ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Βασική Γενετική. Χαρτογράφηση γονιδίων στους ευκαρυωτικούς οργανισμούς
|
|
- Ἀριδαίος Κακριδής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Βασική Γενετική Χαρτογράφηση γονιδίων στους ευκαρυωτικούς οργανισμούς Διδάσκουσα: Επίκουρη Καθηγήτρια Αμαλία-Σοφία Αφένδρα
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.
3 Χαοςξγοάτηρη γξμιδίχμ ρςξσπ εσκαοσχςικξύπ ξογαμιρμξύπ με ποξηγμέμεπ μεθόδξσπ
4 Γεμεςική υαοςξγοάτηρη ρε καςώςεοξσπ εσκαοσχςικξύπ ξογαμιρμξύπ Αμάλσρη ςεςοάδχμ
5 Καςώςεοξι απλξειδείπ εσκαοσχςικξί ξογαμιρμξί Neurospora crassa (μξύυλα φχμιξύ) Saccharomyces cerevisiae (μαγιά μπύοαπ, ζύμη αοςξπξιΐαπ) Chlamydomonas reinhardtii (τύκι)
6 Κύκλξπ ζχήπ ςξσ απλξειδξύπ αρκξμύκηςα Neurospora crassa 2 ρσζεσκςικξί ςύπξι: A & a
7 Κύκλξπ ζχήπ ςξσ Saccharomyces cerevisiae 2 ρσζεσκςικξί ςύπξι (mating types): MATa & MATα Peter J. Russell, igenetics: Copyright Pearson Education, Inc., publishing as Benjamin Cummings.
8 Απλξειδείπ ξογαμιρμξί Ποξψόμςα μείχρηπ Εύκξλη αμάλσρη Απλξειδείπ απόγξμξι Απλξειδή κύςςαοα ςξπξθεςημέμα αμά ςεςοάδεπ ρε αρκξύπ ή ράκξσπ Εκτοάζεςαι έμαπ γξμιδιακόπ δείκςηπ
9 Αμάλσρη ςεςοάδχμ Χαοςξγοάτηρη γξμιδίχμ με απεσθείαπ αμάλσρη ςχμ ποξψόμςχμ ςηπ μείχρηπ. Ασςά βοίρκξμςαι έγκλειρςα ρςξσπ αρκξύπ αμά ςεςοάδεπ. Καςάλληλη απξμόμχρη αρκξρπξοίχμ Αρκξί N. crassa: 8 αρκξρπόοια Αρκξί S. cerevisiae: 4 αρκξρπόοια
10 Αμάλσρη ςεςοάδχμ: Η διάςανή ςξσπ αμςιρςξιυεί άμερα ρςξμ ποξραμαςξλιρμό ςχμ ςερράοχμ υοχμαςίδχμ κάθε ζεύγξσπ υοχμξρχμάςχμ ρςξμ διπλξειδή πσοήμα εμόπ ζσγχςξύ ρςη μεςάταρη Ι. Ασςό μαπ επιςοέπει μα υαοςξγοατήρξσμε: Τημ απόρςαρη μεςανύ ςχμ γξμιδίχμ & ςχμ κεμςοξμεοώμ ςξσπ Τη απόρςαρη μεςανύ δύξ ρσμδεδεμέμχμ γξμιδίχμ
11 Κύκλξπ ζχήπ ςξσ απλξειδξύπ αρκξμύκηςα Neurospora crassa 2 ρσζεσκςικξί ςύπξι: A & a
12 Ποξρδιξοιρμόπ ςηπ απόρςαρηπ γξμιδίξσ-κεμςοξμεοξύπ ρςξ γεμεςικό ςόπξ ςξσ ρσζεσκςικξύ ςύπξσ ρςη Neurospora. (α) Παοαγχγή εμόπ αρκξύ από έμα διπλξειδέπ ζσγχςό ρςξ ξπξίξ δε ρσμέβη διαρκελιρμόπ μεςανύ ςξσ κεμςοξμεοξύπ και ςξσ γεμεςικξύ ςόπξσ ςξσ ρσζεσκςικξύ ςύπξσ. Διαυχοιρμόπ ποώςηπ διαίοερηπ για ςα αλληλόμξοτα ςξσ ρσζεσκςικξύ ςύπξσ.
13 Τα κεμςοξμεοή δεμ διαυχοίζξμςαι μέυοι λίγξ ποιμ από ςη 2 η μειχςική διαίοερη, επξμέμχπ: Σπόοια ρςξ πάμχ μέοξπ ςξσ αρκξύ: Κεμςοξμεοέπ ςξσ εμόπ γξμέα Σπόοια ρςξ κάςχ μέοξπ ςξσ αρκξύ: Κεμςοξμεοέπ ςξσ άλλξσ γξμέα Διαυχοιρμόπ ποώςηπ διαίοερηπ: ξ διαυχοιρμόπ μεςανύ ςχμ δύξ αλληλξμόοτχμ ρσμβαίμει καςά ςη διάοκεια ςηπ μείχρηπ Ι Διαυχοιρμόπ δεύςεοηπ διαίοερηπ: ξ διαυχοιρμόπ μεςανύ ςχμ δύξ αλληλξμόοτχμ ρσμβαίμει καςά ςη διάοκεια ςηπ μείχρηπ ΙΙ
14 Ποξρδιξοιρμόπ ςηπ απόρςαρηπ γξμιδίξσκεμςοξμεοξύπ ρςξ γεμεςικό ςόπξ ςξσ ρσζεσκςικξύ ςύπξσ ρςη Neurospora. (β) Παοαγχγή αρκώμ μεςά από έμα μξμό διαρκελιρμό ξ ξπξίξπ ρσμβαίμει μεςανύ ςξσ γεμεςικξύ ςόπξσ ςξσ ρσζεσκςικξύ ςύπξσ και ςξσ κεμςοξμεοξύπ. Φαίμξμςαι ςα υοχμξρώμαςα μεςά ςημ ξλξκλήοχρη ςξσ διαρκελιρμξύ. Οι ςέρρεοιπ ςύπξι αρκώμ παοάγξμςαι ρε ίρεπ αμαλξγίεπ.
15 Απόρςαρη γξμιδίξσ κεμςοξμέοξσπ: Πξρξρςό ςχμ ςεςοάδχμ 2 ηπ διαίοερηπ / 2
16 Αμάλσρη ςεςοάδχμ: Η διάςανή ςξσπ αμςιρςξιυεί άμερα ρςξμ ποξραμαςξλιρμό ςχμ ςερράοχμ υοχμαςίδχμ κάθε ζεύγξσπ υοχμξρχμάςχμ ρςξμ διπλξειδή πσοήμα εμόπ ζσγχςξύ ρςη μεςάταρη Ι. Ασςό μαπ επιςοέπει μα υαοςξγοατήρξσμε: Τημ απόρςαρη μεςανύ ςχμ γξμιδίχμ & ςχμ κεμςοξμεοώμ ςξσπ Τημ απόρςαρη μεςανύ δύξ ρσμδεδεμέμχμ γξμιδίχμ
17 Παοαγχγή ςοιώμ ειδώμ ςεςοάδχμ
18 Αμάλσρη ςεςοάδχμ: Ποξρδιξοίζει, αμ δύξ γξμίδια είμαι μεςανύ ςξσπ ρσμδεδεμέμα Αμάλξγα με ςξ αμ ςα γξμίδια είμαι ρσμδεδεμέμα ή όυι (εδοάζξμςαι δηλαδή ρε διατξοεςικό υοχμόρχμα) παοάγεςαι και κάθε ςύπξπ ςεςοάδαπ.
19 Τύπξπ ςεςοάδχμ πξσ ποξκύπςει από διαρςαύοχρη με δύξ γξμίδια ρε διατξοεςικό υοχμόρχμα ςξ καθέμα
20 Όςαμ ςα δύξ γξμίδια βοίρκξμςαι ςξ καθέμα ρε διατξοεςικό υοχμόρχμα, είμαι δηλαδή μεςανύ ςξσπ αρύμδεςα, ςόςε: η ρσυμόςηςα ςχμ ςεςοάδχμ PD ιρξύςαι με ασςή ςχμ ςεςοάδχμ NPD Επξμέμχπ: Τξ ρύμξλξ ςχμ πιθαμώμ θσγαςοικώμ ςύπχμ απξςελείςαι από: 50 % γξμικξύπ 50 % αμαρσμδσαρμέμξσπ
21 Ποξέλεσρη ςχμ διατξοεςικώμ ςύπχμ ςχμ ςεςοάδχμ πξσ ποξκύπςξσμ από μια διαρςαύοχρη α b α+b+ ρςημ ξπξία ςα δύξ γξμίδια εδοάζξμςαι ρςξ ίδιξ υοχμόρχμα.
22
23 Αμάλσρη ςεςοάδχμ Ετόρξμ γμχοίζξσμε όςι ςα δύξ γξμίδια είμαι ρσμδεδεμέμα: Χοηριμξπξιξύμςαι αοιθμξί ςεςοάδχμ Αμαλύξμςαι ςύπξι ςεςοάδχμ αμςί αςξμικώμ απξγόμχμ ½ T + NPD mu = x 100 Σ Σ: ξλικόπ αοιθμόπ ςεςοάδχμ PD (parental ditype): ποξγξμικόπ γξμόςσπξπ δύξ ςύπχμ T (tetratype γξμόςσπξπ): ςερράοχμ ςύπχμ NPD (nonparental ditype): μη ποξγξμικόπ γξμόςσπξπ δύξ ςύπχμ
24 Μιςχςικόπ αμαρσμδσαρμόπ
25 Μιςχςικόπ αμαρσμδσαρμόπ Σσμβαίμει καςά ςη διάοκεια ςηπ μίςχρηπ Σςάδιξ: παοόμξιξ με ασςό ςχμ ςερράοχμ υοχμαςίδχμ ςηπ μείχρηπ Πξλύ πιξ ρπάμιξ ταιμόμεμξ χπ ποξπ ςξ διαρκελιρμό καςά ςη μείχρη Παοαςηοήθηκε για ποώςη τξοά από ςξμ Curt Stern (1936)
26 Ο διαυχοιρμόπ ςξσ ταιμξςύπξσ ρςημ επιτάμεια ςξσ ρώμαςξπ εμόπ ρςελέυξσπ y + sn / y sn + ςηπ Drosophila. αλληλόμξοτξ sn (singed): κξμςέπ, ρςοιμμέμεπ (ραμ καφαλιρμέμεπ) ρμήοιγγεπ αλληλόμξοτξ y (yellow): κίςοιμξ υοώμα ρώμαςξπ Drosophila με κίςοιμξ υοώμα ρώμαςξπ: κίςοιμεπ ρμήοιγγεπ Drosophila με γκοι υοώμα ρώμαςξπ: μαύοεπ ρμήοιγγεπ
27 Παοαγχγή ςηπ δίδσμηπ κηλίδαπ και ςηπ μξμήπ κίςοιμηπ κηλίδαπ με μιςχςικό διαρκελιρμό.
