4.3. Γραµµικοί ταξινοµητές

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4.3. Γραµµικοί ταξινοµητές"

Transcript

1 Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων υπολογίζονται οι ποσότητες όπου w ο πίνακας των συντελεστών των γραµµικών διακριτικών συναρτήσεων και ο πίνακας προτύπου που θεωρείται ως είσοδος στον κόµβο (Σχήµα - ) w w ν w w ν w N Ν Σχήµα - Σ Όπως φαίνεται στο σχήµα οι συντελεστές w ν σηµειώνονται επί των γραµµών που οδηγούν από τις εισόδους ν στον κόµβο και ονοµάζονται συνάψεις Ένας τέτοιος κόµβος ονοµάζεται νευρώνας λόγω µιας οµοιότητας του µε τα οµώνυµα βιολογικά κύτταρα του ανθρώπινου εγκεφάλου Συστήµατα διασυνδεδεµένων νευρώνων συνθέτουν τα λεγόµενα τεχνητά νευρωνικά δίκτυα (ΤΝ ), (rtificial Neural Networks) ιάφοροι τύποι νευρωνικών δικτύων επιτελούν χρήσιµες εργασίες στην αναγνώριση προτύπων Προς το παρόν θα ασχοληθούµε µε νευρωνικά δίκτυα που περιγράφουν γραµµικούς ταξινοµητές Ένα τέτοιο γραµµικό νευρωνικό δίκτυο ονοµάζεται perceptron Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -7 Τµήµα πληροφορικής & Επικοινωνιών

2 Εκπαίδευση γραµµικών ταξινοµητών δυο κλάσεων Η εκπαίδευση γραµµικών ταξινοµητών ή γραµµικών νευρωνικών δικτύων Perceptron είναι µια επαναληπτική διαδικασία διόρθωσης σφάλµατος Για την απλούστερη µαθηµατική διατύπωση του µηχανισµού διόρθωσης θα θεωρήσουµε τους επαυξηµένους πίνακες των προτύπων Αν δηλαδή ο χώρος N των πινάκων των Προτύπων έχει Ν διαστάσεις (E ) οι σχέσεις θα γραφούν στον χώρο εξής: N E + που έχει Ν+ διαστάσεις Η διαδικασία εν συντοµία έχει ως Αν Α και Β οι δυο κλάσεις επιλέγουµε τυχαία ένα πρότυπο µε πίνακα από την Α τάξη και ένα πρότυπο µε πίνακα από την Β τάξη Ακολούθως φέρουµε το µεσοκάθετο υπερ-επιπέδου στο ευθύγραµµο τµήµα µε άκρα τα άκρα των r και r Το µεσοκάθετο υπερ-επιπέδου είναι το ενδιάµεσο σηµείο αν, E, η µεσοκάθετος ευθεία αν, E, το µεσοκάθετο υπερ- επιπέδου αν, E, και η µεσοκάθετος υπερ-επιπέδου αν, E N, N > Αν η εξίσωση του µεσοκάθετου υπερ-επιπέδου στο () w + 0 w N + µπορεί να γραφεί στο N E + () ~ W 0 οπου W [ w, w ] και ~ [,] ως N+ N E είναι Θεωρούµε τώρα την ποσότητα D( X) όπου [, W X X ] N+ E N+ Η σχέση D( X) 0 περιγράφει ένα υπερεπίπεδο που διέρχεται από το κέντρο των αξόνων του και τέµνει το επίπεδο των επαυξηµένων πινάκων των προτύπων στο µεσοκάθετο υπερεπίπεδο τους ισχύει N E + N E D( ~ ) > 0, τότε θα ισχύει D( ~ ) < 0 και αντίστροφα σύµφωνα µε την () ν Η βασική ιδέα της εκµάθησης είναι η διόρθωση του υπερεπιπέδου D( X) 0 του Ε Ν+, κάθε φορά που ταξινοµείται εσφαλµένα κάποιο πρότυπο µε πίνακα ~ ηλαδή, οι πίνακες των πρότυπων της κλάσης Α πρέπει να Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -8 Τµήµα πληροφορικής & Επικοινωνιών

3 καθιστούν το πρόσηµο της D(X) ίδιο µε αυτό της ποσότητας D( ~ ) Αντίστοιχα πρέπει να συµβαίνει µε τους πίνακες των προτύπων της κλάσης Β Όταν δεν συµβαίνει αυτό, σηµαίνει ότι το υπερεπιπεδο πρέπει να διορθωθεί ώστε να αφήνει το πρότυπο προς την πλευρά των ορθώς ταξινοµηµένων προτύπων Η διόρθωση αυτή γίνεται σύµφωνα µε την σχέση () W W ± ρ ~ t+ t Η ποσότητα ρ λέγεται παράµετρος εκµάθησης και παίρνει τιµές στο διάστηµα (0,) και t είναι µετρητής επανάληψης της διαδικασίας εκµάθησης Το πρόσηµο στην () είναι αυτό της κλάσης του προτύπου όπως αυτό προσδιορίσθηκε από την ποσότητα D( ~ ) Τα παραπάνω παρουσιάζονται ακολούθως βηµατικά Βήµα ο : Επιλέγουµε τυχαία ένα πρότυπο από την κλάση µε πίνακα Α και ένα από την κλάση Β µε πίνακα Β, µε Α, Β Ε Ν Βήµα ο : Φέρουµε το µεσοκάθετο υπερεπίπεδο στο ευθύγραµµο τµήµα µε άκρα τα σηµεία Α, Β σύµφωνα µε τις σχέσεις () Βήµα ο : Ορίζουµε ένα µετρητή επανάληψης t0,,,, και του αποδίδουµε αρχικά την τιµή µηδέν Θεωρούµε την ποσότητα () D t (X)W X όπου W[w, w N+ ], X Ε Ν+ Βήµα ο : Υπολογίζουµε την ποσότητα D t ( ~ ) και βρίσκουµε το πρόσηµο κάθε κλάσης που θα είναι Πρόσηµο κλάσης Πρόσηµο Α κλάσης Β D 0 ( ~ ) > (+) (-) 0 D 0 ( ~ ) < (-) (+) 0 Βήµα ο : Επιλέγουµε ένα τυχαίο πρότυπο Π µε πίνακα ~, από το σύνολο εκπαίδευσης και υπολογίζουµε την ποσότητα D t ( ~ ) Αν το πρόσηµο της είναι ίδιο µε το πρόσηµο της κλάσης του Π το πρότυπο έχει ταξινοµηθεί σωστά και W t+ W t, αλλιώς ο W t+ διορθώνεται σύµφωνα µε την σχέση Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -9 Τµήµα πληροφορικής & Επικοινωνιών

4 () W t+ W t ±ρ ~ (7) µε πρόσηµο το πρόσηµο της κλάσης του Π Βήµα 6 ο : Αυξάνεται η τιµή του t κατά ένα και η διαδικασία επαναλαµβάνεται από το βήµα έως ότου όλα τα πρότυπα να ταξινοµηθούν σωστά ΠΑΡΑ ΕΙΓΜΑ Έστω τα πρότυπα µε ένα χαρακτηριστικό ( []) που χωρίζονται σε δύο κλάσεις Α, Β και µε τιµές [], [08], [ ] [], [], [8], 6 7 [] Οι πίνακες των προτύπων ανήκουν στο χώρο Ε και απεικονίζονται στην ευθεία των πραγµατικών αριθµών όπως φαίνεται στο Σχ - M Σχήµα - Επιλέγουµε τυχαία ένα πρότυπο από κάθε κλάση, έστω τα και Το ενδιάµεσο σηµείο M των και, θα ικανοποιεί τις σχέσεις () και θα ισχύει (6) w w ' Αρα m w + w - ( - 0, w [w ] E [-]-[] [-] w M m ) - ([ ][ ] [][]) και w, w - R Στον επαυξηµένο χώρο E η σχέση Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -0 Τµήµα πληροφορικής & Επικοινωνιών

5 (7) - M + 0 γράφεται (8) ~ W M 0 µε W [-, ] και ~ M [ M,] Η σχέση (9) W X 0 µε Χ [, ] E περιγράφει την ευθεία (ε) µε εξίσωση : (0) W w (ε) w X 0 [, ] 0 w + w Στο Σχ- φαίνονται τα άκρα των επαυξηµένων διανυσµάτων των προτύπων και η ευθεία (ε) ~ + (ε) (ε ) (ε ) ~ ~ ~ ~ ~ M ~ 6 ~ Σχήµα - Θεωρούµε την ποσότητα () D( X ) W X -, Ισχύει Αναγνώριση Προτύπων-Νευρωνικά ίκτυα - Τµήµα πληροφορικής & Επικοινωνιών

6 () D( ~ ) -, (-) + - < 0 Θα πρέπει ως εκ τούτου οι επαυξηµένοι πίνακες των προτύπων της κλάσης Β να καθιστούν την D( X) < 0 και αυτοί της κλάσης Α το D( X) > 0 Εάν αυτό δεν ισχύει η ποσότης D(X) πρέπει να διορθωθεί Προς τούτο ελέγχουµε την ποσότητα D(X) για όλα τα πρότυπα µε τυχαία σειρά και διορθώνουµε την D(X) όταν χρειαστεί Συγκεκριµένα για ρ 0 έχουµε τα ακόλουθα βήµατα: t ~ w W t w ~ ) D( W ~ 0 ~ - W < 0 ~ - 6 W < 0 ~ 08-6 W < 0 ~ -8 W < 0 ~ W < 0 ~ - -8 W 9 ~ W 6 9 ~ W 7 9 ~ -8 8 W 8 9 ~ -8 9 W 9 9 (-8) (-) > 0 (-8) < 0 (-8) > 0 (-8) < > 0 Πρόσηµο κλάσης του ~ ιόρθωση W W + p ~ t W W t W W W W W W W 6 W W 7 W 6 W 8 W 7 W 9 W 8 Κατά τα βήµατα για t,,,9 έχουν προσπελασθεί όλα τα πρότυπα έχουν ταξινοµηθεί σωστά Συνεπώς η εξίσωση Αναγνώριση Προτύπων-Νευρωνικά ίκτυα - Τµήµα πληροφορικής & Επικοινωνιών

7 () ή ισοδύναµα W () X 0 µε W [-8,9] διαχωρίζει τις δύο κλάσεις Στο Σχ- φαίνονται οι ευθείες (ε ), (ε ) για W W και W W στις αντίστοιχες φάσεις διόρθωσης Ακολούθως παρουσιάζεται η υλοποίηση ενός γραµµικού ταξινοµητή µε την γλώσσα προγραµµατισµού C, για την εκµάθηση των τιµών της λογικής διάζευξης (OR) #include<stdioh> #include<conioh> #define K #define N float [K][N+]{ 00, 00, 0, 00, 0, 0, 0, 00, 0, 0, 0, 0 }; float _class[k] { 00, 0, 0, 0 }; float w[n+] { 0, 0, -}; float D, r 0; int k, n; bool error; main() { //---- raining phase do {error false; for(k 0; k < K; k++) { D [ k][0]*w[ 0] + [ k][ ]*w[ ] + [ k][ ]*w[ ]; // printf("w(%+f %+f %+f ",w[0], w[], w[]); printf("(%+f, %+f, %+f) ",[k][0],[k][],[k][]); printf("d()%+f, class:%f ",D, _class[ k]); // if( D >0 && _class[ k] 00) { w[0]-r*[k][0]; w[]-r*[k][]; w[]-r*[k][]; error true; printf("false\n"); } else if(d < 0 && _class[ k] 0) { w[0]+r*[k][0]; w[]+r*[k][]; w[]+r*[k][]; error true; printf("false\n"); } else printf("rue\n"); } }while(error); } printf("d() %+f %+f %+f\n", w[0], w[], w[]); Αναγνώριση Προτύπων-Νευρωνικά ίκτυα - Τµήµα πληροφορικής & Επικοινωνιών

8 Από την εκτέλεση του προγράµµατος προκύπτουν τα ενδιάµεσα στάδια εκπαίδευσης και η ευθεία διαχωρισµού των κλάσεων w( (+000, +000, +) D()-0, class:000 rue w( (+000, +00, +) D()-00, class:00 False w( (+00, +000, +) D()-00, class:00 False w( (+00, +00, +) D()+0, class:00 rue w( (+000, +000, +) D()-0, class:000 rue w( (+000, +00, +) D()+00, class:00 rue w( (+00, +000, +) D()+00, class:00 rue w( (+00, +00, +) D()+0, class:00 rue D() Η απόφαση ταξινόµησης σε µία από τις δύο κλάσεις που διαχωρίζονται από ένα υπερεπίπεδο εξαρτάται τελικώς από το πρόσηµο της ποσότητας D( ~ ) Για την περιγραφή µε µαθηµατικό τρόπο ορίζουµε την συνάρτηση d() µε την παρακάτω σχέση : αν D( () ~ + ) W ~ > 0 d( ) ~ για D( ~ ) {} 0 -αν D( ~ R ) W < 0 Η τιµή + κωδικοποιεί την περίπτωση το πρότυπο να ανήκει στην κλάση d() ~ ) D( Σχήµα - για την οποία D( ~ ) >0 και η την περίπτωση το πρότυπο να ανήκει στην κλάση για την οποία D( ~ ) <0 Η γραφική παράσταση των τιµών της d() σε σχέση µε τις τιµές της D( ~ ) δείχνεται στο Σχ - Στα διαγράµµατα η d() θα παριστάνεται όπως στο Σχ - Αναγνώριση Προτύπων-Νευρωνικά ίκτυα - Τµήµα πληροφορικής & Επικοινωνιών

9 + - Σχήµα - Κατόπιν τούτων µπορούµε να παραστήσουµε διαγραµµατικά την ταξινόµηση ενός νέου προτύπου σε µία από τις δύο γραµµικά διαχωρίσιµες κλάσεις Α, Β, όπως δείχνεται στο Σχ- w ν Ν w w ν w N + Σ w N+ - + Σχήµα - Ο τύπος διόρθωσης () γράφεται τώρα W t+ W t ρd() ~ και αιτιολογείται εάν θεωρήσουµε το πρόβληµα εύρεσης του W ως πρόβληµα βελτιστοποίησης (optimization) µιας συνάρτησης κόστους Κ(W) Μία τέτοια συνάρτηση είναι η N + (6) Κ( W ) : R R µε Κ( W) ( d( ) W ~ ) S όπου S το σύνολο των διανυσµάτων που ταξινοµήθηκαν λάθος Η συνάρτηση Κ(W) εκφράζει ουσιαστικά το συνολικό σφάλµα ταξινόµησης και είναι κατά τµήµατα γραµµική συνάρτηση Η βέλτιστη λύση του προβλήµατος είναι η εύρεση τέτοιου W ώστε Κ(W)0 Αν WW 0 είναι µία αρχική τιµή, η βέλτιστη τιµή του W µπορεί να προσεγγισθεί από τον τύπο K ( W) (7) W t+ Wt Wt d ~ ρ ρ ( ) W S Αναγνώριση Προτύπων-Νευρωνικά ίκτυα - Τµήµα πληροφορικής & Επικοινωνιών

10 Ο τύπος αυτός αποτελεί έναν επαναληπτικό αλγόριθµο ελαχιστοποίησης της συνάρτησης κόστους Γραµµικοί ταξινοµητές πολλών επιπέδων Όταν το πρόβληµα της ταξινόµησης αφορά περισσότερες από δύο κλάσεις ή όταν οι κλάσεις δεν είναι γραµµικά διαχωρίσιµες, είναι δυνατόν να επιτευχθούν λύσεις µε κατάλληλους συνδυασµούς γραµµικών ταξινοµητών Μια τέτοια χαρακτηριστική περίπτωση είναι αυτή της λογικής πύλης XOR της οποίας ο πίνακας αληθείας δείχνεται στο Σχ- α β α XOR β Σχήµα - Σύµφωνα µε αυτόν οι συνδυασµοί των τιµών των λογικών µεταβλητών α, β αποτελούν τέσσερα πρότυπα που περιγράφονται από τα διανύσµατα στοιχείων συνόλου Ω { (0,0), (0,), (,0), (,) } και η πράξη α XOR β ορίζει τις κλάσεις Α{(0,0),(,)} και Β{(0,),(,0)} Στο Σχ- φαίνονται τα άκρα των διανυσµάτων στο Ε Είναι προφανές ότι οι κλάσεις Α, Β δεν διαχωρίζονται µε µια ευθεία Ο διαχωρισµός των κλάσεων µπορεί να γίνει µε δύο ευθείες (Σχ-) που ορίζουν µία ζώνη στο εσωτερικό της οποίας βρίσκονται τα πρότυπα της κλάσης Β Η ευθεία (ε ) µπορεί να προσδιοριστεί από ένα γραµµικό ταξινοµητή που θα διαχωρίζει το πρότυπο (,) από τα υπόλοιπα Η ευθεία (ε ) µπορεί να προσδιορισθεί από ένα γραµµικό ταξινοµητή Τ που θα διαχωρίζει το πρότυπο (0,0) από τα υπόλοιπα Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -6 Τµήµα πληροφορικής & Επικοινωνιών

11 (ε ) (ε ) Σχήµα - Οι έξοδοι των Τ, Τ θα είναι οι τιµές των συναρτήσεων d (), d () για Ω θα είναι : α β d () d () ΚΛΑΣΗ Α Β Β + + Α Οι τιµές των d (), d () προσδιορίζουν τις κλάσεις Α και Β αποτελώντας ένα νέο σύνολο προτύπου Φ{(-,-),(-,+),(+,+)} (η περίπτωση (+,-) είναι αδύνατη) Στο Σχ- φαίνεται ο χώρος του Φ d () d () Σχήµα - Η κλάση Α προσδιορίζεται από το σηµείο (+,+) του χώρου Φ που διαχωρίζεται γραµµικά µε την ευθεία (ε) από τα διανύσµατα (-,-),(+,+) που προσδιορίζουν την κλάση Β Ένας γραµµικός ταξινοµητής Τ µπορεί να Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -7 Τµήµα πληροφορικής & Επικοινωνιών

12 προσδιορίσει την ε Σ αυτόν αν d Τ ()>0 και αν d Τ ()<0 Το όλο σύστηµα φαίνεται στο Σχ- w w Σ d () Σ d() Ν w w Σ d () Σχήµα - Γραµµικός ταξινοµητής-ν Perceptron δύο επιπέδων Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -8 Τµήµα πληροφορικής & Επικοινωνιών

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

Γραµµικοί Ταξινοµητές

Γραµµικοί Ταξινοµητές ΚΕΣ 3: Αναγνώριση Προτύπων και Ανάλυση Εικόνας KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Γραµµικοί Ταξινοµητές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου 7 Ncolas sapatsouls

Διαβάστε περισσότερα

5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη

5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη 5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη Tο πρόβληµα του προσδιορισµού των συγκεντρώσεων των προτύπων, όταν δεν είναι γνωστό το πλήθος τους και η ταυτότητα των προτύπων, είναι δύσκολο και για την

Διαβάστε περισσότερα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Πολυεπίπεδες Perceptron Οαλγόριθµος

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

4. Ο αισθητήρας (perceptron)

4. Ο αισθητήρας (perceptron) 4. Ο αισθητήρας (perceptron) Σκοπός: Προσδοκώµενα αποτελέσµατα: Λέξεις Κλειδιά: To µοντέλο του αισθητήρα (perceptron) είναι από τα πρώτα µοντέλα νευρωνικών δικτύων που αναπτύχθηκαν, και έδωσαν µεγάλη ώθηση

Διαβάστε περισσότερα

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων Κεφάλαιο Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων. Εισαγωγή Η µοντελοποίηση πολλών φυσικών φαινοµένων και συστηµάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται µε

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΙΓΜΑΤΙΚΗ Ι ΑΣΚΑΛΙΑ «ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΟΡΙΖΟΥΣΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ» 1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟΣ 1 : Γραµµική εξίσωση λέγεται κάθε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΣΥΣΤΗΜΑΤΑ....................................................

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κυριακή 6 Απριλίου 05 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σχολικού βιβλίου, σελίδα.

Διαβάστε περισσότερα

Αναγνώριση Προτύπων - Νευρωνικά ίκτυα

Αναγνώριση Προτύπων - Νευρωνικά ίκτυα ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ Αναγνώριση Προτύπων - Νευρωνικά ίκτυα ρ. Χαράλαµπος Π. Στρουθόπουλος Αναπληρωτής Καθηγητής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 7 Ιανουαρίου 2005 ιάρκεια εξέτασης: 5:00-8:00 Έστω ότι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

οµή δικτύου ΣΧΗΜΑ 8.1

οµή δικτύου ΣΧΗΜΑ 8.1 8. ίκτυα Kohonen Το µοντέλο αυτό των δικτύων προτάθηκε το 1984 από τον Kοhonen, και αφορά διαδικασία εκµάθησης χωρίς επίβλεψη, δηλαδή δεν δίδεται καµία εξωτερική επέµβαση σχετικά µε τους στόχους που πρέπει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON 3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα.

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Καµπύλες Bézier και Geogebra

Καµπύλες Bézier και Geogebra Καµπύλες Bézier και Geogebra Κόλλιας Σταύρος Ένα από τα προβλήµατα στη σχεδίαση δυσδιάστατων εικόνων στα προγράµµατα γραφικών των υπολογιστών είναι η δηµιουργία οµαλών καµπυλών. Η λύση στο πρόβληµα αυτό

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Τετάρτη Ιουνίου 7 :-4: Κατασκευάστε έναν αισθητήρα (perceptron)

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά

Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά Κεφάλαιο Τρία: 3.1 Τι είναι αναλογικό και τι ψηφιακό µέγεθος Αναλογικό ονοµάζεται το µέγεθος που µπορεί να πάρει οποιαδήποτε τιµή σε µια συγκεκριµένη περιοχή τιµών π.χ. η ταχύτητα ενός αυτοκινήτου. Ψηφιακό

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα

Διαβάστε περισσότερα

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ Άξονας Έστω η ευθεία x x (σχ. 21) και τα σηµεία Ο, Ι πάνω σ αυτή, ώστε ΟΙ= i όπου i το µοναδιαίο διάνυσµα, δηλαδή ένα διάνυσµα που θεωρούµε ότι η φορά του είναι θετική και το µέτρο

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition)

Αναγνώριση Προτύπων (Pattern Recognition) Αναγνώριση Προτύπων (Pern Recognon) Γραµµικές Συναρτήσεις ιάκρισης (Lner Dscrmnn Funcons) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γραµµικές Συναρτήσεις ιάκρισης Στόχος: Η σχεδίαση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή

3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή 3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ 3.1 ΑΝΑ ΡΟΜΗ 3.1.1 Εισαγωγή ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Αναδροµή είναι η µέθοδος κατά την οποία, σε µία γλώσσα προγραµµατισµού, µία διαδικασία ή συνάρτηση έχει την δυνατότητα

Διαβάστε περισσότερα

a = 10; a = k; int a,b,c; a = b = c = 10;

a = 10; a = k; int a,b,c; a = b = c = 10; C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 4 ο Τελεστές Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Ο τελεστής εκχώρησης = Ο τελεστής = χρησιµοποιείται για την απόδοση τιµής (ή αλλιώς ανάθεση τιµής) σε µία µεταβλητή Π.χ.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 9 Φεβρουαρίου 5. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου 5.

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

Αριθµητική επίλυση εξισώσεων και παρεµβολή µέσω υπολογιστή για την εκπαιδευτική διαδικασία

Αριθµητική επίλυση εξισώσεων και παρεµβολή µέσω υπολογιστή για την εκπαιδευτική διαδικασία Πρόγραµµα Μεταπτυχιακών Σπουδών "Υπολογιστικά Μαθηµατικά και Πληροφορική" Κατεύθυνση: Τεχνολογίες Πληροφορικής και Επικοινωνιών στην Εκπαίδευση Αριθµητική επίλυση εξισώσεων και παρεµβολή µέσω υπολογιστή

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ 1.Τι ονοµάζεται σύνολο; Σύνολο ονοµάζεται κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία µας ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο.

Διαβάστε περισσότερα

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου 3. Ο ΚΥΚΛΟΣ ΘΕΩΡΙΑ. Εξίσωση κύκλου (Ο, ρ) + y ρ. Παραµετρικές εξισώσεις κύκλου ρσυνφ και y ρηµφ 3. Εφαπτοµένη κύκλου + yy ρ 4. Εξίσωση κύκλου µε κέντρο το σηµείο Κ( o, y ο ) και ακτίνα ρ ( o ) + (y y ο

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ

ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ ηµήτρης Ψούνης ΠΛΗ3, Απαντήσεις Quiz σε ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ Μάθηµα 3. ΕΡΩΤΗΜΑ Ένας αισθητήρας µπορεί να µάθει: a. εδοµένα που ανήκουν σε 5 διαφορετικές κλάσεις. b. εδοµένα που ανήκουν

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΩΡΙΑ. Γραµµική εξίσωση µε δύο αγνώστους, y Λέγεται κάθε εξίσωση της µορφής α + βy = γ, µε α 0 ή β 0. Γραφική παράσταση γραµµικής εξίσωσης Κάθε γραµµική εξίσωση α + βy = γ παριστάνει

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ. Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα.

Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ. Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα. Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα. 1 ΤΕΧΝΗΤΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Χαρακτηριστικά Είδη εκπαίδευσης Δίκτυα

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Στις φυσικές επιστήµες για να λύσουµε προβλήµατα ακολουθούµε συνήθως τα εξής βήµατα: 1. Μαθηµατική διατύπωση. Για να διατυπώσουµε µαθηµατικά ένα πρόβληµα

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C Εισαγωγή στην C Μορφή Προγράµµατος σε γλώσσα C Τµήµα Α Με την εντολή include συµπεριλαµβάνω στο πρόγραµµα τα πρότυπα των συναρτήσεων εισόδου/εξόδου της C.Το αρχείο κεφαλίδας stdio.h είναι ένας κατάλογος

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη Μάθηµα 2 ο. Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη Μάθηµα 2 ο. Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 2 ο Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Αλγόριθµοι Ορισµός Παράδειγµα Ασυµπτωτική

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

int array[10]; double arr[5]; char pin[20]; Προγραµµατισµός Ι

int array[10]; double arr[5]; char pin[20]; Προγραµµατισµός Ι Εισαγωγή Στον Προγραµµατισµό «C» Πίνακες Πανεπιστήµιο Πελοποννήσου Τµήµα Πληροφορικής & Τηλεπικοινωνιών Νικόλαος Δ. Τσελίκας Νικόλαος Προγραµµατισµός Δ. Τσελίκας Ι Πίνακες στη C Ένας πίνακας στη C είναι

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι

Επαναληπτικές μέθοδοι Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016 Λύσεις θεμάτων προσομοίωσης -Πανελλαδικές Εξετάσεις 06 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 06 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 19 Ιουνίου 2008 11:00-14:00 Έστω το παρακάτω

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα