ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ"

Transcript

1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 3ο μέρος σημειώσεων: Μέθοδος της Επίλυσης Τμήμα Επιστήμης Υπολογιστών

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά Μη εμπορική Χρήση Παρόμοια Διανομή 3.0 Ελλάδα (Attribution Non Commercial ShareAlike 3. Greece) CC BY-NC-SA 3.0 GR Εξαιρείται από την ως άνω άδεια υλικό που περιλαμβάνεται στις διαφάνειες του μαθήματος, και υπόκειται σε άλλου τύπου άδεια χρήσης. Η άδεια χρήσης στην οποία υπόκειται το υλικό αυτό αναφέρεται ρητώς. Χρηματοδότηση 1. Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. 2. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. 3. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

3 4.3 Ορθότητα και Πληρότητα Συστήματα αποδείξεων όπως η μορφολογική παραγωγή και η κατασκευή μοντέλων χρησιμοποιούνται για να δείξουμε την εγκυρότητα εξαγωγών συμπερασμάτων. Ένα σύστημα αποδείξεων μπορεί να αποτύχει: να απαντήσει ότι μια εξαγωγή συμπεράσματος είναι έγκυρη ενώ στην πραγματικότητα είναι μη-έγκυρη. Για παράδειγμα η εξαγωγή συμπεράσματος { P Q, Q / P είναι μη-έγκυρη. Ένα σύστημα αποδείξεων λέγεται ορθό αν οποτεδήποτε υποδεικνύει μια εξαγωγή συμπεράσματος ως έγκυρη, αυτή είναι πράγματι έγκυρη. Ένα σύστημα αποδείξεων μπορεί επίσης να αποτύχει με το να χαρακτηρίσει ως μη-έγκυρη μια έγκυρη εξαγωγή συμπεράσματος. Ένα σύστημα αποδείξεων λέγεται πλήρες αν προσδιορίζει κάθε έγκυρη εξαγωγή συμπεράσματος ως έγκυρη. Για παράδειγμα, ένα σύστημα που δεν μπορεί να χαρακτηρίσει την εξαγωγή συμπεράσματος { P Q, P / Q ως έγκυρη είναι μη-πλήρες. Οι ιδιότητες της ορθότητας και της πληρότητας είναι επιθυμητές για κάθε σύστημα αποδείξεων. Δεν είναι όμως πάντα εύκολο να επιτευχθούν και οι δύο. Ορισμός Μια πρόταση Α παράγεται από ένα σύνολο προτάσεων S σύμφωνα με ένα σύστημα αποδείξεων PS, αν το PS προσδιορίζει την Α σαν λογική συνέπεια του S. Συμβολισμός : S - PS A. Στη μορφολογική παραγωγή, η Α παράγεται από το S αν υπάρχει αν υπάρχει παραγωγή από το S χρησιμοποιώντας τους κανόνες της μορφολογικής παραγωγής. Στην κατασκευή μοντέλων η Α παράγεται από το S αν το σύνολο { S { A μπορεί να αναχθεί στο κενό σύνολο με τη χρήση των κανόνων αντικατάστασης. Ορισμοί 1. Ένα σύστημα αποδείξεων PS είναι ορθό αν S A όποτε S - PS A. 2. Ένα σύστημα αποδείξεων PS είναι πλήρες αν S - PS A όποτε S A. 3. Ένα σύστημα αποδείξεων PS είναι ορθό και πλήρες αν S - PS A αν και μόνο αν S A. Παραδείγματα: 1. Θεωρείστε το σύστημα PS 1 για το οποίο ισχύει S - PS1A αν και μόνο αν Α A S. Για το PS 1 η εξαγωγή συμπεράσματος { P, Q / P είναι έγκυρη αλλά η { P Q, P / Q είναι μη-έγκυρη. Είναι το σύστημα ορθό; Αν A S τότε S A. Άρα, αν S - PS1 A, τότε A S και επομένως S A. Άρα είναι ορθό. Είναι και πλήρες; Όχι, γιατί δεν αναγνωρίζει έγκυρες εξαγωγές συμπερασμάτων. 2. Θεωρείστε το σύστημα PS 2 για το οποίο ισχύει S - PS 2 A για κάθε Α. Δηλαδή αναγνωρίζει κάθε εξαγωγή συμπεράσματος ως έγκυρη. Είναι ορθό; Όχι, γιατί αναγνωρίζει ως έγκυρες και τις μη-έγκυρες εξαγωγές συμπεράσματος. Είναι πληρές; Ναι, γιατί χαρακτηρίζει σωστά ως έγκυρες όλες τις έγκυρες εξαγωγές συμπερασμάτων.

