Predicting the Choice of Contraceptive Method using Classification

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Predicting the Choice of Contraceptive Method using Classification"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΣΣΑΛΟΝΙΚΗ Predicting the Choice of Contraceptive Method using Classification ΠΑΠΑΔΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Νικόλαος Σαμαράς ΕΞΕΤΑΣΤΗΣ: Κωνσταντίνος Παπαρίζος ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

2 Εξόρυξη Γνώσης(Data Mining) Τι είναι Data Mining 1. Ορίζουμε την εξόρυξη γνώσης (data mining) σαν τη διαδικασία της χρήσης μιας ή περισσοτέρων τεχνικών εκμάθησης υπολογιστών για την αυτόματη ανάλυση και εξαγωγή γνώσης από δεδομένα που περιέχονται σε μια βάση δεδομένων. 2. Είναι διαδικασία μιας πολύπλευρης ανάλυσης δεδομένων και εξαγωγής χρήσιμων πληροφοριών, πληροφορίες που μπορούν να χρησιμοποιηθούν για να αυξήσουν τα έσοδα, να μειώσουν τις δαπάνες ή και τα δύο. 3. Η διαδικασία εξόρυξης γνώσης είναι ένα από τα πολλά εργαλεία που χρησιμοποιούνται στην ανάλυση δεδομένων. Επιτρέπει στους χρήστες την ανάλυση δεδομένων από πολλές διαφορετικές σκοπιές, την ταξινόμηση, το συνοψισμό και τελικά την εξαγωγή των σχέσεων που προσδιορίζονται από τη διαδικασία

3 Εξόρυξη Γνώσης(Data Mining) Ιστορική εξέλιξη του Data Mining Η σχεδίαση τεχνικών του σηµερινού data mining χρονολογείται γύρω στην δεκαετία του Κατά την δεκαετία του 1960, η τεχνητή νοημοσύνη και ο κλάδος της στατιστικής εφάρμοσαν νέους αλγορίθμους όπως η ανάλυση παλινδρόμησης. Ο όρος data mining πρωτοχρησιμοποιήθηκε αυτή την δεκαετία. Στις αρχές της δεκαετίας του 1990, ο όρος Ανακάλυψη Γνώσης σε Βάσεις Δεδομένων (KDD) χρησιμοποιήθηκε για πρώτη φορά και δημιουργήθηκα το πρώτο εργαστήριο KDD. Κατά τη δεκαετία 1990, το data mining εξελίχθηκε από μία ενδιαφέρουσα τεχνολογία σε μία πρότυπη πρακτική από εταιρείες.

4 Εξόρυξη Γνώσης(Data Mining) Λειτουργία της εξόρυξης δεδομένων Η πληροφοριακή τεχνολογία έχει εξελιχθεί σε δύο ξεχωριστά συστήματα, της συναλλαγής και της ανάλυσης. Η εξόρυξη γνώσης έρχεται για να παίξει το ρόλο του συνδέσμου μεταξύ των δύο. Το λογισμικό εξόρυξης γνώσης, αναλύει τις σχέσεις και τα μοτίβα στα αποθηκευμένα δεδομένα συναλλαγής. Διάφοροι τύποι λογισμικού ανάλυσης είναι διαθέσιμοι: 1. στατιστική ανάλυση 2. μηχανική εκμάθηση 3. νευρωνικά δίκτυα

5 Εξόρυξη Γνώσης(Data Mining) Λειτουργία της εξόρυξης δεδομένων Γενικά, επιδιώκεται οποιοσδήποτε από τους τέσσερις τύπους σχέσεων: Κατηγορίες (Classes) Τα αποθηκευμένα δεδομένα χρησιμοποιούνται για να εντοπίσουν πληροφορίες για προκαθορισμένες ομάδες. Παραδείγματος χάριν, μια αλυσίδα εστιατορίων θα μπορούσε να εξαγάγει τις καταναλωτικές συνήθειες των πελατών, που καθορίζονται από τις επισκέψεις αυτών και να τις αναλύσει, λειτουργώντας με βάση το τι πραγματικά η ανάλυση αυτή επιτάσσει. Αυτές οι πληροφορίες θα μπορούσαν να ενδεχομένως να χρησιμοποιηθούν για να αυξήσουν την κατανάλωση των σπεσιαλιτέ της ημέρας. Ομάδες (Clusters) Τα δεδομένα ομαδοποιούνται σύμφωνα με λογικές σχέσεις ή καταναλωτικές προτιμήσεις. Παραδείγματος χάριν, τα δεδομένα μπορούν να εξαχθούν για να προσδιορίσουν τους τομείς της αγοράς ή τις καταναλωτικές συγγένειες.

6 Εξόρυξη Γνώσης(Data Mining) Λειτουργία της εξόρυξης δεδομένων Σχέσεις (Associations) Τα δεδομένα μπορούν να εξαχθούν για να προσδιορίσουν τις σχέσεις. Το παράδειγμα μπύρα-πάνες είναι ένα παράδειγμα του συνειρμικούσχεσιακού data mining. Σειριακά μοτίβα (Sequential Patterns) Τα δεδομένα εξάγονται ώστε να προβλεφθούν τα μοτίβα και οι τάσεις συμπεριφοράς. Παραδείγματος χάριν, ένας πωλητής εξοπλισμού ειδών εξοχής, θα μπορούσε να προβλέψει την πιθανότητα πώλησης ενός σακιδίου πλάτης, βασισμένος στην αγορά από έναν πελάτη, υπνόσακου και παπουτσιών πεζοπορίας.

7 Εξόρυξη Γνώσης(Data Mining) Λειτουργία της εξόρυξης δεδομένων Η εξόρυξη γνώσης περιλαμβάνει πέντε σημαντικά στάδια: 1. Συλλογή των Δεδομένων (Data Warehousing, Web Crawling, ) 2. Καθαρισμός Δεδομένων (Data Cleaning) Επεξεργασία εμπλουτισμός των δεδομένων 3. Feature Extraction: Επιλογή των σημαντικών γνωρισμάτων 4. Εφαρμογή Μοντέλων/Αλγορίθμων Εξόρυξης Δεδομένων 5. Απεικόνιση/αξιολόγηση των αποτελεσμάτων

8 Εξόρυξη Γνώσης(Data Mining) Λειτουργία της εξόρυξης δεδομένων Τα διαφορετικά επίπεδα ανάλυσης που είναι διαθέσιμα: Τεχνητά νευρωνικά δίκτυα (Artificial neural networks): Μη γραμμικά προβλεπτικά μοντέλα που μαθαίνουν μέσω της εκπαίδευσης και μοιάζουν στη δομή με τα βιολογικά νευρικά δίκτυα. Γενετικοί αλγόριθμοι (Genetic algorithms): Οι τεχνικές βελτιστοποίησης που χρησιμοποιούν διαδικασίες επεξεργασίας όπως ο γενετικός συνδυασμός, η μεταλλαγή (combination), και η φυσική επιλογή σε ένα μοτίβο, βασίστηκαν στις έννοιες της φυσικής εξέλιξης. Δέντρα απόφασης (Decision Trees):Δέντρο-διαμορφωμένες δομές που αντιπροσωπεύουν τα σύνολα αποφάσεων. Αυτές οι αποφάσεις παράγουν τους κανόνες για την ταξινόμηση ενός συνόλου δεδομένων. Μια απλή δομή όπου οι μη τερματικοί κόμβοι αντιπροσωπεύουν τα αποτελέσματα των αποφάσεων. Τα δέντρα αποφάσεων έχουν διάφορα πλεονεκτήματα, όπως το ότι είναι εύκολο να τα καταλάβουμε, μπορούν να μετασχηματιστούν σε κανόνες και πειραματικά έχει αποδειχθεί ότι λειτουργούν πολύ καλά.

9 Εξόρυξη Γνώσης(Data Mining) Λειτουργία της εξόρυξης δεδομένων Τα διαφορετικά επίπεδα ανάλυσης που είναι διαθέσιμα: Μέθοδος κοντινότερων γειτόνων (Nearest neighbor method): Μια τεχνική που ταξινομεί κάθε εγγραφή σε ένα σύνολο δεδομένων βασισμένο σε έναν συνδυασμό των ταξινομήσεων των εγγραφών Κ και του πιο κοντινού συγγενή με το Κ σε ένα ιστορικό σύνολο δεδομένων. Επαγωγή κανόνα (Rule induction): Η εξαγωγή των χρήσιμων if-then κανόνων από τα δεδομένα, βασιζόμενα στη στατιστική σημασία. Απεικόνιση στοιχείων (Data visualization): Η οπτική ερμηνεία των σύνθετων σχέσεων στα πολυδιάστατα δεδομένα. Τα εργαλεία γραφικής αναπαράστασης χρησιμοποιούνται για να επεξηγήσουν τις σχέσεις των δεδομένων

10 Δέντρα Απόφασης(Decision Trees) Δέντρα απόφασης Τα δέντρα απόφασης είναι μια δημοφιλής δομή για καθοδηγούμενη εκμάθηση. Σε αυτό το κεφάλαιο θα δούμε πιο αναλυτικά τον αλγόριθμο C4.5, που χρησιμοποιείται για την κατασκευή δέντρων απόφασης. Θα εφαρμόσουμε αυτόν τον αλγόριθμο σε ένα παράδειγμα βάσης δεδομένων προώθησης πιστωτικών καρτών, ώστε να προσπαθήσουμε να τον κατανοήσουμε.

11 Δέντρα Απόφασης(Decision Trees) Ένας αλγόριθμος κατασκευής δέντρων απόφασης Τα δέντρα απόφασης κατασκευάζονται χρησιμοποιώντας μόνο εκείνα τα γνωρίσματα που είναι σε θέση να διακρίνουν τις έννοιες προς εκμάθηση. Για να χτίσουμε ένα δέντρο απόφασης, πρέπει αρχικά να επιλέξουμε ένα υποσύνολο περιπτώσεων από το σύνολο των δεδομένων που θα χρησιμοποιηθούν στην εκπαίδευση (υποσύνολο δεδομένων εκπαίδευσης - training set). Αυτό το υποσύνολο (δεδομένα ελέγχου - test set) χρησιμοποιείται έπειτα από τον αλγόριθμο για να κατασκευάσει το δέντρο απόφασης. Τα υπόλοιπα δεδομένα, τα δεδομένα training set, χρησιμοποιούνται στην εξέταση της ακρίβειας του κατασκευασμένου δέντρου. Εάν το δέντρο απόφασης ταξινομεί τις περιπτώσεις σωστά, η διαδικασία ολοκληρώνεται. Εάν μια περίπτωση είναι ανακριβώς ταξινομημένη, η περίπτωση προστίθεται στο επιλεγμένο υποσύνολο των training set και ένα νέο δέντρο κατασκευάζεται

12 Δέντρα Απόφασης(Decision Trees) Ένας αλγόριθμος κατασκευής δέντρων απόφασης Τα βήματα του αλγορίθμου είναι τα ακόλουθα: 1. Έστω T είναι το σύνολο στιγμιότυπων εκπαίδευσης, το training set 2. Επιλέγουμε ένα χαρακτηριστικό που διαφοροποιεί καλύτερα τις περιπτώσεις που περιλαμβάνονται στο Τ. 3. Δημιουργούμε έναν κόμβο στο δέντρο του οποίου η αξία είναι το επιλεγμένο χαρακτηριστικό. Δημιουργούμε θυγατρικούς δεσμούς από αυτόν τον κόμβο, όπου κάθε σύνδεση αντιπροσωπεύει μια μοναδική αξία για τα επιλεγμένα χαρακτηριστικά. Χρησιμοποιούμε τις τιμές των θυγατρικών δεσμών για να υποδιαιρέσουμε περαιτέρω τα στιγμιότυπα σε δευτερεύουσες κλάσεις.

13 Δέντρα Απόφασης(Decision Trees) Ένας αλγόριθμος κατασκευής δέντρων απόφασης Τα βήματα του αλγορίθμου είναι τα ακόλουθα: 4. Για κάθε δευτερεύουσα κλάση που δημιουργήθηκε στο βήμα 3: - Εάν τα στιγμιότυπα στη δευτερεύουσα κλάση ικανοποιούν προκαθορισμένα κριτήρια ή εάν το σύνολο των υπολοίπων επιλογών γνωρισμάτων γι αυτή τη διαδρομή του δέντρου είναι μηδέν, καθορίζουμε την κατηγοριοποίηση των καινούργιων στιγμιότυπων που ακολουθούν αυτή τη διαδρομή αποφάσεων. - Εάν η δευτερεύουσα κλάση δεν ικανοποιεί τα προκαθορισμένα κριτήρια, και υπάρχει τουλάχιστον ένα γνώρισμα για να υποδιαιρέσει περαιτέρω τη διαδρομή του δέντρου, αφήστε το T να είναι το τρέχον σύνολο των στιγμιότυπων της δευτερεύουσας κλάσης και επιστρέφουμε στο βήμα 2.

14 Δέντρα Απόφασης(Decision Trees) Παράδειγμα Δέντρου Απόφασης Έστω ότι έχουμε μία βάση με δεδομένα προώθησης πιστωτικών καρτών Θέλουμε να αναπτύξουμε ένα μοντέλο πρόβλεψης με χαρακτηριστικό εξόδου το life insurance promotion. Κατά συνέπεια, τα γνωρίσματα εισόδου περιορίζονται στις income range, credit card insurance, sex και age.

15 Δέντρα Απόφασης(Decision Trees) Παράδειγμα Δέντρου Απόφασης Βάση δεδομένων προώθησης πιστωτικών καρτών income range life insurance promotion credit card insurance sex age χιλ Όχι Όχι Άντρας χιλ Ναι Όχι Γυναίκα χιλ Όχι Όχι Άντρας χιλ Ναι Ναι Άντρας χιλ Ναι Όχι Γυναίκα χιλ Όχι Όχι Γυναίκα χιλ Ναι Ναι Άντρας χιλ Όχι Όχι Άντρας χιλ Όχι Όχι Άντρας χιλ Ναι Όχι Γυναίκα χιλ Ναι Όχι Γυναίκα χιλ Ναι Όχι Άντρας χιλ Ναι Όχι Γυναίκα χιλ Όχι Όχι Άντρας χιλ Ναι Ναι Γυναίκα 19

16 Δέντρα Απόφασης(Decision Trees) Παράδειγμα δέντρου απόφασης Η Εικόνα δείχνει το τμήμα του δέντρου που δημιουργήθηκε στο βήμα 3 του αλγορίθμου, υπό την προϋπόθεση ότι το εύρος εισοδήματος είναι επιλεγμένο σαν κόμβος ανωτάτου επιπέδου. Οι συνολικές μετρήσεις yes και no για το γνώρισμα εξόδου φαίνονται στη βάση του κάθε κλάδου του τμήματος του δέντρου. Για να αξιολογήσουμε αυτή την επιλογή, κάνουμε πρώτα την τιμή της κάθε διαδρομής του τμήματος του δέντρου την πιο συχνή κλάση. Έχουμε δύο στιγμιότυπα από κάθε κλάση που ακολουθούν τον κλάδο που δίνεται από το income range = 50-60Κ. Άρα, μπορούμε να επιλέξουμε τη life insurance promotion = no ή life insurance promotion = yes σαν τιμή της διαδρομής. Για να σπάσουμε το δεσμό, κλίνουμε προς την πιο συχνή κλάση, η οποία είναι η life insurance promotion = yes. Για τον κλάδο που δείχνει income range = 30-40Κ επιλέγουμε life insurance promotion = yes σαν τιμή της διαδρομής. Για income range = 40-50Κ επιλέγουμε life insurance promotion = no, και για income range = 50-60Κ επιλέγουμε life insurance promotion =yes.

17 Δέντρα Απόφασης(Decision Trees) Παράδειγμα δέντρου απόφασης Συνεχίζουμε με τα υπόλοιπα γνωρίσματα Συγκρίνοντας τα αποτελέσματα παρατηρούμε ότι το γνώρισμα age προσφέρει το καλύτερο αποτέλεσμα ανάμεσα των πιθανών επιλογών γνωρίσματος. Κατά συνέπεια το γνώρισμα age γίνεται γνώρισμα επιλογής και εκτελούμε το 3 ο βήμα του αλγορίθμου.

18 Δέντρα Απόφασης(Decision Trees) Παράδειγμα Δέντρου Απόφασης Το βήμα 4 του αλγορίθμου απαιτεί να εξετάσουμε τον κάθε κλάδο του τμήματος του δέντρου για να καθορίσουμε εάν θα συνεχίσουμε τη διαδικασία κατασκευής του δέντρου. Ο αλγόριθμος δηλώνει δύο πιθανότητες για τον τερματισμό μιας διαδρομής του δέντρου: Πρώτον, εάν τα στιγμιότυπα που ακολουθούν ένα συγκεκριμένο κλάδο ικανοποιούν ένα προκαθορισμένο κριτήριο, όπως είναι μια ελάχιστη ακρίβεια κατηγοριοποίησης του συνόλου εκπαίδευσης, ο κλάδος γίνεται μια τερματική διαδρομή. Μια δεύτερη πιθανότητα για τον τερματισμό μιας διαδρομής του δέντρου είναι η απουσία ενός γνωρίσματος για τη συνέχιση της διαδικασίας διαχωρισμού του δέντρου. Για να είμαστε σίγουροι, εάν έχει επιλεγεί ένα κατηγοριακό γνώρισμα, οι τιμές του είναι σε θέση να διαιρέσουν το δέντρο μια μόνο φορά. Όμως, ένα αριθμητικό γνώρισμα μπορεί να χρησιμοποιηθεί για να διαχωρίσει τα δεδομένα πολλές φορές.

19 Δέντρα Απόφασης(Decision Trees) Παράδειγμα Δέντρου Απόφασης Για το παράδειγμά μας των στιγμιότυπων εκπαίδευσης που ακολουθούν τον κλάδο που έχει age > 43, έχουν όλα μια τιμή no για την προσφορά ασφάλειας ζωής. Κατά συνέπεια, τερματίζουμε αυτή τη διαδρομή και ονομάζουμε τον κόμβο life insurance promotion = no. Στη συνέχεια παίρνουμε τη διαδρομή με age <= 43. Αυτή διαδρομή δείχνει 9 στιγμιότυπα που έχουν yes για το γνώρισμα εξόδου και 3 στιγμιότυπα που έχουν no για το γνώρισμα εξόδου. Καθώς υπάρχει τουλάχιστον ένα ακόμη γνώρισμα που πρέπει να εφαρμοστεί, είμαστε σε θέση να συνεχίσουμε την κατασκευή του δέντρου. Το βήμα 4β του αλγορίθμου μας λέει ότι τα στιγμιότυπα που ακολουθούν αυτή τη διαδρομή αντιστοιχίζονται σαν νέες τιμές του T. Μετά την αντιστοίχηση του T, τα βήματα του αλγορίθμου 2, 3, και 4 επαναλαμβάνονται. Αυτή η διαδικασία συνεχίζεται μέχρις ότου όλες οι διαδρομές να συναντήσουν κριτήρια τερματισμού ή όλες οι πιθανότητες επιλογών γνωρισμάτων να έχουν εξαντληθεί.

20 Δέντρα Απόφασης(Decision Trees) Παράδειγμα Δέντρου Απόφασης Ένα δέντρο αποφάσεων τριών κόμβων για τη βάση δεδομένων προώθησης πιστωτικών καρτών

21 Δέντρα Απόφασης(Decision Trees) Κανόνες δέντρων αποφάσεων Οι κανόνες έχουν την τάση να είναι πιο ελκυστικοί από τα δέντρα. Για να καταδείξουμε τη διαδικασία απλοποίησης των κανόνων, θεωρήστε το δέντρο αποφάσεων της πρηγούμενης διαφάνειας. Ένας κανόνας που δημιουργήθηκε ακολουθώντας μια διαδρομή του δέντρου φαίνεται εδώ: IF Age <= 43 & Sex = Male & Credit Card Insurance = No THEN Life Insurance Promotion = No Οι συνθήκες γι αυτό τον κανόνα καλύπτουν 4 από τα 15 στιγμιότυπα των δεδομένων εκπαίδευσης με ακρίβεια 75%.

22 Δέντρα Απόφασης(Decision Trees) Άλλες μέθοδοι κατασκευής δέντρων αποφάσεων Ο C4.5 είναι ο πιο πρόσφατος αλγόριθμος κατασκευής δέντρων αποφάσεων του Quinlan. Ο ID3 (Quinlan, 1986) έχει μελετηθεί εκτενώς και είναι ο πρόδρομος του C4.5. Ο CART (Breiman et al., 1984) παρουσιάζει ιδιαίτερο ενδιαφέρον καθώς πολλά εμπορικά προϊόντα υλοποιούν παραλλαγές του αλγορίθμου. Επιπλέον, ήταν το πρώτο σύστημα που εισήγαγε τα δέντρα παλινδρόμησης (regression trees). Ουσιαστικά, τα δέντρα παλινδρόμησης παίρνουν τη μορφή των δέντρων αποφάσεων, όπου οι κόμβοι είναι αριθμητικές αντί για κατηγοριακές τιμές.

23 Δέντρα Απόφασης(Decision Trees) Δημιουργία Συνδυαστικών Κανόνων Η ανάλυση ομοιότητας (affinity analysis) είναι η γενική διαδικασία καθορισμού των πραγμάτων που πάνε μαζί. Μια τυπική εφαρμογή είναι η ανάλυση του καλαθιού αγοράς, της οποίας ο σκοπός είναι να καθορίσουμε εκείνα τα προϊόντα που είναι πιθανόν να αγοραστούν από έναν πελάτη κατά τη διάρκεια μιας αγοράς. Η έξοδος της ανάλυσης καλαθιού αγοράς είναι ένα σύνολο συνδυασμών για τη συμπεριφορά πελάτη - αγορών. Οι συνδυασμοί δίνονται στη μορφή ενός ειδικού συνόλου κανόνων, γνωστών σαν συνδυαστικών κανόνων. Οι συνδυαστικοί κανόνες χρησιμοποιούνται για να βοηθήσουν στον καθορισμό κατάλληλων στρατηγικών προώθησης προϊόντων.

24 Δέντρα Απόφασης(Decision Trees) Δημιουργία Συνδυαστικών Κανόνων Εμπιστοσύνη και υποστήριξη Ας υποθέσουμε ότι θέλουμε να καθορίσουμε εάν υπάρχουν ενδιαφέρουσες σχέσεις που πρέπει να βρεθούν στις τάσεις αγοράς ενός πελάτη, μεταξύ των παρακάτω τεσσάρων ειδών ενός παντοπωλείου : 1. Γάλα 2. Τυρί 3. Ψωμί 4. Αβγά Πιθανοί συνδυασμοί περιλαμβάνουν τα παρακάτω :

25 Δέντρα Απόφασης(Decision Trees) Δημιουργία Συνδυαστικών Κανόνων Εμπιστοσύνη και υποστήριξη 1. Εάν οι πελάτες αγοράζουν γάλα, αγοράζουν επίσης ψωμί. 2. Εάν οι πελάτες αγοράζουν ψωμί, αγοράζουν επίσης γάλα. 3. Εάν οι πελάτες αγοράζουν γάλα και αβγά, αγοράζουν οι επίσης τυρί και ψωμί. 4. Εάν οι πελάτες αγοράζουν γάλα, τυρί και αβγά, αγοράζουν επίσης ψωμί. Ο κάθε συνδυαστικός κανόνας σχετίζεται με μια εμπιστοσύνη (confidence). Γι αυτό τον κανόνα η εμπιστοσύνη είναι η πιθανότητα υπό συνθήκες αγοράς ψωμιού, δεδομένης της αγοράς γάλατος.

26 Δέντρα Απόφασης(Decision Trees) Δημιουργία Συνδυαστικών Κανόνων Εμπιστοσύνη και υποστήριξη Κατά συνέπεια, εάν ένας συνολικός αριθμός συναλλαγών πελατών σχετίζεται με αγορά γάλακτος, και από αυτές τις ίδιες συναλλαγές σχετίζονται επίσης με αγορά ψωμιού, η εμπιστοσύνη της αγοράς ψωμιού, δεδομένης της αγοράς γάλακτος, είναι 5.000/ = 50%. Μια σημαντική πληροφορία που η τιμή εμπιστοσύνης ενός κανόνα δεν παρέχει είναι το ποσοστό όλων των συναλλαγών που περιέχουν τις τιμές γνωρισμάτων που βρίσκονται σ ένα σχετιζόμενο κανόνα. Αυτό το στατιστικό μέγεθος είναι γνωστό σαν υποστήριξη (support) για ένα κανόνα. Η υποστήριξη είναι απλά το ελάχιστο ποσοστό των στιγμιότυπων στη βάση δεδομένων που περιέχει όλα τα στοιχεία που εμφανίζονται σ ένα συγκεκριμένο συνδυαστικό κανόνα.

27 Ανάλυση και επεξεργασία DataSet Dataset Επιλογής Μεθόδου Αντισύλληψης Περιγραφή των δεδομένων Αυτό το σύνολο των δεδομένων είναι ένα υποσύνολο του 1987 National Indonesia Contraceptive Prevalence Survey. Τα δείγματα είναι έγγαμες γυναίκες οι οποίες κατά τη διάρκεια της συνέντευξης δε γνωρίζανε αν ήταν έγγειες και κάποιες βέβαια δεν ήταν. Το ζητούμενο είναι να προβλεφθεί όπως αναφέρθηκε και στην εισαγωγή η επιλογή της μεθόδου αντισύλληψης βασιζόμενη στο κοινωνικοοικονομικό προφίλ των ερωτηθέντων.

28 Ανάλυση και επεξεργασία DataSet Dataset Επιλογής Μεθόδου Αντισύλληψης Why interested in Contraceptive Method Choice Η Ινδονησία είναι μία χώρα με πολύ μεγάλο πληθυσμό. Το 2005 η Ινδονησία βρισκόταν στην τέταρτη θέση παγκοσμίως για τον πληθυσμό της. Παρόλο την μεγάλη έκταση της είναι πολύ πυκνοκατοικημένη. Κι αυτό εξαιτίας του πολύ γρήγορου ρυθμού γέννησης, που οδηγεί σε μεγάλες αριθμητικά οικογένειες. Ο αριθμός των παιδιών σε μία οικογένεια συνήθως επηρεάζει το κοινωνικοοικονομικό επίπεδο της οικογένειας. Μεγαλύτερος αριθμός παιδιών συνεπάγεται και μικρότερο επίπεδο (στις περισσότερες των περιπτώσεων). Η κυβέρνηση της Ινδονησίας έχει προωθήσει ένα Σχέδιο Οικογενειακού Προγραμματισμού όπου έχει συστηθεί κάθε οικογένεια να έχει το πολύ δύο παιδιά προωθώντας τη χρήση της αντισύλληψης.

29 Ανάλυση και επεξεργασία DataSet Dataset Επιλογής Μεθόδου Αντισύλληψης Why interested in Contraceptive Method Choice name description type values Cont Contraceptive Method class label 1=No-use 2=Long-term 3=Short-term wage wife's age numeric wedu wife's education categorical 1=low, 2, 3, 4=high hedu husband's education categorical 1=low, 2, 3, 4=high nchild number of children numeric wreligion wife's religion binary 0=Non-Islam, 1=Islam wwork is the wife working? binary 0=Yes, 1=No hocc husband's occupation categorical 1, 2, 3, 4 stand standard of living categorical 1=low, 2, 3, 4=high media exposure to media binary 0=Good, 1=Not good

30 Ανάλυση και επεξεργασία DataSet Dataset Επιλογής Μεθόδου Αντισύλληψης Στατιστική Ανάλυση Input χαρακτηριστικών Ηλικία Γυναίκας Τιμές Πλήθος Ποσοστό ,34% ,82% ,32% ,81% ,94% ,76% ,01% ,00%

31 Ανάλυση και επεξεργασία DataSet Dataset Επιλογής Μεθόδου Αντισύλληψης Στατιστική Ανάλυση Input χαρακτηριστικών Μορφωτικό επίπεδο γυναίκας Τιμές Πλήθος Ποσοστό ,32% ,67% ,83% ,17% ,00%

32 Ανάλυση και επεξεργασία DataSet Dataset Επιλογής Μεθόδου Αντισύλληψης Στατιστική Ανάλυση Input χαρακτηριστικών Μορφωτικό επίπεδο άντρα Τιμές Πλήθος Ποσοστό ,99% ,08% ,90% ,03% ,00%

33 Ανάλυση και επεξεργασία DataSet Dataset Επιλογής Μεθόδου Αντισύλληψης Στατιστική Ανάλυση Input χαρακτηριστικών Αριθμός τέκνων Τιμές Πλήθος Ποσοστό ,06% ,12% ,82% ,00%

34 Ανάλυση και επεξεργασία DataSet Dataset Επιλογής Μεθόδου Αντισύλληψης Στατιστική Ανάλυση Input χαρακτηριστικών Θρήσκευμα γυναίκας Τιμές Πλήθος Ποσοστό ,94% ,06% ,00%

35 Ανάλυση και επεξεργασία DataSet Dataset Επιλογής Μεθόδου Αντισύλληψης Στατιστική Ανάλυση Input χαρακτηριστικών Εργάζεται ή όχι η γυναίκα Τιμές Πλήθος Ποσοστό ,05% ,95% ,00%

36 Ανάλυση και επεξεργασία DataSet Dataset Επιλογής Μεθόδου Αντισύλληψης Στατιστική Ανάλυση Input χαρακτηριστικών Επάγγελμα άνδρα Τιμές Πλήθος Ποσοστό ,60% ,85% ,71% ,83% ,00%

37 Ανάλυση και επεξεργασία DataSet Dataset Επιλογής Μεθόδου Αντισύλληψης Στατιστική Ανάλυση Input χαρακτηριστικών Standard Of Living Τιμές Πλήθος Ποσοστό ,76% ,55% ,26% ,44% ,00%

38 Ανάλυση και επεξεργασία DataSet Dataset Επιλογής Μεθόδου Αντισύλληψης Στατιστική Ανάλυση Input χαρακτηριστικών Media Exposure Τιμές Πλήθος Ποσοστό ,60% ,40% ,00%

39 Φιλοσοφία Πειραμάτων Περιγραφή της διαδικασίας Για να κατασκευάσουμε ένα δέντρο το οποίο θα θεωρείται αξιόπιστο, θα πρέπει να πειραματιστούμε σε διάφορα δέντρα και συγκρίνοντας τα αποτελέσματα που θα μας δώσουν να αποφασίσουμε σε πιο θα καταλήξουμε, πιο θα θεωρηθεί ότι μας δίνει τα καλύτερα αποτελέσματα. Για το σκοπό αυτό κάθε φορά που τρέχουμε ένα δέντρο αλλάζουμε τα training και test data, αλλά και κάποιες από τις παραμέτρους δημιουργίας. Τα διάφορα σενάρια τα οποία εκτελέσαμε έγιναν με την εφαρμογή CTree. Η εφαρμογή διατίθεται δωρεάν από τον παρακάτω σύνδεσμο: Σε κάθε σειρά πειραμάτων, επιλέγουμε τις ίδιες παραμέτρους όσον αφορά το αν θα γίνεται κλάδεμα ή όχι στο δέντρο μας και πότε θα σταματάει η δημιουργία κόμβων στο δέντρο. Στην προκειμένη περίπτωση επιλέξαμε τις αρχικές τιμές.

40 Φιλοσοφία Πειραμάτων Αναλυτική παρουσίαση σεναρίων Σενάριο 1 ο Επιλέξαμε να χρησιμοποιήσουμε τυχαία το 70% του συνόλου, δηλαδή 1004 στιγμιότυπα να είναι δεδομένα εκπαίδευσης και το υπόλοιπο τυχαίο 30%, δηλαδή 469 να είναι δεδομένα ελέγχου. Classification Tree Model Number of Training observations 1004 Number of Test observations 469 Number of Predictors 9 Class Variable ContMU Number of Classes 3 Majority Class 1 % MissClassified if Majority Class is used as Predicted Class 39%

41 Φιλοσοφία Πειραμάτων Αναλυτική παρουσίαση σεναρίων Σενάριο 1 ο Tree information Total Number of Nodes 489 Number of Leaf Nodes 297 Number of Levels 14 % Missclasssified On Training Data 19,62% On Test Data 51,17% Time Taken Data Processing Tree Growing Tree Pruning Tree Drawing Classification using final tree Rule Generation Total 10 Sec 1 Min : 34 Sec 41 Sec 49 Sec 43 Sec 52 Sec 4 Min : 50 Sec

42 Φιλοσοφία Πειραμάτων Αναλυτική παρουσίαση σεναρίων Σενάριο 1 ο Confusion Matrix Training Data Predicted Class True Class Test Data Predicted Class True Class

43 Φιλοσοφία Πειραμάτων Αναλυτική παρουσίαση σεναρίων Σενάριο 1 ο Rule Summary Table # Rules 33 Rule ID Class Length Support Confidence Capture ,0% 42,4% 100,0% ,4% 96,9% 14,6% ,1% 64,5% 4,7% ,8% 84,1% 17,4% ,4% 71,9% 10,8% ,0% 55,0% 2,6% ,2% 52,9% 55,2% ,1% 90,2% 8,7% ,4% 68,9% 12,0% ,5% 76,0% 4,5% ,6% 55,8% 11,3% ,2% 91,7% 2,6% ,1% 52,4% 31,0% ,1% 55,4% 15,7% ,6% 51,9% 35,0% ,1% 66,7% 8,0% ,4% 64,4% 15,7% ,3% 58,5% 21,1% ,1% 92,7% 8,9% ,2% 83,3% 8,2% ,7% 53,7% 8,5% ,1% 93,5% 6,8% ,5% 61,7% 37,1% ,5% 84,4% 8,9% ,5% 55,3% 26,8% ,8% 62,5% 1,5% ,9% 79,7% 14,8% ,7% 62,2% 9,7% ,5% 53,9% 18,2% ,4% 53,3% 35,2% ,6% 88,9% 7,5% ,6% 75,0% 2,8% ,1% 76,9% 21,8% ,1% 51,0% 28,7%

44 Φιλοσοφία Πειραμάτων Αναλυτική παρουσίαση σεναρίων Σενάριο 1 ο Rule Text

45 Φιλοσοφία Πειραμάτων Αναλυτική παρουσίαση σεναρίων Σενάριο 2 ο Για την εκτέλεση του δεύτερου σεναρίου χρειαστήκαμε τη βοήθεια του πρώτου. Σύμφωνα λοιπόν με τα αποτελέσματα του πρώτου βρέθηκε πως η ρίζα του δέντρου ήταν το μορφωτικό επίπεδο της γυναίκας. Ταξινομήσαμε λοιπόν τα δεδομένα μας ως προς αυτό το χαρακτηριστικό και στη συνέχεια επιλέξαμε τυχαία το 70% του συνόλου ως δεδομένα εκπαίδευσης και το υπόλοιπο τυχαίο 30 % ως δεδομένα ελέγχου.

46 Φιλοσοφία Πειραμάτων Αναλυτική παρουσίαση σεναρίων Σενάριο 3 ο Τα επόμενο σενάριο, έγινε με την λογική της ιεραρχίας που προέκυψε από τα πρώτο πείραμα. Η κατανομή δηλαδή των training και test data, θα γίνει σύμφωνα με την ιεραρχία των χαρακτηριστικών που το πρώτο πείραμα μας έδωσε. Στο πιο σημαντικό χαρακτηριστικό, το ποσοστό εμφάνισης θα είναι 50%, στο επόμενο 35%, στο επόμενο 15%. Σύμφωνα με τα πείραμα 1, η ιεραρχία που προκύπτει είναι: 1. Επίπεδο μόρφωσης γυναίκας 2. Αριθμός τέκνων 3. Επίπεδο μόρφωσης άνδρα

47 Φιλοσοφία Πειραμάτων Αναλυτική παρουσίαση σεναρίων Σενάριο 3 ο Στην πράξη ήταν να επιλογή των χαρακτηριστικών να γίνει κατά 50% (δηλαδή 737 εγγραφές) από το μορφωτικό επίπεδο της γυναίκας. Αυτές τις 737 εγγραφές τις χωρίσαμε σύμφωνα με τη στατιστική ανάλυση. Η στατιστική ανάλυση έδειξε πως το 10,32% των γυναικών, δηλαδή 152 γυναίκες έχουν μορφωτικό επίπεδο 1, 22,67% δηλαδή 334 επίπεδο 2, 27,83% δηλαδή 410 επίπεδο 3 και 39,17% δηλαδή 577 επίπεδο 4. Πρακτικά αυτό σημαίνει ότι επιλέχθηκαν 50% από 152 δηλαδή 76 γυναίκες, οι οποίες έχουν επίπεδο μόρφωσης 1, 50% από 334 δηλαδή 167 επιπέδου 2, 50% από 410 δηλαδή 205 επιπέδου 3 και 50% από 577 δηλαδή 289 επιπέδου 4 άσχετα με τα υπόλοιπα χαρακτηριστικά τους. Έχουμε έτσι ένα σύνολο 737 δεδομένων, που είναι το 50% των συνολικών δεδομένων. Από τις 76 γυναίκες μορφωτικού επιπέδου 1 τα 2/3 θα μπουν ως training data (51) και το 1/3 ως test data (25). Το ίδιο θα ισχύσει και για τις υπόλοιπες γυναίκες των αντίστοιχων μορφωτικών επιπέδων. Την πρακτική που ακολουθήσαμε για το πρώτο χαρακτηριστικό την εφαρμόζουμε και στα άλλα χαρακτηριστικά και κάθε φορά στο υπόλοιπο του συνόλου δεδομένων

48 Φιλοσοφία Πειραμάτων Αναλυτική παρουσίαση σεναρίων Σενάριο 4 ο Το σενάριο αυτό είναι το ίδιο με το πρώτο μόνο που έχουμε πλέον το 75% του συνόλου δεδομένων ως δεδομένα εκπαίδευσης και το 25% ως δεδομένα ελέγχου.

49 Επίλογος Στατιστική αποτίμηση σφαλμάτων Η αξιολόγηση των μοντέλων γίνεται με την εφαρμογή τους στα δεδομένα ελέγχου (test set). Το πιο γενικό μέτρο της απόδοσης του μοντέλου και αυτό που θα χρησιμοποιήσουμε εμείς για να καταλήξουμε στο καλύτερο μοντέλο είναι το ποσοστό σφάλματος κατηγοριοποιητή (classifier error rate) το οποίο δίνεται από τον ακόλουθο τύπο:

50 Επίλογος Στατιστική αποτίμηση σφαλμάτων Παρατηρούμε ότι το μικρότερο σφάλμα κατηγοριοποιητή το έχει το 4 ο σενάριο, τα αποτελέσματα μας δείχνουν δηλαδή ότι αυτό μελλοντικά θα μας δίνει τις καλύτερες προβλέψεις. Σενάριο % clsassifier error rate 1 51, , , ,75

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ : ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ ΠΙΘΑΝΟΝΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΓΑΣΙΑ 08: ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ 1 Ο ΣΤΑΔΙΟ: Πριν εφαρμόσουμε οποιοδήποτε αλγόριθμο

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 5 Συλλογή Δεδομένων & Δειγματοληψία

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 5 Συλλογή Δεδομένων & Δειγματοληψία ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Τμήμα Εφαρμοσμένης Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευσης Συστήματα Υπολογιστών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Τμήμα Εφαρμοσμένης Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευσης Συστήματα Υπολογιστών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Τμήμα Εφαρμοσμένης Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευσης Συστήματα Υπολογιστών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Δημιουργία μοντέλου γνώσης από βάση δεδομένων βλαβών ΑDSL με την χρήση εργαλείων DATA

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο

Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο Δίκαρος Νίκος Δ/νση Μηχανογράνωσης κ Η.Ε.Σ. Υπουργείο Εσωτερικών. Τελική εργασία Κ Εκπαιδευτικής Σειράς Ε.Σ.Δ.Δ. Επιβλέπων: Ηρακλής Βαρλάμης Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο Κεντρική ιδέα Προβληματισμοί

Διαβάστε περισσότερα

Η συνολική εικόνα. Ποιοτική Αναβάθμιση δεδομένων. Λογισμικό Επικοινωνιών DATA WAREHOUSE. Σχεδιασμός Ενοποίηση Επιλογή Συγχρονισμός Συντονισμός

Η συνολική εικόνα. Ποιοτική Αναβάθμιση δεδομένων. Λογισμικό Επικοινωνιών DATA WAREHOUSE. Σχεδιασμός Ενοποίηση Επιλογή Συγχρονισμός Συντονισμός Η συνολική εικόνα Τοπικές Βάσεις Βάσεις Κεντρικών Συστημάτων Βάσεις Τρίτων Ποιοτική Αναβάθμιση δεδομένων Λογισμικό Επικοινωνιών DATA WAREHOUSE Σχεδιασμός Ενοποίηση Επιλογή Συγχρονισμός Συντονισμός Warehouse

Διαβάστε περισσότερα

ΔΗΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΕΓΚΡΙΣΗΣ ΠΙΣΤΩΤΙΚΗΣ ΚΑΡΤΑΣ ΑΠΟ ΙΣΤΟΡΙΚΑ ΔΕΔΟΜΕΝΑ

ΔΗΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΕΓΚΡΙΣΗΣ ΠΙΣΤΩΤΙΚΗΣ ΚΑΡΤΑΣ ΑΠΟ ΙΣΤΟΡΙΚΑ ΔΕΔΟΜΕΝΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ & ΔΙΟΙΚΗΣΗ» ΔΗΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΕΓΚΡΙΣΗΣ ΠΙΣΤΩΤΙΚΗΣ ΚΑΡΤΑΣ

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ

ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ Θ = ΘΕΩΡΙΑ Ε = ΕΡΓΑΣΤΗΡΙΟ Σ = ΣΥΝΟΛΟ ΔΜ = ΔΙΔΑΚΤΙΚΕΣ ΜΟΝΑΔΕΣ ECTS = ΠΙΣΤΩΤΙΚΕΣ ΜΟΝΑΔΕΣ 1 ο ΕΞΑΜΗΝΟ Α ΕΤΟΣ 1ΚΠ01 Μαθηματική Ανάλυση Ι 4 1 5 5 5 1ΚΠ02 Γραμμική Άλγεβρα 4 5

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Μεταπτυχιακή Εργασία. Εξόρυξη γνώσης από ειδησεογραφικά δεδοµένα και συσχετισµός µε πραγµατικά γεγονότα

Μεταπτυχιακή Εργασία. Εξόρυξη γνώσης από ειδησεογραφικά δεδοµένα και συσχετισµός µε πραγµατικά γεγονότα ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μεταπτυχιακή Εργασία Εξόρυξη γνώσης από ειδησεογραφικά δεδοµένα και συσχετισµός µε πραγµατικά γεγονότα Ειρήνη Ντούτση Μηχανικός Η/Υ και Πληροφορικής

Διαβάστε περισσότερα

Λογισμική Εφαρμογή Διαχείρισης Ερωτηματολογίων ΟΔΗΓΟΣ ΧΡΗΣΗΣ System Συμβουλευτική Α.Ε

Λογισμική Εφαρμογή Διαχείρισης Ερωτηματολογίων ΟΔΗΓΟΣ ΧΡΗΣΗΣ System Συμβουλευτική Α.Ε σχετικά με τον έλεγχο της καπνιστικής συνήθειας 1 22 Λογισμικές εφαρμογές καταγραφής και αξιοποίησης πληροφοριών σχετικά με τον έλεγχο της καπνιστικής συνήθειας Λογισμική Εφαρμογή Διαχείρισης Ερωτηματολογίων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ Τμήμα Μαθηματικών και Τμημα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Μεταπτυχιακή Διπλωματική Εργασία

Μεταπτυχιακή Διπλωματική Εργασία Πανεπιστήμιο Πατρών Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Μεταπτυχιακό Πρόγραμμα: «Επιστήμη και Τεχνολογία Υπολογιστών» Μεταπτυχιακή Διπλωματική Εργασία «Υλοποίηση εφαρμογής εξόρυξης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.

Διαβάστε περισσότερα

«ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΑΠΟ ΤΟΝ ΠΙΣΤΩΤΙΚΟ ΚΙΝΔΥΝΟ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ ΕΞΟΡΥΞΗΣ STATISTICA DATA MINER»

«ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΑΠΟ ΤΟΝ ΠΙΣΤΩΤΙΚΟ ΚΙΝΔΥΝΟ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ ΕΞΟΡΥΞΗΣ STATISTICA DATA MINER» Τ.Ε.Ι ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΑΠΟ ΤΟΝ ΠΙΣΤΩΤΙΚΟ ΚΙΝΔΥΝΟ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ ΕΞΟΡΥΞΗΣ STATISTICA DATA MINER»

Διαβάστε περισσότερα

Μεθοδολογίες Αξιοποίησης Δεδομένων

Μεθοδολογίες Αξιοποίησης Δεδομένων Μεθοδολογίες Αξιοποίησης Δεδομένων Βλάχος Σ. Ιωάννης Λέκτορας 407/80, Ιατρικής Σχολής Πανεπιστημίου Αθηνών Εργαστήριο Πειραματικής Χειρουργικής και Χειρουργικής Ερεύνης «Ν.Σ. Σ Χρηστέας» Στάδια Αξιοποίησης

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ Ι. ΓΙΑΝΝΑΤΣΗΣ

ΑΝΤΙΚΕΙΜΕΝΟ Ι. ΓΙΑΝΝΑΤΣΗΣ ΣΧΕΔΙΑΣΜΟΣ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΜΕΤΡΗΣΗ ΕΡΓΑΣΙΑΣ Ι. ΓΙΑΝΝΑΤΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ Η Μέτρηση Εργασίας (Work Measurement ή Time Study) έχει ως αντικείμενο τον προσδιορισμό του χρόνου που απαιτείται από ένα ειδικευμένο

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ Εταιρεία παραγωγής σάλτσας τομάτας

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ Εταιρεία παραγωγής σάλτσας τομάτας ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ Εταιρεία παραγωγής σάλτσας τομάτας Ent-teach Κεφάλαιο 3 Ανάλυση Αγοράς Περιγραφή εκπαιδευτικής δραστηριότητας Είστε ο ιδιοκτήτης μιας μικρομεσαίας επιχείρησης στη βιομηχανία

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΞΕΝΟΔΟΧΕΙΑΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ (Hotel Questionnaire) Εγχειρίδιο χρήσης (Demo Manual)

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΞΕΝΟΔΟΧΕΙΑΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ (Hotel Questionnaire) Εγχειρίδιο χρήσης (Demo Manual) ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΞΕΝΟΔΟΧΕΙΑΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ (Hotel Questionnaire) Εγχειρίδιο χρήσης (Demo Manual) «WeKnow» ΔΗΜΗΤΡΙΟΣ ΨΥΧΙΑΣ & ΣΙΑ Ε.Ε. Υποστήριξη Πληροφοριακών Συστημάτων και Επικοινωνιών Σελίδα 1 από 19

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ

ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΔΕΔΟΜΕΝΑ ΔΕΔΟΜΕΝΑ ΠΛΗΡΟΦΟΡΙΑ ΑΡΙΘΜΟΙ ΣΥΜΒΟΛΑ - ΛΕΞΕΙΣ ΟΠΟΙΑΔΗΠΟΤΕ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΣΥΜΒΑΙΝΕΙ ΣΕ ΜΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΟΝΑΔΑ ΠΡΕΠΕΙ ΝΑ ΜΕΤΡΕΙΤΑΙ ΚΑΙ ΝΑ ΚΑΤΑΓΡΑΦΕΤΑΙ ΟΡΓΑΝΩΣΗ ΚΑΤΑΓΡΑΦΗΣ

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΙ ΡΟΥΝ ΣΤΗ ΧΡΗΣΗ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΕΜΠΟΡΙΟΥ

ΕΚΤΙΜΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΙ ΡΟΥΝ ΣΤΗ ΧΡΗΣΗ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΕΜΠΟΡΙΟΥ ΕΚΤΙΜΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΙ ΡΟΥΝ ΣΤΗ ΧΡΗΣΗ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΕΜΠΟΡΙΟΥ 1 ΕΙΣΑΓΩΓΗ Με την ολοένα και ταχύτερη ανάπτυξη των τεχνολογιών και των επικοινωνιών και ιδίως τη ραγδαία, τα τελευταία

Διαβάστε περισσότερα

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ 1.1 Γιατί οι επιχειρήσεις έχουν ανάγκη την πρόβλεψη σελ.1 1.2 Μέθοδοι πρόβλεψης....σελ.2 ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ 2.1 Υπόδειγμα του Κινητού μέσου όρου.σελ.5 2.2 Υπόδειγμα

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

«ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ»

«ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ» Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ» Της σπουδάστριας ΚΑΤΣΑΡΟΥ ΧΑΡΙΚΛΕΙΑΣ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ

Διαβάστε περισσότερα

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Αναλυτική Μέθοδος- Αναλυτικό Πρόβλημα. Ανάλυση, Προσδιορισμός και Μέτρηση. Πρωτόκολλο. Ευαισθησία Μεθόδου. Εκλεκτικότητα. Όριο ανίχνευσης (limit of detection, LOD).

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Σχεδιασµός βασισµένος σε συνιστώσες

Σχεδιασµός βασισµένος σε συνιστώσες Σχεδιασµός βασισµένος σε συνιστώσες 1 Ενδεικτικά περιεχόµενα του κεφαλαίου Ποια είναι τα "άτοµα", από τα οποία κατασκευάζονται οι υπηρεσίες; Πώς οργανώνουµε τις συνιστώσες σε ένα αρµονικό σύνολο; Τι είναι

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Εργασία. στα. Γενικευμένα Γραμμικά Μοντέλα

Εργασία. στα. Γενικευμένα Γραμμικά Μοντέλα Εργασία στα Γενικευμένα Γραμμικά Μοντέλα Μ. Παρζακώνης ΜΕΣ/ 06015 Ο παρακάτω πίνακας δίνει τα αποτελέσματα 800 αιτήσεων για δάνειο σε μία τράπεζα. Ο πίνακας παρουσιάζει τον αριθμό των δανείων που εγκρίθηκαν,

Διαβάστε περισσότερα

Managing Information. Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business. e-mail: kyritsis@ist.edu.

Managing Information. Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business. e-mail: kyritsis@ist.edu. Managing Information Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business e-mail: kyritsis@ist.edu.gr Διαχείριση Γνώσης Knowledge Management Learning Objectives Ποιοί

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

GoDigital.Store E-Commerce Platform

GoDigital.Store E-Commerce Platform GoDigital.Store E-Commerce Platform Πλήρης διαχείριση καταλόγου και καταστήματος banet Α.Ε. Βαλαωρίτου 20 54625 Θεσσαλονίκη Τ.2310253999 F.2310253998 www.banet.gr info@banet.gr GoDigital.Store Γενική περιγραφή

Διαβάστε περισσότερα

Η αβεβαιότητα στη μέτρηση.

Η αβεβαιότητα στη μέτρηση. Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΌΝΤΩΝ ΞΥΛΟΥ ΚΑΙ ΕΠΙΠΛΟΥ ΜΑΡΚΕΤΙΝΓΚ

ΜΑΘΗΜΑ: ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΌΝΤΩΝ ΞΥΛΟΥ ΚΑΙ ΕΠΙΠΛΟΥ ΜΑΡΚΕΤΙΝΓΚ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΟΥ ΜΑΡΚΕΤΙΝΓΚ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΜΑΘΗΜΑ: ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΌΝΤΩΝ ΞΥΛΟΥ ΚΑΙ ΕΠΙΠΛΟΥ Έρευνα μάρκετινγκ Τιμολόγηση Ανάπτυξη νέων προϊόντων ΜΑΡΚΕΤΙΝΓΚ Τμηματοποίηση της αγοράς Κανάλια

Διαβάστε περισσότερα

5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη

5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη 5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη Tο πρόβληµα του προσδιορισµού των συγκεντρώσεων των προτύπων, όταν δεν είναι γνωστό το πλήθος τους και η ταυτότητα των προτύπων, είναι δύσκολο και για την

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

Τεχνικές Έρευνας. Εισήγηση 10 η Κατασκευή Ερωτηματολογίων

Τεχνικές Έρευνας. Εισήγηση 10 η Κατασκευή Ερωτηματολογίων Τεχνικές Έρευνας Ε. Ζέτου Ε εξάμηνο 2010-2011 Εισήγηση 10 η Κατασκευή Ερωτηματολογίων ΣΚΟΠΟΣ Η συγκεκριμένη εισήγηση έχει σαν σκοπό να δώσει τις απαραίτητες γνώσεις στο/στη φοιτητή/τρια για τον τρόπο διεξαγωγής

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Περιβαλλοντική πληροφορική - Ευφυείς εφαρµογές

Περιβαλλοντική πληροφορική - Ευφυείς εφαρµογές Περιβαλλοντική πληροφορική - Ευφυείς εφαρµογές ρ. Ε. Χάρου Πρόγραµµα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΗΜΟΚΡΙΤΟΣ http://www.iit.demokritos.gr/neural Περιβαλλοντικά προβλήµατα

Διαβάστε περισσότερα

Εξόρυξη Γνώσης από εδοµένα (Data Mining)

Εξόρυξη Γνώσης από εδοµένα (Data Mining) ΠΜΣ Πληροφορικής Πανεπιστηµίου Πειραιά Εξόρυξη Γνώσης από εδοµένα (Data Mining) Αποθήκες εδοµένων Γιάννης Θεοδωρίδης Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιά http://isl.cs.unipi.gr/db/courses/dm "Πυραµίδα"

Διαβάστε περισσότερα

INFO. Copyright ECDL Ελλάς, Σεπτέµβριος 2004 ΤΟ ΠΕΡΙΕΧΟΜΕΝΟ ΑΥΤΟΥ ΤΟΥ ΕΝΤΥΠΟΥ ΑΦΟΡΑ ΑΠΟΚΛΕΙΣΤΙΚΑ ΤΑ ΕΞΕΤΑΣΤΙΚΑ ΚΕΝΤΡΑ ECDL

INFO. Copyright ECDL Ελλάς, Σεπτέµβριος 2004 ΤΟ ΠΕΡΙΕΧΟΜΕΝΟ ΑΥΤΟΥ ΤΟΥ ΕΝΤΥΠΟΥ ΑΦΟΡΑ ΑΠΟΚΛΕΙΣΤΙΚΑ ΤΑ ΕΞΕΤΑΣΤΙΚΑ ΚΕΝΤΡΑ ECDL INFO ECDL Expert Ένα ολοκληρωµένο Πρόγραµµα Πιστοποίησης γνώσεων πληροφορικής και δεξιοτήτων χρήσης Η/Υ ΠΡΟΧΩΡΗΜΕΝΟΥ ΕΠΙΠΕ ΟΥ Copyright ECDL Ελλάς, Σεπτέµβριος 2004 ΤΟ ΠΕΡΙΕΧΟΜΕΝΟ ΑΥΤΟΥ ΤΟΥ ΕΝΤΥΠΟΥ ΑΦΟΡΑ

Διαβάστε περισσότερα

Μέρος 3 ο : Βασικές Έννοιες για δυναμικές ιστοσελίδες

Μέρος 3 ο : Βασικές Έννοιες για δυναμικές ιστοσελίδες Μέρος 3 ο : Βασικές Έννοιες για δυναμικές ιστοσελίδες Εισαγωγή-Σκοπός. Τρόποι δημιουργίας δυναμικών ιστοσελίδων. Dynamic Web Pages. Dynamic Web Page Development Using Dreamweaver. Τρόποι δημιουργίας δυναμικών

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER ΑΣΚΗΣΕΙΣ. Θεωρήστε το παράδειγμα που αναφέρεται στη συσχέτιση του βαθμού ικανοποίησης των εργαζομένων σε ένα εργαστήριο σε σχέση με τις οκτώ μεταβλητές που ορίστηκαν εκεί. (Χ =ηλικία, Χ =φύλο, Χ =εβδομαδιαίος

Διαβάστε περισσότερα

Λήψη αποφάσεων κατά Bayes

Λήψη αποφάσεων κατά Bayes Λήψη αποφάσεων κατά Bayes Σημειώσεις μαθήματος Thomas Bayes (1701 1761) Στυλιανός Χατζηδάκης ECE 662 Άνοιξη 2014 1. Εισαγωγή Οι σημειώσεις αυτές βασίζονται στο μάθημα ECE662 του Πανεπιστημίου Purdue και

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

Εξόρυξη Γνώσης από εδοµένα (data mining)

Εξόρυξη Γνώσης από εδοµένα (data mining) Εξόρυξη νώσης από εδοµένα (data mining) Ε.Κ.Ε.Φ.Ε. ηµόκριτος Ινστ. Πληροφορικής και Τηλεπικοινωνιών εώργιος Παλιούρας Email: paliourg@iit.demokritos.gr WWW: http://www.iit.demokritos.gr/~paliourg Περιεχόµενα

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Γλώσσες & Τεχνικές 4 ο Εξάμηνο. - Ενότητα 1 - Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Γλώσσες & Τεχνικές 4 ο Εξάμηνο. - Ενότητα 1 - Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos Γλώσσες & Τεχνικές 4 ο Εξάμηνο - Ενότητα 1 - Εισαγωγή στην Τεχνητή Νοημοσύνη Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos Τμήμα Πληροφορικής A.T.E.I. ΘΕΣΣΑΛΟΝΙΚΗΣ Rethinking University Teaching!!!

Διαβάστε περισσότερα

5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ 5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Το μοντέλο που δημιουργήσαμε στο προηγούμενο εργαστήριο έχει βελτιωθεί εν μέρει ώστε να συμπεριλάβει και κάποιες δυνατότητες οι οποίες απαιτούν σχετικά εξειδικευμένες

Διαβάστε περισσότερα

Εργαστήριο Διοίκησης Παραγωγής & Έργων. Εισαγωγή στην προσομοίωση διεργασιών χρησιμοποιώντας το λογισμικό Extend

Εργαστήριο Διοίκησης Παραγωγής & Έργων. Εισαγωγή στην προσομοίωση διεργασιών χρησιμοποιώντας το λογισμικό Extend Εργαστήριο Διοίκησης Παραγωγής & Έργων Εισαγωγή στην προσομοίωση διεργασιών χρησιμοποιώντας το λογισμικό Extend ΕΠΙΣΚΟΠΗΣΗ ΤΟΥ EXTEND Το Extend είναι ένα λογισμικό εικονικής προσομοίωσης που μπορεί να

Διαβάστε περισσότερα

Προτεινόμενα Θέματα Διπλωματικών Εργασιών

Προτεινόμενα Θέματα Διπλωματικών Εργασιών Προτεινόμενα Θέματα Διπλωματικών Εργασιών Θεματική ενότητα: Σχεδίαση πολυμεσικών εφαρμογών Ενδεικτικό Θέμα: Θέμα 1. Τα πολυμέσα στην εκπαίδευση: Σχεδίαση πολυμεσικής εφαρμογής για την διδασκαλία ενός σχολικού

Διαβάστε περισσότερα

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας

Διαβάστε περισσότερα

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία ακραίων τιμών

Εισαγωγή στη θεωρία ακραίων τιμών Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»

Διαβάστε περισσότερα

329 Στατιστικής Οικονομικού Παν. Αθήνας

329 Στατιστικής Οικονομικού Παν. Αθήνας 329 Στατιστικής Οικονομικού Παν. Αθήνας Σκοπός Το Τμήμα σκοπό έχει να αναδείξει επιστήμονες ικανούς να σχεδιάζουν, να αναλύουν και να επεξεργάζονται στατιστικές καθώς επίσης και να δημιουργούν προγράμματα

Διαβάστε περισσότερα

Πως μπορούν να χρησιμοποιηθούν ιστορικά δεδομένα για την κατασκευή

Πως μπορούν να χρησιμοποιηθούν ιστορικά δεδομένα για την κατασκευή ΜΕΡΟΣ Α ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1 Εξόρυξη Δεδομένων 22 Η επανάσταση του ΚΡΙΟΥ 1.1 Εισαγωγή Το Data Mining αποτελεί μια νέα ερευνητική περιοχή, ραγδαία εξελισσόμενη, που είναι η τομή πολλών θεωριών και επιστημών,

Διαβάστε περισσότερα

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης Περιγραφική Στατιστική Ακαδ. Έτος 2012-2013 1 ο εξάμηνο Κ. Πολίτης 1 2 Η στατιστική ασχολείται με τη συλλογή, οργάνωση, παρουσίαση και ανάλυση πληροφοριών. Οι πληροφορίες αυτές, πολύ συχνά αριθμητικές,

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ARCGIS ΚΑΙ INNOVYZE INFOWATER ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΥΔΡΕΥΣΗΣ

ΕΦΑΡΜΟΓΕΣ ARCGIS ΚΑΙ INNOVYZE INFOWATER ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΥΔΡΕΥΣΗΣ http://www.hydroex.gr ΕΦΑΡΜΟΓΕΣ ARCGIS ΚΑΙ INNOVYZE INFOWATER ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΥΔΡΕΥΣΗΣ Σπύρος Μίχας, Πολιτικός Μηχανικός, PhD, MSc Ελένη Γκατζογιάννη, Πολιτικός Μηχανικός, MSc Αννέτα

Διαβάστε περισσότερα

Κεφάλαιο Ένα Τι είναι η Στατιστική;

Κεφάλαιο Ένα Τι είναι η Στατιστική; Κεφάλαιο Ένα Τι είναι η Στατιστική; Copyright 2009 Cengage Learning 1.1 Τι είναι η Στατιστική; «Στατιστική είναι ένας τρόπος για την αναζήτηση πληροφοριών μέσα σε δεδομένα» Copyright 2009 Cengage Learning

Διαβάστε περισσότερα

Σύστηµα Αρχείων και Καταλόγων

Σύστηµα Αρχείων και Καταλόγων ΕΠΛ 003 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Σύστηµα Αρχείων και Καταλόγων ιάλεξη 7 (Κεφάλαιο 11 του βιβλίου) Στόχοι Κεφαλαίου Περιγραφή της έννοιας του αρχείου, συστήµατος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ ΔΙΑΔΙΚΑΣΙΕΣ ΠΑΡΑΓΩΓΗΣ ΛΟΓΙΣΜΙΚΟΥ Διδάσκων: Γ. Χαραλαμπίδης,

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ

ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ Ανάλυση - Προσομοίωση ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ 1 Προσομοίωση Η προσομοίωση είναι μέθοδος μελέτης ενός συστήματος και εξοικείωσης με τα χαρακτηριστικά του με

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ 1.1 Να δοθεί ο ορισμός του προβλήματος καθώς και τρία παραδείγματα

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Τα δεδομένα της στήλης Grade (Αρχείο Excel, Φύλλο Ask1) αναφέρονται στη βαθμολογία 63 φοιτητών που έλαβαν μέρος σε

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

www.arnos.gr κλικ στη γνώση Τιμολόγηση

www.arnos.gr κλικ στη γνώση Τιμολόγηση ΚΕΦΑΛΑΙΟ 8 Τιμολόγηση Παράγοντες επηρεασμού της τιμής Στόχος της τιμολογιακής πολιτικής πρέπει να είναι ο καθορισμός μιας ιδανικής τιμής η οποία θα ικανοποιεί τόσο τους πωλητές όσο και τους αγοραστές.

Διαβάστε περισσότερα

Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση

Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση Η πληροφορία στη σύγχρονη επιχείρηση Η Ανάγκη Διαδικασία Ορισμός Αφετηρία Πρότυπα Πέραν του ανθρώπινου δυναμικού, η πληροφορία αποτελεί τον πλέον πολύτιμο

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 22 Counting sort, bucket sort και radix sort 1 / 16 Ιδιότητες αλγορίθμων ταξινόμησης ευστάθεια (stable

Διαβάστε περισσότερα