28
29 Μιςχςικόπ αμαρσμδσαρμόπ ρςξ μύκηςα Aspergillus nidulans Σσμβαίμει καςά ςη διάοκεια ςηπ μίςχρηπ Σςάδιξ: παοόμξιξ με ασςό ςχμ ςερράοχμ υοχμαςίδχμ ςηπ μείχρηπ Πξλύ πιξ ρπάμιξ ταιμόμεμξ χπ ποξπ ςξ διαρκελιρμό καςά ςη μείχρη Παοαςηοήθηκε για ποώςη τξοά από ςξμ Curt Stern (1936)
30 Ποάριμη διπλξειδήπ απξικία Aspergillus Γξμόςσπξπ: w ad+ prο paba+ y+ bi/w+ ad pro+ paba y bi+ Διακοίμεςαι έμαπ κίςοιμξπ και έμαπ άρποξπ ςξμέαπ.
31 Πιθαμό γεγξμόπ μιςχςικξύ διαρκελιρμξύ μεςανύ ςχμ γεμεςικώμ ςόπχμ pro και paba Πιθαμό απξςέλερμα: ρυημαςιρμόπ εμόπ διπλξειδξύπ κίςοιμξσ ςξμέα ρςξ ποάριμξ διπλξειδέπ ρςέλευξπ Aspergillus
32
33 Παοαγχγή διπλξειδξύπ κίςοιμξσ ςξμέα ρε έμα ποάριμξ ρςέλευξπ Aspergillus με μιςχςικό διαρκελιρμό μεςανύ ςχμ γεμεςικώμ ςόπχμ paba και y
34 Χαοςξγοάτηρη ςχμ γξμιδίχμ ςξσ αμθοώπξσ
35 Χαοςξγοάτηρη ςχμ γξμιδίχμ ςξσ αμθοώπξσ Δεμ ποαγμαςξπξιξύμςαι διαρςασοώρειπ Χοηριμξπξιξύμςαι ςα γεμεαλξγικά δέμςοα για ςξμ ποξρδιξοιρμό ςξσ ςοόπξσ κληοξμόμηρηπ (εμςξπιρμόπ πξλλώμ γξμιδίχμ επί ςξσ Χ) Δεμ αμςλξύμςαι πληοξτξοίεπ για ςα ασςξρχμικά γξμίδια (Σήμεοα είμαι γμχρςή η μξσκλεξςιδική αλληλξσυία ςξσ γξμιδιώμαςξπ ςξσ αμθοώπξσ)
36 Χαοςξγοάτηρη ςχμ γξμιδίχμ ςξσ αμθοώπξσ με αμάλσρη αμαρσμδσαρμξύ Υπξλξγιρμόπ ςηπ ρσυμόςηςαπ αμαρσμδσαρμξύ για δύξ αμθοώπιμα γξμίδια ρσμδεδεμέμα με ςξ Χ με αμάλσρη ςχμ αορεμικώμ απξγόμχμ μιαπ γσμαίκαπ εςεοόζσγηπ και για ςα δύξ γξμίδια. Εταομξγέπ: σπξςελέπ γξμίδιξ g για ςημ αυοχμαςξφία ρςξ ποάριμξ & γξμίδιξ h ςηπ αιμξτιλίαπ Α Απόρςαρη μεςανύ ςξσπ = 8 υαοςξγοατικέπ μξμάδεπ
37 Η μέθξδξπ ςηπ ςιμήπ lod για ςημ αμάλσρη ςηπ ρύμδερηπ ςχμ γξμιδίχμ ςξσ αμθοώπξσ Lod score method: Newton Morton, 1955 Lod: logarithm of odds Χοηριμξπξιξύμςαι ρσγκεμςοχςικά δεδξμέμα από έμαμ αοιθμό γεμεαλξγικώμ δέμςοχμ Η μέθξδξπ ρσγκοίμει δύξ πιθαμόςηςεπ: ςημ πιθαμόςηςα ςα απξςελέρμαςα ςξσ γεμεαλξγικξύ δέμςοξσ μα έυξσμ ποξκύφει λόγχ ςηπ ρύμδερηπ 2 γξμιδίχμ με μία ρσγκεκοιμέμη ρσυμόςηςα αμαρσμδσαρμξύ (P a ) ςημ πιθαμόςηςα ςα απξςελέρμαςα ςξσ γεμεαλξγικξύ δέμςοξσ μα έυξσμ ποξκύφει υχοίπ μα σπάουει ρύμδερη (P b ) Log 10 (P a /P b ) Απξδεκςή: Log 10 > +3, ή Log 10 = +3 Ασςό ρημαίμει όςι ξι πιθαμόςηςεπ σπέο ςηπ ρύμδερηπ είμαι 10 3 /1.
38 Γεμεςικξί υάοςεπ σφηλήπ πσκμόςηςαπ ςχμ γξμιδίχμ ςξσ αμθοώπξσ Γεμεςικόπ υάοςηπ δύξ γξμιδίχμ: απλό Γεμεςικόπ υάοςηπ μεοικώμ γξμιδίχμ: πξλσπλξκόςεοξ Αογή διαδικαρία Δεμ σπάουξσμ αοκεςά γμχρςα γξμίδια ςξσ αμθοώπξσ Δείκςεπ DNA (DNA markers): Πεοιξυέπ ρςξ γξμιδίχμα ςξσ αμθοώπξσ πξσ διατέοξσμ μεςανύ ςχμ αςόμχμ Η διατξοά είμαι ςέςξια πξσ μπξοεί μα ποξρδιξοιρςεί με μξοιακή αμάλσρη.
39 Γεμεςικόπ υάοςηπ σφηλήπ πσκμόςηςαπ με μικοξδξοστόοξσπ πξσ εμςξπίζξμςαι ρε υοχμξρχμικξύπ ςόπξσπ
40 From Griffiths et al. Introduction to Genetic Analysis W. H. Freeman 2000
41 Φθξοίζχμ σβοιδιρμόπ in situ (Fluorescence in situ hybridization, FISH) Αμιυμεσςέπ DNA ρημαρμέμξι με τθξοίζξσρεπ εμώρειπ σβοιδξπξιήθηκαμ με αμθοώπιμα μεςαταρικά υοχμξρώμαςα
42 Καςαρκεσή εμόπ σβοιδίξσ ακςιμξβξλημέμχμ κσςςάοχμ Αμθοώπιμα κύςςαοα ακςιμξβξλξύμςαι με ακςίμεπ Χ. Τα υοχμξρώμαςα ςεμαυίζξμςαι ρε μικοόςεοα ςμήμαςα. Τα κύςςαοα θαμαςώμξμςαι, αλλά ςα υοχμξρχμικά ςμήμαςα «διαρώζξμςαι» με ρύμςηνη ςχμ ακςιμξβξλημέμχμ κσςςάοχμ με κύςςαοα ςοχκςικώμ. Τα υοχμξρχμικά ςμήμαςα εμρχμαςώμξμςαι ρςα υοχμξρώμαςα ςχμ ςοχκςικώμ.
43 ick on any chromosome below to see a list of selected traits and disorders associated with that chromosome.
44
45 Τέλος Ενότητας
46 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
47 Σημειώματα
48 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1.0 διαθέσιμη εδώ.
49 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκουσα: Επίκουρη Καθηγήτρια Αμαλία-Σοφία Αφένδρα. «Βασική Γενετική. Χαρτογράφηση γονιδίων στους ευκαρυωτικούς οργανισμούς». Έκδοση: 1.0. Ιωάννινα Διαθέσιμο από τη δικτυακή διεύθυνση:
50 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1]
ΔΙΑΒΗΣΗ -ΠΑΙΔΙ ΚΑΙ ΔΙΑΣΡΟΦΗ
ΔΙΑΒΗΣΗ -ΠΑΙΔΙ ΚΑΙ ΔΙΑΣΡΟΦΗ Ο ξοιρμόπ Ποξήλθε από ςημ ελλημική λένη «διαβαίμχ» όςαμ ξ Αοεςαίειξπ από ςημ Καππαδξκία παοαςήοηρε όςι μεγάλεπ πξρόςηςεπ σγοώμ πέομαγαμ ρςα ξύοα, «διαβαίμξμςαπ» όλξ ςξ ρώμα.
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ ο ΔΙΑΓΩΝΙΜΑ ΘΔΜΑΣΑ ΘΔΜΑ Α Σςιπ ημιςελείπ ποξςάρειπ - 4 μα γοάφεςε ρςξ ςεςοάδιό ραπ ςξμ αοιθμό ςηπ ποόςαρηπ και δίπλα ςξ γοάμμα πξσ αμςιρςξιυεί ρςη τοάρη, η ξπξία
ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ 2 ο ΔΙΑΓΩΝΙΣΜΑ ΘΔΜΑΤΑ ΘΔΜΑ Α Σςιπ ημιςελείπ ποξςάρειπ 1-4 μα γοάφεςε ρςξ ςεςοάδιό ραπ ςξμ αοιθμό ςηπ ποόςαρηπ και δίπλα ςξ γοάμμα πξσ αμςιρςξιυεί ρςη τοάρη,
ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ
4 o ΔΙΑΓΩΝΙΜΑ ΜΑΡΣΙΟ 05: ΘΔΜΑΣΑ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ 4o ΔΙΑΓΩΝΙΣΜΑ ΘΔΜΑΤΑ ΘΔΜΑ Α Στις ημιτελείς προτάσεις - 4 μα γράψετε στο τετράδιό σας τομ αριθμό της πρότασης και δίπλα το γράμμα
Μικροβιολογία & Υγιεινή Τροφίμων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μικροβιολογία & Υγιεινή Τροφίμων Μικροοργανισμοί που ελέγχονται ανά είδος τροφίμου Διδάσκοντες: Καθ. Χρυσάνθη Παπαδοπούλου, Λέκτορας Ηρακλής Σακκάς Άδειες
ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΣΩΝ Γ.Ν. ΑΜΥΙΑ
ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΣΩΝ Γ.Ν. ΑΜΥΙΑ 6 /3 /2018 : Όρια: ένδειξη Ψυχολογικής Υγείας ή σημάδι ιδιότροπου ανθρώπου; ( Μπάνκοβ Ιβάν / ΠΕ Ψυχολόγος, Γνωσιακής- Συμπεριφορικής Κατεύθυνσης ) ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ:
ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β
4 ξ ΔΙΑΓΩΝΙΜΑ ΑΠΡΙΛΙΟ 05: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΔΝΔΔΙΚΤΙΚΔΣ ΑΠΑΝΤΗΣΔΙΣ ΘΔΜΑ Α. γ.. α. 3. γ. 4. δ. 5. α-λ, β-, γ-, δ-, ε-λ ΘΔΜΑ Β. Η ρχρςή απάμςηρη
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ
4 o ΔΙΑΓΩΝΙΜΑ ΜΑΡΣΙΟ 016: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ 4 ο ΔΙΑΓΩΝΙΜΑ ΕΝΔΕΙΚΣΙΚΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑ Α 1. β.. δ.. δ. 4. β. 5. α-, β-, γ-λ, δ-λ, ε-. ΘΕΜΑ B 1. χρςή απάμςηρη είμαι
ATTRACT MORE CLIENTS ΒΕ REMARKABLE ENJOY YOUR BUSINESS ΣΕΛ. 1
ATTRACT MORE CLIENTS ΒΕ REMARKABLE ENJOY YOUR BUSINESS ΣΕΛ. 1 Εσυαοιρςώ πξσ καςεβάραςε ασςό ςξ e-book Ασςό ρημαίμει όςι έυεςε ήδη κάπξια ιρςξρελίδα ή έμα ηλεκςοξμικό καςάρςημα (e-shop) ή δεμ έυεςε ςίπξςα
ΠΟΤΔΑΣΗΡΙΟ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΑ. Δραγάτςη 8, Πειραιάσ Ιερ. Πατριάρχου 45, Αμπελόκηποι. 693.45.22.273 info@neoellinikiglossa.gr.
ΠΟΤΔΑΣΗΡΙΟ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΑ Δραγάτςη 8, Πειραιάσ Ιερ. Πατριάρχου 45, Αμπελόκηποι 693.45.22.273 info@neoellinikiglossa.gr e-learning Διδαρκαλία ςξσ μαθήμαςξπ ςηπ Νεξελλημικήπ Γλώρραπ από απόρςαρη ΠΡΟΕΣΟΙΜΑΙΑ
Φσζική Γ Λσκείοσ. Θεηικής & Τετμολογικής Καηεύθσμζης. Μηταμικά Κύμαηα Αρμομικό Κύμα - Φάζη. Οκτώβρης Διδάζκωμ: Καραδημηηρίοσ Μιτάλης
Φσζική Γ Λσκείοσ Θεηικής & Τετμολογικής Καηεύθσμζης Μηταμικά Κύμαηα Αρμομικό Κύμα - Φάζη Οκτώβρης - 2011 Διδάζκωμ: Καραδημηηρίοσ Μιτάλης Πηγή: Study4exams.gr Β.1 Δύξ μηυαμικά κύμαςα ίδιαπ ρσυμόςηςαπ διαδίδξμςαι
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ 3 ο ΔΙΑΓΩΝΙΜΑ ΕΝΔΕΙΚΣΙΚΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑ Α 1. γ.. α. 3. β. 4. γ. 5. α-λ, β-, γ-, δ-, ε-λ. ΘΕΜΑ B 1. ωρςή απάμςηρη είμαι η (α). Ο παοαςηοηςήπ πληριάζει κιμξύμεμξπ
Επαμαληπτική Άσκηση Access
Επαμαληπτική Άσκηση Access 1. Καςεβάρςε ρςξμ σπξλξγιρςή ραπ ςξ ρσμπιερμέμξ αουείξ school.zip και απξρσμπιέρςε ςξ ρε δικό ραπ τάκελξ. 2. Αμξίνςε ςξ αουείξ school.mdb ρςημ Access 3. Θα βοείςε μέρα ςξσπ πίμακεπ:
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ ο ΔΙΑΓΩΝΙΜΑ ΕΝΔΕΙΚΣΙΚΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑ Α. β.. α.. δ. 4. α. 5. α-λ, β-, γ-λ, δ-λ, ε-. ΘΕΜΑ B. ωρςή απάμςηρη είμαι η (β). Ο λόγξπ ςξ πεοιόδωμ είμαι ίρξπ με: m T ή T
Services SMART. Messaging. Bulk SMS. SMS messaging services THE + Services. www.ipdigital.gr. IP Digital
Bulk SMS Services THE + SMART Messaging Services IP Digital Οοταμίδξσ 6 54624, Θερραλξμίκη info@ipdigital.gr T: 2310 511 396 F: 2315 151 166 SMS messaging services www.ipdigital.gr Η Εηαιρεία H IP Digital
Διδακτική τωμ Μαθηματικώμ (Β Φάση ΔΙ.ΜΔ.Π.Α)
ΠΑΙΔΑΓΩΓΙΚΗ ΦΟΛΗ ΥΛΩΡΙΝΑ Δ ι δ α σ κ α λ ί α σ τ η Δ Δ η μ ο τ ι κ ο ύ Ν ο μ ί σ μ α τ α κ α ι Δ ε κ α δ ι κ ο ί Α ρ ι θ μ ο ί Διδακτική τωμ Μαθηματικώμ (Β Φάση ΔΙ.ΜΔ.Π.Α) Επ ιιμέλε ιια Εργασ ίίας Καοαμαμίδξσ
Πλξήγηρη ρςξ διαδίκςσξ
σρςήμξσμε Θεςική ποξρτξοά ςξσ διαδικςύξσ Θεςική ποξρτξοά ςξσ διαδικςύξσ γμώρη εκπαίδεσρη πληοξτξοίεπ Θεςική ποξρτξοά ςξσ διαδικςύξσ επικξιμχμία Θεςική ποξρτξοά ςξσ διαδικςύξσ εμημέοχρη Θεςική ποξρτξοά
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ 1 ο ΔΙΑΓΩΝΙΜΑ ΘΔΜΑΣΑ ΘΔΜΑ Α Σςιπ ημιςελείπ ποξςάρειπ 1-4 μα γοάφεςε ρςξ ςεςοάδιό ραπ ςξμ αοιθμό ςηπ ποόςαρηπ και δίπλα ςξ γοάμμα πξσ αμςιρςξιυεί ρςη τοάρη, η ξπξία
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Κετάλαιξ 6. Τβοιδικέπ Δξμέπ Δεδξμέμχμ
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Υβοιδικέπ Δξμέπ Δεδξμέμχμ Κετάλαιξ 6 ΤΒΡΙΔΙΚΔ ΔΟΜΔ ΔΔΔΟΜΔΝΩΝ Σσμδσάζξσμ ςη υοήρη δεικςώμ και πιμάκχμ Ψητιακά Δέμδοα TRIES Interpolation Search Tree TRIE Σξ ζηςξύμεμξ: Απξθήκεσρη και αμάκςηρη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Βασική Γενετική. Η γενετική των βακτηρίων & των βακτηριοφάγων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Βασική Γενετική Η γενετική των βακτηρίων & των βακτηριοφάγων Διδάσκουσα: Επίκουρη Καθηγήτρια Αμαλία-Σοφία Αφένδρα Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
2 η ΕΝΟΤΗΤΑ Απεικόνιση και καταγραφή των Δεδομένων Ρύθμιση σήματος
ΣΕΙ ΑΝΑΣΟΛΙΚΗ ΜΑΚΕΔΟΝΙΑ ΚΑΙ ΘΡΑΚΗ- ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Σ.Ε. Αυτοματοποίηση Αισθητηρίωμ Συστημάτωμ 2 η ΕΝΟΤΗΤΑ Απεικόνιση και καταγραφή των Δεδομένων Ρύθμιση σήματος Διδάσκωμ: Κωμ/μος Τσίκμας Δρ.
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ελαστικότητα και εφαρμογές Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΣΥΠΥΔΑ. ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοθόπων. www. sypyda.gr
ΣΥΠΥΔΑ ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοθόπων www. sypyda.gr Κύπιορ ζηόσορ ηος έπγος ΣΥΠΥΔΑ ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοπόθων Κύοιξπ ρςόυξπ ςξσ έογξσ ΣΥΠΥΔΑ, ςξ ξπξίξ υοημαςξδξςείςαι
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Κξιμχμικά δίκςσα ρςξ Internet Η μέα ποόκληρη ρςημ επικξιμχμία για ςη μέα γεμιά
1 ΠΑΝΔΠΙΣΗΜΙΟ ΠΔΙΡΑΙΩ ΣΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗ ΓΙΟΙΚΗΗ & ΣΔΧΝΟΛΟΓΙΑ Κξιμχμικά δίκςσα ρςξ Internet Η μέα ποόκληρη ρςημ επικξιμχμία για ςη μέα γεμιά Κύοιξ Θέμα Η έθθαλζε ηωλ θνηλωληθώλ δηθηύωλ ζην δηαδίθηπν ζα
ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΔΝΔΔΙΚΤΙΚΔΣ ΑΠΑΝΤΗΣΔΙΣ ΘΔΜΑ Α. γ.. α. 3. γ.. β. 5. α-λ, β-, γ-, δ-, ε-λ. ΘΔΜΑ Β. ωρςή είμαι η απάμςηρη β. Δταομόζξσμε ςξ μόμξ ςξσ Snell για ςξ ρημείξ
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» 1 o ΔΙΑΓΩΝΙΜΑ ΙΑΝΟΤΑΡΙΟ 2015: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ
o ΔΙΑΓΩΝΙΜΑ ΙΑΝΟΤΑΡΙΟ 05: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. β.. α. 3. δ. 4. α. 5. α-λ, β-, γ-λ, δ-λ, ε-. ΘΕΜΑ B. Η ρωρςή απάμςηρη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Βασική Γενετική. Χαρτογράφηση γονιδίων στους ευκαρυωτικούς οργανισμούς
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Βασική Γενετική Χαρτογράφηση γονιδίων στους ευκαρυωτικούς οργανισμούς Διδάσκουσα: Επίκουρη Καθηγήτρια Αμαλία-Σοφία Αφένδρα Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11η: Οργανισμοί της Εκκλησίας της Ελλάδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ 4 ο ΔΙΑΓΩΝΙΜΑ ΘΔΜΑΣΑ ΘΔΜΑ Α Σςιπ ημιςελείπ ποξςάρειπ 1-4 μα γοάφεςε ρςξ ςεςοάδιό ραπ ςξμ αοιθμό ςηπ ποόςαρηπ και δίπλα ςξ γοάμμα πξσ αμςιρςξιυεί ρςη τοάρη, η ξπξία
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 10η: Απεσταλμένοι του Ρωμαίου Ποντίφικα και Ρωμαϊκή Κουρία Κυριάκος Κυριαζόπουλος
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Παράγωγοι και ολοκληρώματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Ολοκληρώματα με το πρόγραμμα Maima Αθανάσιος
Φσζική Γ Λσκείοσ. Κύμαηα. Θεηικής & Τετμολογικής Καηεύθσμζης. Διδάζκωμ: Καραδημηηρίοσ Μιτάλης. Πηγή: Study4exams.
Φσζική Γ Λσκείοσ Θεηικής & Τετμολογικής Καηεύθσμζης Κύμαηα Διδάζκωμ: Καραδημηηρίοσ Μιτάλης Πηγή: Study4exams.gr Καςά μήκξπ ςξσ θεςικξύ ημιάνξμα Ου διαδίδεςαι αομξμικό κύμα. H ενίρχρη ςαλάμςχρηπ ςξσ ρημείξσ
Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8η: Ο νέος αντιρατσιστικός νόμος και ο ν.4301/2014 Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # 17: Ταχύτητα Αντιδράσεων Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΧΖΥΘΑΙΟ ΔΙΠΑΘΔΔΤΣΘΙΟ ΒΟΖΗΖΛΑ «ΥΤΘΙΖ ΗΔΣΘΙΖ ΙΑΘ ΣΔΦΜΟΚΟΓΘΙΖ ΙΑΣΔΤΗΤΜΖ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β (1) n n n 90 ή (2)
o ΔΘΑΓΩΜΘΛΑ ΛΑΨΟ 0: ΔΜΔΔΘΙΣΘΙΔ ΑΠΑΜΣΖΔΘ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΔΝΔΔΙΚΤΙΚΔΣ ΑΠΑΝΤΗΣΔΙΣ. δ. α 3. δ 4. β.. α) Κάθξπ β) χρςό γ) Κάθξπ δ) χρςό ε) Κάθξπ ΘΔΜΑ Α ΘΔΜΑ Β Β. χρςή
1o ΚΕΦΑΛΑΙΟ ΜΗΧΑΝΙΚΔΣ ΤΑΛΑΝΤΩΣΔΙΣ
1o ΚΕΦΑΛΑΙΟ ΜΗΧΑΝΙΚΔΣ ΤΑΛΑΝΤΩΣΔΙΣ 1. Ποξρδιξοίζξσμε ςη θέρη ιρξοοξπίαπ ( Θ.Ι ) και ξοίζξσμε ςη θεςικ τξοά. 2. Ποξρέυξσμε μα σπξλξγίρξσμε ρωρςά ςη ρσυμόςηςα ςηπ ςαλάμςωρηπ, αμ ασς δεμ δίμεςαι άμερα. πχ
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
x και επειδή είμαι ρσμευήπ, διαςηοεί ρςαθεοό ποόρημξ. f x 2f x x x x x 2 x x x g x 0 g x f x x 0 f x x, 1 f x 2f x x x x g x 0 για κάθε
1 o ΔΙΑΓΩΝΙΜΑ ΔΔΚΔΜΒΡΙΟ 15: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΜΑΘΗΜΑΣΙΚΑ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ ΚΑΙ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΠΟΤΔΩΝ ΟΙΚΟΝΟΜΙΑ & ΠΛΗΡΟΥΟΡΙΚΗ 1 ξ ΔΙΑΓΩΝΙΜΑ ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ (Κετάλαιξ ) [Κετάλαιξ 1
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Υπολογιστές Ι. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Δομή του προγράμματος Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ 6 ο ΔΙΑΓΩΝΙΜΑ (Δφ' όλης της ύλης) - ΘΔΜΑΣΑ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ 6 ο ΔΙΑΓΩΝΙΜΑ (Δφ' όλης της ύλης) - ΘΔΜΑΣΑ ΘΔΜΑ Α 1. ςιπ τθίμξσρεπ ςαλαμςώρειπ ρςιπ ξπξίεπ η αμςιςιθέμεμη δύμαμη είμαι αμάλξγη ςηπ ςαυύςηςαπ, ςα τσρικά μεγέθη πξσ
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Αυτεπαγωγή Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 9: Μέτρηση Αγωγιμότητας Διαλυμάτων Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Παράκτια Τεχνικά Έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΘΕΣΗ ΥΓΡΩΝ ΣΤΗ ΘΑΛΑΣΣΑ ΥΠΟΒΡΥΧΙΟΙ ΑΓΩΓΟΙ Ενότητα 5 η : Κατασκευαστικά παραδείγματα Γιάννης Ν. Κρεστενίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 4: Τοποθέτηση d ηλεκτρονίων σε οκτάεδρα Σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Ιστορία της μετάφρασης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η μετάφραση των εβδομήκοντα, η εκπαίδευση των μεταφραστών κατά Κικέρωνα, η τέχνη της μετάφρασης από την αρχαιότητα μέχρι τα
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Ο νόμος των Biot-Savart Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Βασικές Αρχές Φαρμακοκινητικής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Βασικές Αρχές Φαρμακοκινητικής Βιοδιαθεσιμότητα και κάθαρση πρώτης διόδου. Προβλέποντας τις αλληλεπιδράσεις των φαρμάκων Διδάσκων: Αναπληρωτής Καθηγητής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Επιμέλεια Εκθέσεων. Εκθέτοντας την τέχνη Διδάσκουσα: Επίκουρη Καθηγήτρια Εσθήρ Σ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Επιμέλεια Εκθέσεων Εκθέτοντας την τέχνη Διδάσκουσα: Επίκουρη Καθηγήτρια Εσθήρ Σ. Σολομών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Φυσική Περιβάλλοντος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Φυσική Περιβάλλοντος Φαινόμενο του θερμοκηπίου Διδάσκοντες: Καθηγητής Π. Κασσωμένος, Λέκτορας Ν. Μπάκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 11η: Σύγκριση Ρωσικής Ορθόδοξης Εκκλησίας και Καθολικής Εκκλησίας Κυριάκος Κυριαζόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Βασική Γενετική Μη μεντελική κληρονομικότητα Διδάσκουσα: Επίκουρη Καθηγήτρια Αμαλία-Σοφία Αφένδρα Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6η: Ελληνική νομολογία Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΨΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ» ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ ΘΔΜΑ Α ΘΔΜΑ Β.
5 o ΔΙΑΓΩΝΙΜΑ ΑΠΡΙΛΙΟ 06: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ 5 ο ΔΙΑΓΩΝΙΜΑ ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΘΔΜΑ Α. γ. γ 3. δ 4. β 5. α. β. γ. Λ δ. Λ ε. ΘΔΜΑ Β. χρςή απάμςηρη η γ. Ο δεύςεοξπ
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΔΤΝΑΣΟΣΗΣΕ 3 2. ΓΡΗΓΟΡΗ ΕΚΚΙΝΗΗ (QUICK START) - ΙΟΚΡΑΣΗ 4 3. ΑΝΑΛΤΣΙΚΗ ΕΠΕΞΗΓΗΗ 5
Εγχειρίδιο χρήσης Ο Ιςοκράτησ Πιάνο είναι το απόλυτο εργαλείο για έναν Καθηγητή, Ψάλτη ή Μαθητή τησ Βυζαντινήσ Μουςικήσ, ή για έναν Μουςικό ή Μαθητή τησ Ευρωπαΰκήσ Μουςικήσ. Περιέχει Πιάνο (97+)-πλήκτρων
M z ιραπέυξσμ από ςα Α 4,0,Β 4,0
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ 6 ο ΔΙΑΓΩΝΙΣΜΑ ΔΝΔΔΙΚΤΙΚΔΣ ΑΠΑΝΤΗΣΔΙΣ (Σε όλη την ύλη) ΘΔΜΑ Α 1. Βλέπε ρυξλικό βιβλίξ «Μθημςικά θεςικήπ κι ςευμξλξγικήπ Κςεύθσμρηπ», ρελίδ 6.. Βλέπε ρυξλικό
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας Ενότητα 1: Αυτοαξιολόγηση μεταφραστών Κασάπη Ελένη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Βασικοί άξονες Μαθηματικά στην εκπαίδευση:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Ειδικά Θέματα Μαθηματικών Εισαγωγή - Περί δημιουργικότητας Διδάσκων : Επίκουρος Καθηγητής Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (5): Δεσμοί και Τροχιακά Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
3 η ΕΝΟΤΗΤΑ Ρύθμιση σήματος
ΣΕΙ ΑΝΑΣΟΛΙΚΗ ΜΑΚΕΔΟΝΙΑ ΚΑΙ ΘΡΑΚΗ- ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Σ.Ε. Ασςξμαςξπξίηρη Αιρθηςηοίωμ Σσρςημάςωμ 3 η ΕΝΟΤΗΤΑ Ρύθμιση σήματος Διδάρκωμ: Κωμ/μξπ Τρίκμαπ Δο. Ηλεκςοξλόγξπ Μηχαμικόπ ktsik@teiemt.gr
Γενετική. Ενότητα 3η: Σύνδεση Χαρτογράφηση γονιδίων. Πηνελόπη Μαυραγάνη-Τσιπίδου Τμήμα Βιολογίας ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3η: Σύνδεση Χαρτογράφηση γονιδίων Πηνελόπη Μαυραγάνη-Τσιπίδου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών
Οικονομετρία Εξειδίκευση του υποδείγματος Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι
Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Απλό παράδειγμα προσομοίωσης χρηματιστηρίου Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ
Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ Χξόλνο παξώλ θαη πεπεξαζκέλνο ρξόλνο Δίλαη ίζωο θη νη δύν παξόληεο ζηνλ κειινληηθό θαηξό Καη ην κέιινλ πεξηέρεηαη ζην παξειζόλ. Αλ όινο ν ρξόλνο είλαη αηώληα παξώλ Όινο ν
Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Οικονομία των ΜΜΕ Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και
Διπλωματική Ιστορία Ενότητα 2η:
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2η: Η εμφάνιση των εθνών-κρατών και οι συνέπειες στο διεθνές σύστημα Ιωάννης Στεφανίδης, Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Δείκτες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Δείκτες Διδάσκοντες: Αν Καθ Δ Παπαγεωργίου, Αν Καθ Ε Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (20): Δεσμοί Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΔΙΔΑΚΩΝ: ΠΑΡΙ ΜΑΣΟΡΟΚΩΣΑ
ΑΝΣΙΚΕΙΜΕΝΟΣΡΑΦΗ ΠΡΟΓΡΑΜΜΑΣΙΜΟ(Θ) Ενότητα 4: ΑΝΣΙΚΕΙΜΕΝΟΣΡΑΦΗ ΠΡΟΓΡΑΜΜΑΣΙΜΟ ΔΙΔΑΚΩΝ: ΠΑΡΙ ΜΑΣΟΡΟΚΩΣΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Επιμέλεια Εκθέσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Επιμέλεια Εκθέσεων Αξιολόγηση μουσείων και εκθέσεων Διδάσκουσα: Επίκουρη Καθηγήτρια Εσθήρ Σ. Σολομών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 12η: Αυτόνομες και ημιαυτόνομες εκκλησίες κ.ά. διατάξεις Κυριάκος Κυριαζόπουλος Άδειες
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Διαστήματα εμπιστοσύνης Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ανάλυση δεδομένων με συναρτήσεις βάσης δεδομένων και συναρτήσεις αναζήτησης και αναφοράς με το Excel/Calc Διδάσκων: Επίκουρος
Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία IΙ Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 6: Προσδιορισμός δ0 σε οκτάεδρα σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται