Παράδειγμα 5 Παράδειγμα 6  ΔΤ3 ΔΤ4  151 ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Σε ένα μετεωρολογικό κέντρο χρειάζεται να βρεθεί η μέγιστη και η ελάχιστη θερμοκρασία από τις μέσες ημερήσιες θερμοκρασίες ενός μήνα. Να γραφεί ένας αλγόριθμος που θα διαβάζει τη

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

7.1. Ðñïóäïêþìåíá áðïôåëýóìáôá 7.2. ÅðéðëÝïí ðáñáäåßãìáôá Παράδειγμα 1

7.1. Ðñïóäïêþìåíá áðïôåëýóìáôá 7.2. ÅðéðëÝïí ðáñáäåßãìáôá Παράδειγμα 1 7.1. Ðñïóäïêþìåíá áðïôåëýóìáôá Το κεφάλαιο αυτό ουσιαστικά αποτελεί την πρώτη σου επαφή με προγραμματιστικό περιβάλλον. Παρουσιάζονται τα βασικά στοιχεία προγραμματισμού και σταδιακά δομείται η προγραμματιστική

Διαβάστε περισσότερα

Λυμένες Ασκήσεις. Λύση. (βασική απλή άσκηση)

Λυμένες Ασκήσεις. Λύση. (βασική απλή άσκηση) Λυμένες Ασκήσεις (βασική απλή άσκηση) 1. Ένα μικρό σώμα εκτελεί ευθύγραμμη ομαλή κίνηση με σταθερή ταχύτητα μέτρου υ = 108 km/h και για να μεταβει το σώμα από το σημείο Α στο σημείο Β, χρειάστηκε χρόνο

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος 2003 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. Θέμα 1 (25 μονάδες)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

Θεωρητικό Μέρος ΘΕΜΑ 1 ο Στα ερωτήματα που ακολουθούν επιλέξτε την ορθή απάντηση αιτιολογώντας την επιλογή σας.

Θεωρητικό Μέρος ΘΕΜΑ 1 ο Στα ερωτήματα που ακολουθούν επιλέξτε την ορθή απάντηση αιτιολογώντας την επιλογή σας. ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

Εφαρμογές Πληροφορικής στην Τοπογραφία 7η Ενότητα Μονάδες, εντολές Text, List, μετρήσεις, μετασχηματισμοί και άσκηση χάραξης

Εφαρμογές Πληροφορικής στην Τοπογραφία 7η Ενότητα Μονάδες, εντολές Text, List, μετρήσεις, μετασχηματισμοί και άσκηση χάραξης Εφαρμογές Πληροφορικής στην Τοπογραφία 7η Ενότητα Μονάδες, εντολές Text, List, μετρήσεις, μετασχηματισμοί και άσκηση χάραξης Τσιούκας Βασίλειος, Αναπληρωτής Καθηγητής Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

ΕΘΝΙΚΟ KAI ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μηχανική Ι (ακαδ. έτος , χειμερινό εξ.

ΕΘΝΙΚΟ KAI ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μηχανική Ι (ακαδ. έτος , χειμερινό εξ. ΕΘΝΙΚΟ KAI ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ 56. Μηχανική Ι (ακαδ. έτος 6-7, χειμερινό εξ.) Προπτυχιακός Φοιτητής: Νικολαράκης Αντώνιος Αριθμός Μητρώου: 337

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

Στη C++ υπάρχουν τρεις τύποι βρόχων: (a) while, (b) do while, και (c) for. Ακολουθεί η σύνταξη για κάθε μια:

Στη C++ υπάρχουν τρεις τύποι βρόχων: (a) while, (b) do while, και (c) for. Ακολουθεί η σύνταξη για κάθε μια: Εργαστήριο 6: 6.1 Δομές Επανάληψης Βρόγχοι (Loops) Όταν θέλουμε να επαναληφθεί μια ομάδα εντολών τη βάζουμε μέσα σε ένα βρόχο επανάληψης. Το αν θα (ξανα)επαναληφθεί η εκτέλεση της ομάδας εντολών καθορίζεται

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 + Ερωτήσεις ανάπτυξης. ** Έστω η συνάρτηση f () = - 3 +. α) Να βρείτε τις τιμές f (), f (0), f (-3), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),,

Διαβάστε περισσότερα

Εφαρμογή της γενικής λύσης

Εφαρμογή της γενικής λύσης Εφαρμογή της γενικής λύσης Να βρεθούν οι χαρακτηριστικές συχνότητες του συστήματος ΦΥΣ 11 - Διαλ.4 1 x 1 x m 1 m k 1 k 1 k 3 Η δυναμική ενέργεια του συστήματος είναι: U = 1 kx 1 + 1 k 1 ( x x 1 ) + 1 kx

Διαβάστε περισσότερα