4 Τα PS 1 και PS 2 δεν μας είναι χρήσιμα. Χρησιμότερο θα ήταν ένα σύστημα που χαρακτηρίζει ως έγκυρες τις έγκυρες εξαγωγές συμπερασμάτων και μόνο αυτές. Η κατασκευή μοντέλων είναι ορθό και πλήρες σύστημα. 4.4 Πολυπλοκότητα των Συστημάτων Αποδείξεων Η πολυπλοκότητα ενός αλγόριθμου είναι ένα μέτρο της αποδοτικότητάς του. Συνήθως εκφράζεται σαν μια συνάρτηση η οποία σχετίζει τον αριθμό των υπολογιστικών βημάτων που απαιτούνται με το μέγεθος των δεδομένων εισόδου. Στην περίπτωση των συστημάτων αποδείξεων το πρόβλημα προσδιορισμού της πολυπλοκότητας εκφράζεται ως εξής : Για ένα σύστημα PS βρείτε μια συνάρτηση f έτσι ώστε, η εγκυρότητα ή μη-εγκυρότητα μιας εξαγωγής συμπεράσματος που περιέχει n σύμβολα μπορεί να προσδιοριστεί από το PS σε f (n) το πολύ βήματα. Για παράδειγμα, για τη μέθοδο των πινάκων αληθείας και για την εξαγωγή συμπεράσματος { P 1, P 2,, P n 1 / P n, όπου τα P 1, P 2,, P n είναι διακεκριμένα n γράμματα, ο πίνακας αλήθειας θα έχει 2 γραμμές. Άρα η f είναι εκθετική. Καθώς μια εξαγωγή συμπεράσματος με n σύμβολα δεν μπορεί να περιέχει περισσότερα από n n γράμματα, ο πίνακας αληθείας δεν μπορεί να περιέχει περισσότερες από 2 γραμμές. Άρα η πολυπλοκότητα της μεθόδου είναι εκθετική. Και άλλα συστήματα έχουν εκθετική πολυπλοκότητα στη χειρότερη περίπτωση. Υπάρχουν και περιπτώσεις που είναι απλούστερες, αλλά πάντα υπάρχουν άλλες στις οποίες απαιτείται εκθετικός αριθμός βημάτων. Ο έλεγχος της εγκυρότητας των εξαγωγών συμπερασμάτων του Prop, ανήκει σε μια κλάση προβλημάτων που είναι γνωστή με το όνομα NP-Πλήρη (NP-Complete) προβλήματα. Υπάρχουν διάφορα είδη NP-Πλήρων Προβλημάτων. Για τις ανάγκες μας, μας αρκεί να εξετάσουμε τα λεγόμενα NP-Πλήρη Προβλήματα Αποφάσεων. Ένα πρόβλημα απόφασης είναι ένα πρόβλημα στο οποίο απαιτείται μια απάντηση της μορφής ναι/όχι. Για παράδειγμα, το πρόβλημα αποφάσισε αν ένας ακέραιος είναι πρώτος είναι πρόβλημα απόφασης, ενώ το πρόβλημα βρείτε τους πρώτους παράγοντες ενός ακέραιου δεν είναι. Για την περίπτωση του Prop, το πρόβλημα αποφασίστε αν μια δεδομένη εξαγωγή συμπεράσματος είναι έγκυρη είναι ένα πρόβλημα απόφασης. Σχετίζεται στενά με ένα άλλο πρόβλημα απόφασης: αποφασίστε αν μια πρόταση του Prop είναι ικανοποιήσιμη ή όχι (SAT) Προβλήματα NP Τα δεδομένα ενός προβλήματος απόφασης για τα οποία η ορθή απάντηση είναι ναι λέγονται θετικά ενώ εκείνα για τα οποία η απάντηση είναι όχι λέγονται αρνητικά. Έστω ότι κάθε είσοδος για ένα πρόβλημα μπορεί να πάρει ένα πιστοποιητικό, το οποίο είναι κάποια έκφραση η οποία ελέγχεται εύκολα για το αν ικανοποιεί η αντίστοιχη είσοδος το

5 πρόβλημα. Π.χ., για το πρόβλημα SAT ένα τέτοιο πιστοποιητικό είναι μια ερμηνεία που ικανοποιεί την πρόταση. Ένα πρόβλημα απόφασης Q λέγεται NP (non-deterministic polynomial) αν έχει τις παραπάνω ιδιότητες: 4. Κάθε θετική είσοδος έχει ένα πιστοποιητικό. 5. Υπάρχει αλγόριθμος AQ ο οποίος δέχεται ως είσοδο οποιοδήποτε είσοδο Ι του Q μαζί με πιστοποιητικό C (αν υπάρχει) και απαντά ναι αν το C είναι πιστοποιητικό του Ι και όχι αν δεν είναι. 6. ο αλγόριθμος είναι πολυωνυμικού χρόνου, δηλαδή υπάρχει ακέραιος k και μια σταθερά c, έτσι ώστε ο αριθμός των βημάτων που εκτελεί ο A για να διαπιστώσει αν το C είναι πιστοποιητικό του Ι, είναι το πολύ είναι το μέγεθος του Ι. Q k cn, όπου n Το πρόβλημα SAT είναι πρόβλημα NP. Μια πρόταση με n σύμβολα περιέχει το πολύ n-1 συνδετικά. Κάθε ερμηνεία της πρότασης είναι ένα πιστοποιητικό: αρκεί να υπολογίσουμε μια γραμμή του πίνακα αληθείας η οποία αντιστοιχεί στην ερμηνεία. Χρειαζόμαστε n-1 βήματα για μια γραμμή του πίνακα. Άρα n f ( n) n 1 2. Το SAT έχει μια ακόμα ιδιότητα: αν Q είναι οποιοδήποτε άλλο NP πρόβλημα, υπάρχει ένας συστηματικός τρόπος για να μετατρέψουμε την είδοσο Ι του Q στην είσοδο Ι του SAT, έτσι ώστε οι θετικές εισόδοι του Q να μετατρέπονται σε θετικές εισόδους του SAT και αντίστοιχα οι αρνητικές. Επιπλέον, ο αλγόριθμος μετατροπής είναι πολυωνυμικός. Τι σημαίνει αυτό; Σημαίνει ότι κανένα NP πρόβλημα δεν είναι πιο δύσκολο από το SAT παρά μόνο κατά μια διαδικασία πολυωνυμικού χρόνου. Ένα πρόβλημα λέγεται NP-Πλήρες αν είναι NP και κάθε άλλο NP πρόβλημα μπορεί να μετατραπεί σε αυτό σε πολυωνυμικό χρόνο. Ενδιαφέρον παρουσιάζουν τα NP προβλήματα που δεν μπορούν να λυθούν σε πολυωνυμικό χρόνο (όλα τα NP Πλήρη). Αν οποιοδήποτε NP-πλήρες πρόβλημα μπορεί να λυθεί σε πολυωνυμικό χρόνο, τότε κάθε NP πρόβλημα μπορεί να λυθεί σε πολυωνυμικό χρόνο. Αν μπορούσαμε να λύσουμε κάποιο NP- Πλήρες πρόβλημα σε πολυωνυμικό χρόνο, τότε θα απαντούσαμε ένα από τα μεγάλα ανοιχτά ερωτήματα της θεωρίας των υπολογισμών: P? NP. Το SAT ήταν το πρώτο NP-Πλήρες πρόβλημα που ανακαλύφθηκε. Θεώρημα (Cook 1971). To SAT είναι NP-Πλήρες. Άρα και ο έλεγχος μη-εκυρότητας είναι NP-Πλήρες πρόβλημα. Σημαίνει αυτό ότι δεν έχουμε ελπίδες για την αυτόματη απόδειξη θεωρημάτων; Όχι, στην πράξη, τα περισσότερα προβλήματα λύνονται σε αποδεκτό χρόνο. Επίσης, χρησιμοποιούμε μεθόδους οι οποίες περιορίζονται σε κάποιες ειδικής μορφής προτάσεις.

6 4.5 Μέθοδος της Επίλυσης (Resolution) Η μέθοδος της επίλυσης διαφέρει από τη μορφολογική παραγωγή και την κατασκευή μοντέλων στο ότι αφορά προτασιακά σχήματα περιορισμένης μορφής. Ορισμοί Ένας όρος είναι μια διάζευξη γραμμάτων. Π.χ. P Ϊ Q, ΨP Ϊ ΨQ Ϊ R, P Ϊ Q Ϊ ΨR Ϊ S. Καθώς μια διάζευξη είναι μεταθετική, ο όρος P Ϊ Q Ϊ Ψ R είναι ισοδύναμος με τον όρο P Ϊ ΨR Ϊ Q και με τον ΨR Ϊ Q Ϊ P. Συχνά θεωρούμε τον έναν όρο σαν ένα σύνολο γραμμάτων, επομένως η σειρά με την οποία τα γράμματα εμφανίζονται δεν έχει σημασία. Οι παραπάνω όροι γράφονται ως {P,Q, { ΨP, Ψ Q, R και { P, Q, ΨR, S αντίστοιχα. Τα σύνολα {P,Q και {Q,P απεικονίζουν τον ίδιο όρο. Ένας μοναδιαίος όρος είναι ένας όρος που αποτελείται από ένα και μόνο γράμμα. Π.χ {P, { Ψ Q. Οι μοναδιαίοι όροι γράφονται και χωρίς {,, δηλαδή ως P και Ψ Q αντίστοιχα. Ο κενός όρος που συμβολίζεται με, συμβολίζει μια αντινομία. Ο όρος Τ αντιστοιχεί σε ένα σύνολο που περιέχει ένα γράμμα και την άρνησή του.{ P,Q, ΨP. Κάθε σύνολο προτασιακών σχημάτων μπορεί να μετατραπεί σε έναν σύνολο όρων : πρώτα μετατρέπεται σε συζευκτική κανονική μορφή και κατόπιν διαχωρίζονται οι διαζεύξεις. Κάθε διάζευξη είναι ένας όρος. Η μέθοδος της επίλυσης βασίζεται στην εγκυρότητα εξαγωγών συμπερασμάτων της μορφής { P Ϊ Q, ΨQ Ϊ R = P Ϊ R. Αν P Ϊ R είναι ψευδής, τότε και P και R είναι ψευδείς. Αν Q είναι ψευδής, τότε και P Ϊ Q θα είναι ψευδής. Αν Q είναι αληθής, τότε και ΨQ Ϊ R θα είναι ψευδής. Άρα, κάποια υπόθεση θα είναι ψευδής. Επομένως, αν οι υποθέσεις είναι αληθείς, τότε και το συμπέρασμα θα είναι αληθές. Ο όρος {P,R ονομάζεται όρος επίλυσης των {P,Q και { ΨQ, R. Αν δύο όροι C και C περιέχουν τα γράμματα Α και Ψ A αντίστοιχα, οι όροι επιλύονται και παράγουν έναν καινούριο όρο ο οποίος περιέχει όλα τα γράμματα του C πλην του Α και όλα τα γράμματα του C πλην του Ψ A. res(c,c ) = (C-{A) Θ (C -{ ΨA) ή res(κ Θ {Α, Κ Θ { ΨA ) = (Κ Θ Κ ) Παραδείγματα res( { P, Ψ Q, R, { Q, R, Ψ S ) = { P, R, ΨS res(q, { ΨP, Ψ Q, R ) = { ΨP, R res(p, Ψ P ) = res( { P, Ψ Q, Q ) = P res( { P, Ψ Q, R, { Q, Ψ R, S ) = { P, R, Ψ R, S ={ P, Q, Ψ Q, S = T Αν δύο όροι έχουν κάποιο όρο επίλυσης res(c, C ), τότε {C, C = res(c, C ). Γενικότερα, { Κ Θ {Α, Κ Θ {ΨA = Κ Θ Κ. Για να διαπιστώσουμε ότι αυτό ισχύει,

7 ας υποθέσουμε για κάποια ερμηνεία το συμπέρασμα είναι ψευδές. Αν Α είναι αληθές τότε K Θ {ΨA είναι ψευδές, ενώ αν Α είναι ψευδές τότε Κ Θ {Αείναι ψευδές. Σε κάθε περίπτωση, μια από τις υποθέσεις είναι ψευδής. Άρα αν οι υποθέσεις είναι αληθείς για κάποια ερμηνεία, τότε και το συμπέρασμα είναι αληθές. Γιατί όμως μας είναι χρήσιμο αυτό. Αν S = C, τότε το S είναι ικανοποιήσιμο αν και μόνο αν το S Θ C είναι ικανοποιήσιμο. Άρα αφού {C, C = res(c, C ) το {C, C θα είναι ικανοποιήσιμο αν και μόνο αν το σύνολο {C, C, res(c, C ) είναι ικανοποιήσιμο. Γενικότερα, αν S είναι οποιοδήποτε σύνολο όρων και R είναι ένας όρος επίλυσης οποιονδήποτε δύο από αυτούς, τότε το S είναι ικανοποιήσιμο αν και μόνο αν το S Θ {R είναι ικανοποιήσιμο. Αρχή της επίλυσης Έστω S ένα σύνολο όρων και R(S) το σύνολο που προκύπτει αν προσθέσουμε στο S όλους τους όρους επίλυσης των μελών του. Τότε το S είναι ικανοποιήσιμο αν και μόνο αν το R(S) είναι ικανοποιήσιμο. Παράδειγμα Δείξτε ότι το σύνολο S = {{ Ψ P, Q, { Ψ Q, R,P, ΨR είναι μη ικανοποιήσιμο. Πρώτα βρίσκουμε τους όρους της επίλυσης res({ Ψ P, Q, { Ψ Q, R ) = { Ψ P, R res({ Ψ P, Q, P) = Q res({ Ψ Q, R, Ψ R ) = ΨQ R(S) = {{ Ψ P, Q, { Ψ Q, R,P, ΨR, { Ψ P, R,Q, Ψ Q Αυτό το σύνολο είναι μη-ικανοποιήσιμο γιατί περιέχει Q και Ψ Q. Άρα, βάσει της αρχής της επίλυσης, το S θα είναι μη-ικανοποιήσιμο. Θα μπορούσαμε να συνεχίσουμε υπολογίζοντας το R(R(S)) = {{ Ψ P, Q, { Ψ Q, R,P, ΨR, { Ψ P, R,Q, Ψ Q, Ψ P, R, H αρχή της επίλυσης μπορεί να διατυπωθεί και ως εξής: Έστω S ένα σύνολο όρων και R η πράξη της προσθήκης των όρων επίλυσης. Αν για κάποιο ακέραιο n, Ξ n R (S), τότε το S είναι μη-ικανοποιήσιμο. Η διαδικασία της επίλυσης μπορεί να αναπαρασταθεί και με τη μορφή δέντρου. Για παράδειγμα :

8 { P { ΨR Q Q Ένα δέντρο επίλυσης για ένα σύνολο S είναι ένα δυαδικό δέντρο όπου κάθε φύλλο περιέχει ένα μέλος του S και κάθε ενδιάμεσος κόμβος περιέχει τον όρο επίλυσης των άμεσων απογόνων του στο δέντρο. Αν επιπλέον η ρίζα του δέντρου περιέχει τον όρο τότε το δέντρο επίλυσης λέγεται δέντρο ανασκευής. Άν ένα σύνολο έχει ένα δέντρο ανασκευής, τότε είναι μη-ικανοποιήσιμο. Παράδειγμα Δείξτε ότι το σύνολο S = {{ P, Q,{ ΨP, Q,{ ΨQ, R,{ ΨQ, ΨR, S,{ ΨQ, ΨR, Ψ S είναι μη-ικανοποιήσιμο. { ΨQ, Ψ R, S { ΨQ, ΨR, ΨS { { { { Q Q Θεώρημα Η μέθοδος της επίλυσης είναι ορθή.

9 Απόδειξη Προκύπτει από το γεγονός ότι κάθε σύνολο προτασιακών σχημάτων είναι ισοδύναμο με ένα σύνολο όρων. Είναι η μέθοδος πλήρης. Ας υποθέσουμε ότι δεν υπάρχει δέντρο ανασκευής για κάποιο σύνολο S. Σημαίνει αυτό ότι το S είναι μη-ικανοποιήσιμο. Για να το δείξουμε αυτό, πρέπει να δείξουμε ότι κάθε μη-ικανοποιήσιμο σύνολο όρων έχει ένα δέντρο ανασκευής. Υπάρχει αλγόριθμος ο οποίος κατασκευάζει ένα δέντρο ανασκευής για ένα οποιοδήποτε μη-ικανοποιήσιμο σύνολο όρων. Αλγόριθμος Input: ένα σύνολο όρων S Output: αν το S είναι μη-ικανοποιήσιμο, ένα δένδρο ανασκευής για το S, διαφορετικά μήνυμα για την μη-εύρεση δέντρου. 1. Αν για κάποιο γράμμα Α, το Α και το Ψ A είναι μέλη του S, τότε ο αλγόριθμος τερματίζει επιστρέφοντας το δέντρο Α Α 2. Αν κάθε όρος του S περιέχει ένα αρνητικό γράμμα, τότε ο αλγόριθμος τερματίζει και δίνει ως αποτέλεσμα ένδειξη αποτυχίας. 3. Έστω C = { A1, A2, A3,..., A n ένας όρος του S όπου κάθε Α J είναι θετικό και έστω i := Αν ΨA i Ξ S, τότε έστω Ti το δέντρο με μόνο κόμβο το Ψ Ai. Πήγαινε στο βήμα Για κάθε όρο K Ξ S -{ C, έστω KΆ= K -{ Ψ A i. Το KΆκαλείται αντίστοιχος όρος του Κ. Αν ΨA i Ο K, τότε K Ά= K ). Έστω Si = { KΆ K Ξ S -{ C. 6. Καλούμε αναδρομικά τον αλγόριθμο με είσοδο S i. Αν ο αλγόριθμος επιστρέψει «αποτυχία», τότε επιστρέφουμε «αποτυχία» και τερματίζουμε. Αλλιώς ο αλγόριθμος επιστρέφει το δέντρο ανασκευής Ti Άκαι συνεχίζει στο βήμα Έστω T i το δέντρο που προκύπτει από το TΆ i με την αντικατάσταση κάθε φύλλου του T Ά i με τον όρο του S του οποίου είναι αντίστοιχο και αναμορφώνουμε το δέντρο. Αν η ρίζα του T i είναι, πήγαινε στο βήμα Αν i < n, τότε i = i + 1 και πήγαινε στο βήμα 4. Διαφορετικά πήγαινε στο βήμα Επιστρέφουμε το δέντρο.

10 T 1 { A1, A2,..., A n T 2 { A..., A ΨA 2 2, n T 3 { A3,..., A n ΨA 3 T n A n ΨA n

11 και τερματίζομε 10. Καλούμε αναδρομικά τον αλγόριθμο με είσοδο S -{ C. Παράδειγμα Ελέξτε αν το σύνολο S = {{ P, Q, R,{ ΨP, S, T,{ ΨS, U, ΨT,{ ΨP, ΨU,{ ΨQ, W,{ ΨQ, ΨW, ΨR είναι ικανοποιήσιμο. (1) Δεν υπάρχουν αντίθετα γράμματα στο S. (2) Υπάρχουν όροι που περιέχουν μόνο θετικά γράμματα. (3) C = { P, Q, R, i = 1 (4) ΨP ΟS (5) S 1 {{ S, T,{ S, U, T, U,{ Q, W,{ Q, W, R = Ψ Ψ Ψ Ψ Ψ Ψ Ψ (6) Αναδρομική κλήση του αλγορίθμου με είσοδο S1 (1 )- (2 )- (3 ) CΆ= { S, T, iά= 1 (4 ) ΨS ΟS1 (5 ) S11 = { U, ΨT, ΨU,{ ΨQ, W,{ ΨQ, ΨW, ΨR (6 ) Αναδρομική κλήση του αλγορίθμου με είσοδο S11 (1 ) S 11 περιέχει U και Ψ U. Επιστρέφουμε το δέντρο Y U (7 ) Αντικαθσιστούμε τον κόμβο U με τον αντίστοιχο όρο του. Προκύπτει το δέντρο T 11 { ΨS, U U ΨS (8 ) iά= 2 (4 ) ΨT Ξ S T : ΨT 1, 12 (8 ) iά= 2 (9 ) Επιστρέφουμε το δέντρο

12 { ΨS, U ΨU { S, T ΨS T ΨT (7)Το δέντρο αναμορφώνεται στο T1 { Ψ S, U { ΨP, ΨU { ΨP, S, T { ΨP, T { ΨP, ΨS ΨT ΨP (8) i = 2 (4) ΨQ ΟS (5) S2 = {{ ΨP, S, T,{ ΨS, U, ΨT,{ ΨP, ΨU, W, ΨW, ΨR

13 (6) Αναδρομική κλήση του αλγορίθμου με είσοδο S 2 (1 ) To S 2 περιέχει και W και Ψ W. Επιστρέφουμε το δέντρο W ΨW (7) Το δέντρο αναμορφώνεται στο T2 { Ψ Q, W { { ΨQ (8) i = 3 (4) ΨR Ξ S, T : ΨR 3 (8) i = 3 (9) Επιστρέφουμε το δέντρο

14 { Ψ S, U { ΨP, ΨU { ΨP, S, T { ΨP, ΨS { ΨP, T ΨT {P,Q,R ΨP { { ΨQ, ΨW {Q, R ΨQ R ΨR Πληρότητα Για να αποδείξουμε ότι η μέθοδος της επίλυσης είναι πλήρης μέθοδος, χρειαζόμαστε τα ακόλουθα : Λήμμα 1: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Απόδειξη: Θεωρείστε την ερμηνεία I που απεικονίζει την τιμή ψ σε κάθε γράμμα. Έστω C ένας όρος του συνόλου. Τότε, = I C γιατί το C περιέχει ένα αρνητικό γράμμα. Άρα το σύνολο είναι ικανοποιήσιμο. Για παράδειγμα, θεωρείστε το σύνολο, S = {{ ΨP, Q,{ ΨQ, R, S,{ ΨR, S, T, { Ψ S, T. Εύκολα βλέπουμε ότι το σύνολο είναι ικανοποιήσιμο: π.χ., για την ερμηνεία που απεικονίζει ψ σε όλα τα γράμματα. Λήμμα 2: Έστω ένα σύνολο όρων S και L κάποιο γράμμα για το οποίο: (α) S = L και (β) L Ο S. Τότε, το σύνολο SΆ= { C -{ L C Ξ S είναι μη-ικανοποιήσιμο. (Δικαιολογεί το βήμα (7) του αλγορίθμου). Απόδειξη: Έστω ότι το S Άείναι ικανοποιήσιμο και IΆερμηνεία που το ικανοποιεί. Αν η IΆκάνει το L ψευδές, τότε I : = IΆ. Διαφορετικά, έστω Ι η ερμηνεία η οποία διαφέρει από την IΆμόνο στο ότι Ή I L. Ο μόνος τρόπος για να είναι ένας όρος αληθής στην IΆ αλλά ψευδής στην Ι είναι με το να περιέχει το γράμμα L. Επομένως, αφού κανένας όρος

15 του SΆδεν περιέχει το L και η IΆικανοποιεί το SΆ, η Ι ικανοποιεί το SΆεπίσης. Η Ι πρέπει να ικανοποιεί το S γιατί με την προσθήκη του L ένας αληθής όρος δεν μπορεί να γίνει ψευδής. Άρα υπάρχει ερμηνεία για την οποία = I S και Ή I L, και επομένως S Ή L. Αφού όμως S = L, το SΆπρέπει να είναι μη-ικανοποιήσιμο. Με τη χρήση των παραπάνω λημμάτων μπορούμε να δείξουμε ότι ο αλγόριθμος είναι σωστός. Άρα, κάθε μη-ικανοποιήσιμο σύνολο όρων έχει ένα δένδρο ανασκευής. Το συμπέρασμα είναι ότι η μέθοδος της επίλυσης είναι πλήρης.

4.3 Ορθότητα και Πληρότητα

4.3 Ορθότητα και Πληρότητα 4.3 Ορθότητα και Πληρότητα Συστήματα αποδείξεων όπως η μορφολογική παραγωγή και η κατασκευή μοντέλων χρησιμοποιούνται για να δείξουμε την εγκυρότητα εξαγωγών συμπερασμάτων. Ένα σύστημα αποδείξεων μπορεί

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 4ο μέρος σημειώσεων: Ακολουθίες Επίλυσης, Επίλυση για όρους Horn, Λογικός Προγραμματισμός Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6

HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6 HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

Λογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση

Λογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση Λογική Δημήτρης Πλεξουσάκης Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης a. Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης

Διαβάστε περισσότερα

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά

Διαβάστε περισσότερα

ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012

ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες

Διαβάστε περισσότερα

HY Λογική Διδάσκων: Δ. Πλεξουσάκης

HY Λογική Διδάσκων: Δ. Πλεξουσάκης HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο,

Διαβάστε περισσότερα

Πληρότητα της μεθόδου επίλυσης

Πληρότητα της μεθόδου επίλυσης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον

Διαβάστε περισσότερα

Επανάληψη. ΗΥ-180 Spring 2019

Επανάληψη. ΗΥ-180 Spring 2019 Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 Α) ΘΕΩΡΙΑ Η Μορφολογική Παραγωγή ανήκει στα συστήματα παραγωγής, δηλαδή σε αυτά που παράγουν το συμπέρασμα με χρήση συντακτικών κανόνων λογισμού. Η

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 21: Υπολογισμοί ΜΤ - Αναδρομικές Γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός

Διαβάστε περισσότερα

Εισαγωγή στις Βάσεις Δεδομζνων II

Εισαγωγή στις Βάσεις Δεδομζνων II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Εισαγωγή στις Βάσεις Δεδομζνων II Ενότητα: Λογική και Θεωρία Συνόλων Διδάσκων: Πηγουνάκης Κωστής ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 5: Ασκήσεις Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 8 ης διάλεξης

Ασκήσεις μελέτης της 8 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 7β: Όρια Αλγόριθμων Ταξινόμησης Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos.

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τεχνητή Νοημοσύνη Ι Ενότητα 7:Προτασιακή Λογική Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Προτασιακή Λογική Σκοποί ενότητας 2 Περιεχόμενα ενότητας Προτασιακή

Διαβάστε περισσότερα

ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ

ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #8: ΑΞΙΟΛΟΓΗΣΗ ΣΧΕΔΙΟΥ ΜΕΤΑΒΑΣΗΣ ΚΑΙ ΔΙΔΑΚΤΙΚΩΝ ΠΡΑΚΤΙΚΩΝ

Διαβάστε περισσότερα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Περιεχόμενα Ορισμός και λειτουργία των μηχανών Turing Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Επ. Καθ. Π. Κατσαρός Τμήμ

Περιεχόμενα Ορισμός και λειτουργία των μηχανών Turing Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Επ. Καθ. Π. Κατσαρός Τμήμ Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 2: Εργαλεία Θετικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 8 : Αυτόματα NFA - DFA. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 8 : Αυτόματα NFA - DFA. Αλέξανδρος Τζάλλας Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 8 : Αυτόματα NFA - DFA Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης. 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης. 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus) Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #7: Μονοτονία- Ακρότατα-Αντιγραφή Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

τατιςτική ςτην Εκπαίδευςη II

τατιςτική ςτην Εκπαίδευςη II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 24: Μη Ντεντερμινιστικές Μηχανές Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1,

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1, Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 10: Συνδυασμοί μηχανών Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 13: Ελαχιστοποίηση αυτομάτων Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Β: Απλή Τυχαία Δειγματοληψία για την εκτίμηση ποσοστού Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ

Διαβάστε περισσότερα

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ. Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ. Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 3: Εργαλεία Κανονιστικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Ενότητα 1: Εισαγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η.

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Αλγόριθμοι ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Ανάπτυξη Λογισμικού Η διαδικασία ανάπτυξης λογισμικού μπορεί να παρομοιαστεί

Διαβάστε περισσότερα

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μεταγλωττιστές. Ενότητα 5: Λεκτική ανάλυση (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Μεταγλωττιστές. Ενότητα 5: Λεκτική ανάλυση (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταγλωττιστές Ενότητα 5: Λεκτική ανάλυση (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Γνωστική Ψυχολογία 3

Γνωστική Ψυχολογία 3 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #2: Μνημονικές Δομές και Λειτουργίες Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 19: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης έχουν ληφθεί

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 8: Επεξεργασία και ερμηνεία αξιολογικών δεδομένων του μαθητή

ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 8: Επεξεργασία και ερμηνεία αξιολογικών δεδομένων του μαθητή ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 8: Επεξεργασία και ερμηνεία αξιολογικών δεδομένων του μαθητή Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ

Διαβάστε περισσότερα

Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική

Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 4: Δομές Ελέγχου Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 17: Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 13η: Κλείσιμο Συνόλου Γνωρισμάτων - Ελάχιστη κάλυψη - Αποσύνθεση - Συναρτησιακές Εξαρτήσεις Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Α: Απλή Τυχαία Δειγματοληψία Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #7: Ευφυής Ελεγκτής Μέρος Α Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 1

Λύσεις Σειράς Ασκήσεων 1 Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 3 Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Εφαρμογές της Λογικής στην Πληροφορική

Εφαρμογές της Λογικής στην Πληροφορική Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Εφαρμογές της Λογικής στην Πληροφορική Ενότητα 3 Πέτρος Στεφανέας, Γεώργιος Κολέτσος Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 4: Μη-ντετερμινιστικά πεπερασμένα αυτόματα με ε-μεταβάσεις Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Συνάρτηση Μεταφοράς Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 10 Βάσεις Groebner ενός ιδεώδους 10.1 Τρίτο μέρος Επαναλαμβάνουμε

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός

Δομημένος Προγραμματισμός ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Δομημένος Προγραμματισμός Ενότητα: Συναρτήσεις θεωρία Δ. Ε. Μετάφας Τμ. Ηλεκτρονικών Μηχ. Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6α: Αναζήτηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπ Θεωρία Υπολογισμού Ενότητα 11: Κλειστότητα, ΠΑ & καν. εκφράσεις Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 4: Μετασχηματισμοί Ισοδυναμίας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Εισαγωγικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΔΡΔ: Διαγράμματα Ροής Δεδομένων

ΔΡΔ: Διαγράμματα Ροής Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΡΔ: Διαγράμματα Ροής Δεδομένων Τεχνολογία Πολιτισμικού Λογισμικού Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς ΤΕΙ Ιονίων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΚΕΦΑΛΑΙΟ 3: ΑΝΤΙΚΕΙΜΕΝΑ, ΣΚΟΠΟΙ ΚΑΙ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ Διδάσκων: Βασίλης Γραμματικόπουλος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΠΡΟΣΧΟΛΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ

Διαβάστε περισσότερα

Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF

Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2018 Κρεατσούλας

Διαβάστε περισσότερα

Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11)

Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11) Ενότητα #5: Συμπέρασμα Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα