ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
|
|
- ÊÊΔιομήδης Ρόκας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Δ.Π.Μ.Σ. ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΧΟΥΧΟΥΜΗΣ ΙΩΑΝΝΗΣ
2 Το σύνολο των δεδομένων που μας έχει δοθεί περιέχεται σε 3 αρχεία με κατάληξη.arff, με αριθμητικές (numeric) τιμές για κάθε χαρακτηριστικό (attribute) : 1. train.arff Δεδομένα εκπαίδευσης (training set) 2528 υποδείγματα 39 χαρακτηριστικά (δυαδικά, ακέραια, πραγματικά) & ζητούμενο μεταβλητή στόχος (record label, good / bad) 2) quiz.arff Δεδομένα επαλήθευσης (quiz set) 1265 υποδείγματα (instances) 39 χαρακτηριστικά 3) test.arff Δεδομένα εξέτασης (test set) 1265 υποδείγματα (instances) 39 χαρακτηριστικά Για την επεξεργασία των δεδομένων και την εξαγωγή των αποτελεσμάτων χρησιμοποιήθηκε το open source software : Weka (Data Mining Software in Java) Αρχικά θα εξετάσουμε μέσα από οπτικούς ελέγχους αν κάποια χαρακτηριστικά δεν μας παρέχουν επιπλέον πληροφορία και μπορούμε να τα διαγράψουμε. Δημιουργώντας τα ιστογράμματα συχνοτήτων για κάθε χαρακτηριστικό παρατηρούμε ότι μπορούμε να διαγράψουμε (χρησιμοποιώντας την εντολή Remove) το attribute 38 καθώς σε αυτό κάθε instance έχει τιμή ίση με 0. Επίσης και η εφαρμογή του φίλτρου: filters unsupervised attribute RemoveUseless διαγράφει το attribute 38.
3 Στο attribute 34 έχουμε 2527 instances με τιμή 0 και ένα instance με τιμή 1 οπότε μπορούμε να το διαγράψουμε και αυτό.
4 Στο attribute 36 έχουμε 2513 instances με τιμή 0 και 15 instances με τιμή 1 αντίστοιχα, οπότε ίσως μπορούμε να διαγράψουμε και το attribute 36 αλλά θα ήταν καλύτερα πρώτα να τρέξουμε κάποιους αλγόριθμους και να συγκρίνουμε τα ποσοστά επιτυχίας με ή χωρίς τη διαγραφή του πριν καταλήξουμε στην τελική απόφαση. Επίσης έγινε η χρησιμοποίηση διαφόρων φίλτρων για την επιλογή των χαρακτηριστικών όπως για παράδειγμα από το tab Select attributes του Weka επιλέγοντας Attribute Evaluator CfsSubsetEVal Search Method GreedyStepwise έχουμε ένα σύνολο με 11 attributes (6, 7, 12, 13, 23, 24, 27, 28, 32, 35, 36 ) από τα 39 ενώ επιλέγοντας Attribute Evaluator WrapperSubsetEval Search Method GeneticSearch
5 παίρνουμε ένα σύνολο από μόνο 4 attributes (1, 19, 20, 27) Τρέχοντας τον αλγόριθμο: classifiers rules M5Rules με Cross validation για διάφορες επιλογές χαρακτηριστικών πήραμε υψηλό συντελεστή συσχέτισης και χαμηλό σφάλμα στην περίπτωση όπου έχουμε διαγράψει τα attributes (34, 36, 38) για το training set το οποίο είχαμε αποθηκεύσει ως train_numeric arff: === Cross-validation === Correlation coefficient Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances 2528 Στη συνέχεια έγινε η προσθήκη ενός νέου πλαστού χαρακτηριστικού 'prediction' στο quiz set (για να είναι συμβατό με το training set) με τιμή ίση με 0 σε όλα τα instances του και αποθηκεύτηκε ως quizextnded.arff και εφαρμόστηκε ο παραπάνω αλγόριθμος θέτοντας αυτή τη φορά ως supplied test set το quizextnded.arff από όπου προέκυψαν τα παρακάτω αποτελέσματα: === Evaluation on test set === Correlation coefficient 0 Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances 1265 Ο αλγόριθμος αυτός έδωσε ποσοστό επιτυχίας Για να εφαρμοστούν κάποιοι αλγόριθμοι οι οποίοι απαιτούν η μεταβλητή στόχος να είναι nominal χρειάστηκε η μετατροπή της στο train.arff και το quiz.arff από numeric σε nominal με το φίλτρο: filters unsupervised attribute NumericToNominal -R last Στην περίπτωση του quiz.arff επειδή στο πλαστό χαρακτηριστικό 'prediction' που προστέθηκε κάθε τιμή είναι ίση με 0 για όλα τα instances η εφαρμογή του παραπάνω φίλτρου δίνει:
6 @relation quiz-weka.filters.unsupervised.attribute.add-nunnamed- attr01 attr02 attr03 attr37 attr38 attr39 output {0} το οποίο δημιουργεί ασυμβατότητα μεταξύ train set και quiz set έχοντας ως supplied test το quiz.arff. Έτσι χρειάστηκε να επεξεργαστούμε το quiz.arff ανοίγοντας το με έναν text editor και αλλάζοντας την output {0} output {0, 1} το οποίο αποθηκεύτηκε ως quizextended_nominal.arff Εφαρμόστηκαν συνολικά 84 αλγόριθμοι (από τους οποίους οι 15 ήταν metaαλγόριθμοι) στους οποίους είχαν αφαιρεθεί είτε τα attributes (34, 36, 38) είτε τα attributes (34, 38).Aπό τα success rate που πήραμε αποφασίστηκε η μη διαγραφή του attribute 36 διότι π.χ. ο αλγόριθμος: classifiers trees RandomForest με την διαγραφή των attributes (34,38) έδωσε ποσοστό 0,9494 ενώ με την διαγραφή των (34, 36, 38) έδωσε χαμηλότερη τιμή 0,9462. Μετά την επιλογή να διαγραφούν τα attributes (34,38) και την μετατροπή της μεταβλητής στόχου σε nominal αποθηκεύτηκε το quiz.arff ως quizextended_nominal3438.arff
7 Από τους αλγόριθμους που δοκιμάστηκαν ο : classifiers meta Bagging LADTree έδωσε το μεγαλύτερο ποσοστό επιτυχίας (δηλαδή 1208 σωστές προβλέψεις στις 1265) έχοντας ως suplied test το quizextended_nominal3438.arff και πήραμε τα παρακάτω αποτελέσματα: === Stratified cross-validation === Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances 2528 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure ROC Area Class Weighted Avg === Confusion Matrix === a b <-- classified as a = b = 1. === Evaluation on test set === Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic 0 Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances 1265
8 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure ROC Area Class ? ? 1 Weighted Avg === Confusion Matrix === a b <-- classified as a = b = 1 Ο παραπάνω αλγόριθμος εφαρμόστηκε ξανά έχοντας ώς supplied test set τώρα το test set στο οποίο έγιναν οι εξής τροποποιήσεις ( προσθήκη ενός νέου πλαστού χαρακτηριστικού 'prediction' με τιμή ίση με 0 σε όλα τα instances του, διαγραφή των attributes 34, 38 και μετατροπή της μεταβλητής στόχου σε nominal )και αποθηκεύτηκε ως testextended_nominal3438.arff όπου προέκυψαν τα παρακάτω αποτελέσματα και πήραμε την τελική πρόβλεψη για τη μεταβλητή στόχο. === Evaluation on test set === Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic 0 Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances 1265 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure ROC Area Class ? ? 1 Weighted Avg
9 === Confusion Matrix === a b <-- classified as a = b = 1
Ι. Preprocessing (Επεξεργασία train.arff):
Ονοματεπώνυμο: Κατερίνα Αργύρη Δ.Π.Μ.Σ: Εφαρμοσμένες Μαθηματικές Επιστήμες Ακαδ. Έτος: 2008-2009 1 Για την παρούσα εργασία διατίθενται τρία σύνολα δεδομένων: Δεδομένα Εκπαίδευσης (train set αρχείο train.arff):
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Data Mining) Πανδή Αθηνά
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Data Mining) Πανδή Αθηνά Μάιος 2008 Τα δεδομένα που έχουμε προς επεξεργασία χωρίζονται σε τρία μέρη: 1. Τα δεδομένα εκπαίδευσης (training set) που αποτελούνται από 2528
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ : ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ ΠΙΘΑΝΟΝΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΓΑΣΙΑ 08: ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ 1 Ο ΣΤΑΔΙΟ: Πριν εφαρμόσουμε οποιοδήποτε αλγόριθμο
ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ: ΣΤΑΤΙΣΤΙΚΗ-ΠΙΘΑΝΟΤΗΤΕΣ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΑ ΤΑΤΣΙΟΥ
ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ: ΣΤΑΤΙΣΤΙΚΗ-ΠΙΘΑΝΟΤΗΤΕΣ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΑ ΤΑΤΣΙΟΥ ΠΡΟΕΠΙΣΚΟΠΗΣΗ ΚΑΙ ΕΞΕΡΕΥΝΗΣΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ Τα προς επεξεργασία
ΑΝΔΡΟΥΛΑΚΗΣ ΜΑΝΟΣ A.M AΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
ΑΝΔΡΟΥΛΑΚΗΣ ΜΑΝΟΣ A.M. 09470015 AΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διδάσκων: Γιώργος Τζιραλής ΔΠΜΣ ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Στάδιο 1 ο. Προεπισκόπηση-προεπεξεργασία δεδομένων: Δίδονται τα παρακάτω
ΗΜΕΡΟΜΗΝΙΑ: 25/05/2009 TΕΛΙΚΗ ΕΡΓΑΣΙΑ ΝΙΚΗ ΜΟΣΧΟΥ
DATA MINING ΗΜΕΡΟΜΗΝΙΑ: 25/05/2009 TΕΛΙΚΗ ΕΡΓΑΣΙΑ ΝΙΚΗ ΜΟΣΧΟΥ 1 ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ Αφού δεν γνωρίζουμε κάποιο τρόπο για να επιλέξουμε εκ των προτέρων την πιο κατάλληλη και αποδοτική μέθοδο μάθησης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008
ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Τελική Εργασία στο µάθηµα Αλγόριθµοι Εξόρυξης
ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
squared error, Mean absolute error, Root mean squared error) µεγάλωσαν,
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣ ΣΤΙΣ ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΈΤΟΣ 2009 ΌΝΟΜΑ : ΚΑΤΣΑΒΡΙΑΣ ΕΥΑΓΓΕΛΟΣ Α.Μ. : 09480014 ΕΞΑΜΗΝΟ
Εξόρυξη Γνώσης από Βιολογικά εδομένα
Παρουσίαση Διπλωματικής Εργασίας Εξόρυξη Γνώσης από Βιολογικά εδομένα Καρυπίδης Γεώργιος (Μ27/03) Επιβλέπων Καθηγητής: Ιωάννης Βλαχάβας MIS Πανεπιστήμιο Μακεδονίας Φεβρουάριος 2005 Εξόρυξη Γνώσης από Βιολογικά
Διπλωματική Εργασία. Διαχείριση Γνώσης και Ασφάλεια Πληροφοριών
Πανεπιστήμιο Πειραιώς Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Ευρωπαικό Μεταπτυχιακό Πρόγραμμα στη Διοίκηση Επιχειρήσεων Διοίκηση Ολικής Ποιότητας Διπλωματική Εργασία Διαχείριση Γνώσης και Ασφάλεια
Αναγνώριση Προτύπων Εργασία 1η Classification
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Αναγνώριση Προτύπων Εργασία 1η Classification Κιντσάκης Αθανάσιος 6667 Μόσχογλου Στυλιανός 6978 30 Νοεμβρίου,
«Αναζήτηση Γνώσης σε Νοσοκομειακά Δεδομένα»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Πρόγραμμα Σπουδών M.I.S. «Αναζήτηση Γνώσης σε Νοσοκομειακά Δεδομένα» Μεταπτυχιακός Φοιτητής: Επιβλέπων Καθηγητής: Εξεταστής Καθηγητής: Τορτοπίδης Γεώργιος Μηχανικός
ΕΡΩΤΗΜΑ 1 ΕΡΩΤΗΜΑ 2. ELONGATEDNESS <= 41 AND MAX.LENGTH ASPECT RATIO <= 7 AND COMPACTNESS > 95: bus (70.0/1.0)
ΕΡΩΤΗΜΑ 1 Κάνοντας Visualize all στο παρατηρούμε ότι όλα τα 20 attributes είναι σημαντικά στο train set και το output είναι nominal Cross validation με δοκιμή διάφορων αλγορίθμων για το train set επιλογή
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΤΞΗ ΠΛΗΡΟΦΟΡΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ χολι Εφαρμοςμζνων Μακθματικϊν και Φυςικϊν Επιςτθμϊν ΔΠΜΣ: Εφαρμοςμζνεσ Μακθματικζσ Επιςτιμεσ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΤΞΗ ΠΛΗΡΟΦΟΡΙΑ Θεϊνθ Αγάκου, ΑΜ: 09480006 Διδάςκων: Γιϊργοσ Τηιραλισ
ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΑΣ (Τ. & Τ.Π.) ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΥΡΜΑΤΟΥ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΑΣ (Τ. & Τ.Π.) ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΥΡΜΑΤΟΥ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Ανάλυση και κατηγοριοποίηση χρηστών Twitter ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ της ΔΑΝΑΗΣ
8. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ
8. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ Στόχος του εργαστηρίου αυτού είναι να δείξει πώς τα εργαστήρια με τα δεδομένα της ICAP μπορούν να υλοποιηθούν χωρίς τη χρήση SQL Server, χρησιμοποιώντας μόνον Excel και Rapid
Ζήτημα 1ο. Ζήτημα 2o. Τρέχουμε κάποιους αλγόριθμους. Ο OneR δίνει τους παρακάτω κανόνες
Ζήτημα 1ο Επιλογή χαρακτηριστικών (οπτικοί έλεγχοι, select attributes, Remove useless) Από το select attributes οι πιο σημαντικές μεταβλητές είναι οι (1, 2, 3, 6, 20) Με τους οπτικούς έλεγχους παρατηρώ
LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης
Εξόρυξη Δεδομένων Δειγματοληψία Πίνακες συνάφειας Καμπύλες ROC και AUC Σύγκριση Μεθόδων Εξόρυξης Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr LOGO Συμπερισματολογία - Τι σημαίνει ; Πληθυσμός
«ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΑΥΤΟΜΑΤΟΥ ΤΕΜΑΧΙΣΜΟΥ ΚΑΙ ΑΝΑΓΝΩΡΙΣΗΣΣ ΗΧΗΤΙΚΩΝ ΚΑΤΗΓΟΡΙΩΝ ΑΠΟ ΡΑΔΙΟΦΩΝΙΚΕΣ ΕΚΠΟΜΠΕΣ»
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΜΜΕ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΑΥΤΟΜΑΤΟΥ ΤΕΜΑΧΙΣΜΟΥ ΚΑΙ ΑΝΑΓΝΩΡΙΣΗΣΣ ΗΧΗΤΙΚΩΝ ΚΑΤΗΓΟΡΙΩΝ
Διδάσκουσα: Χάλκου Χαρά,
Διδάσκουσα: Χάλκου Χαρά, Διπλωματούχος Ηλεκτρολόγος Μηχανικός & Τεχνολογίας Η/Υ, MSc e-mail: chalkou@upatras.gr Επιβλεπόμενοι Μη Επιβλεπόμενοι Ομάδα Κατηγορία Κανονικοποίηση Δεδομένων Συμπλήρωση Ελλιπών
Κατηγοριοποίηση. 3 ο Φροντιστήριο. Ε Ξ Ό Ρ Υ Ξ Η Δ Ε Δ Ο Μ Έ Ν Ω Ν Κ Α Ι Α Λ Γ Ό Ρ Ι Θ Μ Ο Ι Μ Ά Θ Η Σ Η ς. Σκούρα Αγγελική
Κατηγοριοποίηση Ε Ξ Ό Ρ Υ Ξ Η Δ Ε Δ Ο Μ Έ Ν Ω Ν Κ Α Ι Α Λ Γ Ό Ρ Ι Θ Μ Ο Ι Μ Ά Θ Η Σ Η ς 3 ο Φροντιστήριο Σκούρα Αγγελική skoura@ceid.upatras.gr Κατηγοριοποίηση (Classification) Σκοπός: Learn a method for
υποδείγματος για την αξιολόγηση αυτοκινήτων με τεχνικές Data Mining.»
ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗΣ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Διπλωματική εργασία με θέμα: «Ανάπτυξη υποδείγματος για την αξιολόγηση αυτοκινήτων με
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη02 ΣυνιστώσεςΔεδομένων Οπτικοποίηση&Εξερεύνηση
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη02 ΣυνιστώσεςΔεδομένων Οπτικοποίηση&Εξερεύνηση Η μορφή των δεδομένων και η σημασία της Δεδομένα input Αλγόριθμοι Εξόρυξης
Τεχνικές Προβλέψεων. Προετοιμασία & Ανάλυση Χρονοσειράς
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προετοιμασία & Ανάλυση Χρονοσειράς http://www.fsu.gr
ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ: ΕΠΙΛΟΓΗ ΒΕΛΤΙΣΤΟΥ ΑΛΓΟΡΙΘΜΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΜΑΘΗΜΑΤΟΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΙΤΛΟ: ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ:
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 03: Προεπεξεργασία & Επιλογή Δεδομένων
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 03: Προεπεξεργασία & Επιλογή Δεδομένων Προεπεξεργασία δεδομένων Ο μετασχηματισμός των δεδομένων σε μορφή κατάλληλη και
Κατηγοριοποίηση. Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης. 2 ο Φροντιστήριο. Σκούρα Αγγελική
Κατηγοριοποίηση Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης 2 ο Φροντιστήριο Σκούρα Αγγελική skoura@ceid.upatras.gr Μηχανική Μάθηση Η μηχανική μάθηση είναι μια περιοχή της τεχνητής νοημοσύνης η οποία αφορά
SPSS Statistical Package for the Social Sciences
SPSS Statistical Package for the Social Sciences Ξεκινώντας την εφαρμογή Εισαγωγή εδομένων Ορισμός Μεταβλητών Εισαγωγή περίπτωσης και μεταβλητής ιαγραφή περιπτώσεων ή και μεταβλητών ΣΤΑΤΙΣΤΙΚΗ Αθανάσιος
Τεχνικές Προβλέψεων. 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.
Συνδυασμός Ταξινομητών χρησιμοποιώντας Μήτρες Αποφάσεων (Decision Templates) με εφαρμογή στην Ταξινόμηση Καρκινικών Δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
Πολυτεχνείο Κρήτης Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Τομέας Τηλεπικοινωνιών Συνδυασμός Ταξινομητών χρησιμοποιώντας Μήτρες Αποφάσεων (Decision Templates) με εφαρμογή στην
4. Αεροτριγωνισμός Προετοιμασία Δεδομένων Επίλυση Αεροτριγωνισμού
4. Αεροτριγωνισμός Δεδομένα 5 εικόνες κλίμακας 1:6000, δηλαδή όλες οι διαθέσιμες εικόνες) Σημεία σύνδεσης (που θα σκοπεύσετε στα επικαλυπτόμενα τμήματα) Συντεταγμένες Φωτοσταθερών σημείων (GCP) στο σύστημα
Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση
Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση Η πληροφορία στη σύγχρονη επιχείρηση Η Ανάγκη Διαδικασία Ορισμός Αφετηρία Πρότυπα Πέραν του ανθρώπινου δυναμικού, η πληροφορία αποτελεί τον πλέον πολύτιμο
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση Η μορφή των εξαγομένων και η σημασία της Δεδομένα input Αλγόριθμοι Εξόρυξης
2o μέρος εργασίας (Αρχείο cpu)
2o μέρος εργασίας (Αρχείο cpu) Στο dataset cpu, υπάρχουν 209 instances που αντιστοιχούν σε διαφορετικά configurations ενός υπολογιστή. Εξετάζεται το κατά πόσο επηρεάζεται η απόδοση του υπολογιστή από τις
Εξόρυξη Γνώσης από Δεδομένα
Εξόρυξη Γνώσης από Δεδομένα Το εργαλείο WEKA Ομάδα ιαχείρισης εδομένων,, Τμήμα Πληροφορικής, Πανεπιστήμιο Πειραιώς http://infolab.cs.unipi.gr έσποινα Κοπανάκη (dkopanak@unipi.gr) Νοέμβριος 2009 Τα δεδομένα
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση
Πρόβλεψη Χρηματιστηριακών Μεγεθών με Τεχνικές Εξόρυξης Δεδομένων
Πρόβλεψη Χρηματιστηριακών Μεγεθών με Τεχνικές Εξόρυξης Δεδομένων Σαμαράς Νικόλαος, Μαζαράκης Αθανάσιος Τμ. Εφαρμοσμένης Πληροφορικής, Πανεπιστήμιο Μακεδονίας Εγνατίας 156, 54006, Θεσσαλονίκη samaras@uom.gr,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ιπλωµατική Εργασία. της.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ HΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΓΝΩΣΗΣ ΜΕ ΤΗΝ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΤΟΥ DATA MINING ΤΟΥ WEKA ιπλωµατική Εργασία της Μιγκού Αννέτας
Αποθήκες εδομένων και Εξόρυξη εδομένων:
Αποθήκες εδομένων και Εξόρυξη εδομένων: Κατηγοριοποίηση: Μέρος Β http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΡΚΕΙΑΣ ΦΩΝΗΜΑΤΩΝ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΗ ΣΥΝΘΕΣΗ ΟΜΙΛΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΟΜΕΑΣ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΚΑΙ ΤΕΧΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΡΚΕΙΑΣ ΦΩΝΗΜΑΤΩΝ ΤΗΣ ΕΛΛΗΝΙΚΗΣ
Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 9ο Aντώνης Σπυρόπουλος Σφάλματα στρογγυλοποίησης
ΘΕΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ ΓΙΑ ΤΟ
ΘΕΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ ΓΙΑ ΤΟ ΑΚ. ΕΤΟΣ 2013-2014 Π. ΒΑΣΙΛΕΙΑΔΗΣ http://www.cs.uoi.gr/~pvassil/courses/diplomatikes ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. Μελέτη της Εξέλιξης Βάσεων Δεδομένων... 2 1.1. Εξόρυξη Προτύπων
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ SARIMA (sp,sd,qs) ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
Μετατροπή Εταιρίας σε Εταιρία ΕΛΠ
Μετατροπή Εταιρίας σε Εταιρία ΕΛΠ Περίληψη Το συγκεκριμένο εγχειρίδιο δημιουργήθηκε για να βοηθήσει την κατανόηση της διαδικασίας Μετατροπής μιας εταιρίας Γ κατηγορίας από ΕΓΛΣ σε ΕΛΠ. Περιεχόμενα Περίληψη...
4.4 Βάσεις Δεδομένων με πολλές Μεταβλητές
4.4 Βάσεις Δεδομένων με πολλές Μεταβλητές Σε αυτή την ενότητα θα παρουσιάσουμε μερικά παραδείγματα με βάσεις δεδομένων που έχουν μονοδιάστατη έξοδο και πολυδιάστατη είσοδο. Οι βάσεις δεδομένων προέρχονται
Αποθήκες και Εξόρυξη Δεδομένων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αποθήκες και Εξόρυξη Δεδομένων 2 Ο Εργαστήριο WEKA (CLASSIFICATION) Στουγιάννου Ελευθερία estoug@unipi.gr -2- Κατηγοριοποίηση Αποτελεί μια από τις βασικές
Ανάλυση μεγάλων δεδομένων με χρήση εργαλείων εξόρυξης δεδομένων. Η περίπτωση μιας εφαρμογής υποστήριξης αποφάσεων εκλογικής ψήφου.
Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στα Πληροφοριακά Συστήματα Ανάλυση μεγάλων δεδομένων με χρήση εργαλείων εξόρυξης δεδομένων. Η περίπτωση μιας εφαρμογής υποστήριξης αποφάσεων εκλογικής ψήφου.
Εφαρμοσμένη Πληροφορική ΙΙ (Θ) Είσοδος/Έξοδος Μεταβλητές Τύποι Μεταβλητών Τελεστές και Προτεραιότητα Μετατροπές Μεταξύ Τύπων
Εφαρμοσμένη Πληροφορική ΙΙ (Θ) Είσοδος/Έξοδος Μεταβλητές Τύποι Μεταβλητών Τελεστές και Προτεραιότητα Μετατροπές Μεταξύ Τύπων 1 Είσοδος/Έξοδος Είσοδος/Έξοδος ανάλογα με τον τύπο του προγράμματος Πρόγραμμα
Επιλογή παραμέτρων και χαρακτηριστικών ταξινομητή με χρήση της καμπύλης λειτουργίας δείκτη (ROC Curve)
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική εργασία Τίτλος: Επιλογή παραμέτρων και χαρακτηριστικών ταξινομητή με χρήση της καμπύλης λειτουργίας δείκτη (ROC Curve)
2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς. -
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί
Δέντρα Απόφασης (Decision(
Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα
ΕΙΣΑΓΩΓΗ ΔΕΔΟΜΕΝΩΝ ΑΠΟ EXCEL ΣΤΟ GRETL
ΕΙΣΑΓΩΓΗ ΔΕΔΟΜΕΝΩΝ ΑΠΟ EXCEL ΣΤΟ GRETL Με το οικονομετρικό λογισμικό GRETL μπορούμε να κάνουμε Ανάλυση Χρονοσειρών σε δεδομένα (χρονοσειρές) με διάφορες μεθόδους και μοντέλα. Επειδή είναι εύκολο να βρούμε
Δομές Δεδομένων. Ενότητα 2: Στοίβες Εισαγωγή-Υλοποίηση ΑΤΔ Στοίβα με Πίνακα-Εφαρμογή Στοίβας: Αντίστροφη Πολωνική Γραφή. Καθηγήτρια Μαρία Σατρατζέμη
Ενότητα 2: Στοίβες Εισαγωγή-Υλοποίηση ΑΤΔ Στοίβα με Πίνακα-Εφαρμογή Στοίβας: Αντίστροφη Πολωνική Γραφή Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΠΕΙΡΑΜΑΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4. είναι η πραγματική απόκριση του j δεδομένου (εκπαίδευσης ή ελέγχου) και y ˆ j
Πειραματικές Προσομοιώσεις ΚΕΦΑΛΑΙΟ 4 Όλες οι προσομοιώσεις έγιναν σε περιβάλλον Matlab. Για την υλοποίηση της μεθόδου ε-svm χρησιμοποιήθηκε το λογισμικό SVM-KM που αναπτύχθηκε στο Ecole d Ingenieur(e)s
Τύποι δεδομένων, τελεστές, μεταβλητές
Τύποι δεδομένων, τελεστές, μεταβλητές Βασικά στοιχεία της γλώσσας Η Java χαρακτηρίζεται από ένα αρκετά καλά οργανωμένο σύνολο εντολών κι ένα μέρος της επιτυχίας της οφείλεται στα διάφορα APIs (βιβλιοθήκες)
Διάλεξη 07: Αλγόριθμοι εκμάθησης ΜέροςΓ Συναρτήσεις & μετα-μαθησιακοί Αλγόριθμοι
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 07: Αλγόριθμοι εκμάθησης ΜέροςΓ Συναρτήσεις & μετα-μαθησιακοί Αλγόριθμοι Αλγόριθμοι Δεδομένα input Αλγόριθμοι Εξόρυξης
SPSS. Βασικά στοιχεία
SPSS Βασικά στοιχεία Εισαγωγικά Στοιχεία SPSS (Statistical Package for Social Sciences) Χρησιμοποιείται σε έρευνες των Κοινωνικών Επιστημών ημιουργήθηκε στο Πανεπιστήμιο του Stanford Το 1975 ιδρύεται η
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΠΕΙΡΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΠΕΙΡΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Εξεύρεση συσχετίσεων με χρήση εξόρυξης δεδομένων σε δεδομένα πολιτικοκοινωνικών απόψεων και ιδεολογίας» ΚΛΕΑΝΘΙΝΗ
ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams
ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams Αλέκα Σεληνιωτάκη Ηράκλειο, 26/06/12 aseliniotaki@csd.uoc.gr ΑΜ: 703 1. Περίληψη Συνεισφοράς
Μεθοδολογία της Έρευνας και Εφαρμοσμένη Στατιστική
Μεθοδολογία της Έρευνας και Εφαρμοσμένη Στατιστική Μη παραμετρικοί στατιστικοί έλεγχοι Καθηγητής ΔΠΘ Κων/νος Τσαγκαράκης Δευτέρα 6 Μαρτίου 13:00-16:00 Ώρα για εξ αποστάσεως συνεργασία Τρίτη 7 Μαρτίου 12:00-14:00
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική μάθηση. Ενότητα 7: Metrics of Performance. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική μάθηση Ενότητα 7: Metrics of Performance Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών Given a Classification Model 1. We are given a classification model
Analyze/Forecasting/Create Models
(εκδ 11) (εκδ 11) Σχολή Κοινωνικών Επιστημών Τμήμα Οικονομικών Επιστημών 24 Οκτωβρίου 2014 1 / 12 Εισαγωγή (εκδ 11) 1 2 2 / 12 ΧΣ (εκδ 11) ΧΣ μέσω υποδειγμάτων ARIM A/SARIM A Αϕου δημιουργήσουμε τον χώρο
Αλγόριθμοι Μηχανικής Μάθησης σε Πολυεπεξεργαστικά Περιβάλλοντα
Αλγόριθμοι Μηχανικής Μάθησης σε Πολυεπεξεργαστικά Περιβάλλοντα Στεργίου Κωνσταντίνος Α.Μ.496 Σχολή Θετικών Επιστημών - Τμήμα Μαθηματικών Μ.Π.Σ. Μαθηματικά και Σύγχρονες Εφαρμογές στα «Υπολογιστικά Μαθηματικά
Αρχεία Ένα αρχείο αποτελείται από μία σειρά ομοειδών δεδομένων που ονομάζονται λογικές εγγραφές (logical record)
Διαχείριση Αρχείων Αρχεία Για να είναι δυνατή η επεξεργασία μεγάλου αριθμού δεδομένων τα δεδομένα είναι αποθηκευμένα σε ψηφιακά μέσα κατάλληλα οργανωμένα. Η αποθήκευση γίνεται σε αρχεία. Πολλά προγράμματα
Εξόρυξη Γνώσης - το εργαλείο WEKA
Εξόρυξη Γνώσης - το εργαλείο WEKA Οµάδα ιαχείρισης εδοµένων, Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιώς (http:// http://isl.cs.unipi.gr/) Κοτσιφάκος Ευάγγελος ek@unipi.gr Νοέµβριος 2008 Ανακάλυψη και Εξόρυξη
Τµήµα Πληροφορικής. Υλοποίηση LRU Cache ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ - ΕΡΓΑΣΙΑ 4. Φθινοπωρινό Εξάµηνο Διδάσκων: E. Μαρκάκης. Γενικά περί Caching
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Πληροφορικής Φθινοπωρινό Εξάµηνο 2016 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ - ΕΡΓΑΣΙΑ 4 Διδάσκων: E. Μαρκάκης Υλοποίηση LRU Cache Στην εργασία αυτή ζητείται να υλοποιήσετε σε Java τις βασικές
ΠΕΡΙΓΡΑΦΗ ΨΗΦΙΑΚΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΤΗΣ ΑΣΚΗΣΗΣ 2
ΠΕΡΙΓΡΑΦΗ ΨΗΦΙΑΚΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΤΗΣ ΑΣΚΗΣΗΣ 2 1 Ε ΟΜΕΝΑ Για την Άσκηση σε περιβάλλον ΣΓΠ Arc GIS, δίνονται τα απαραίτητα γεωγραφικά δεδοµένα της λεκάνης του Τιταρήσιου στη θέση Μεσοχώρι.
Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα
Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα Πηγές σφαλμάτων ανακριβής θεωρία ανακριβείς μετρήσεις παραμέτρων μεταβλητότητα παραμέτρων ανακριβής μέθοδος υπολογισμού (σφάλματα
Εισαγωγή στο MATLAB. Κολοβού Αθανασία, ΕΔΙΠ,
Εισαγωγή στο MATLAB Κολοβού Αθανασία, ΕΔΙΠ, akolovou@di.uoa.gr Εγκατάσταση του Matlab Διανέμεται ελεύθερα στα μέλη του ΕΚΠΑ το λογισμικό MATLAB με 75 ταυτόχρονες (concurrent) άδειες χρήσης. Μπορείτε να
Statistics. hrs1 Number of hours worked last week. educ Highest year of school completed. sibs NUMBER OF BROTHERS AND SISTERS. N Valid
1. Να χρησιμοποιηθεί το gssnet.sav για να υπολογιστούν τα περιγραφικά μέτρα για τον αριθμό αδελφών (sibs), έτη εκπαίδευσης (educ), και ώρες εργασίας την τελευταία εβδομάδα(hrs1). Να δημιουργηθούν επίσης
ΤΕΙ Ιονίων Νήσων Εργαστηριακές Ασκήσεις στα Γεωγραφικά Συστήματα Πληροφοριών
ΕΡΓΑΣΤΗΡΙΟ 2 ο : Εισαγωγή στα Γεωγραφικά Συστήματα Πληροφοριών ArcMap (2/2) Μέρος 1: (συνέχεια από τα προηγούμενα) Κάνουμε κλικ το εικονίδιο Add Data στην γραμμή εργαλείων standard και επιλέγουμε το αρχείο/τα
Ανακάλυψη Γνώσης από εδοµένα και Εξόρυξη Γνώσης στο εργαλείο WEKA
Ανακάλυψη Γνώσης από εδοµένα και Εξόρυξη Γνώσης στο εργαλείο WEKA Ειρήνη Ντούτση Οµάδα ιαχείρισης εδοµένων, Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιώς (http://isl.cs.unipi.gr/db) 02/04/2008 Ανακάλυψη και
Διερεύνηση της Αξιοπιστίας και της Εγκυρότητας Ψυχομετρικής Κλίμακας με το λογισμικό SPSS
Διερεύνηση της Αξιοπιστίας και της Εγκυρότητας Ψυχομετρικής Κλίμακας με το λογισμικό SPSS 1. Εισαγωγή Άγγελος Μάρκος Αλεξανδρούπολη, 04.04.2013 Η μέτρηση στις επιστήμες της συμπεριφοράς συχνά στοχεύει
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Σύντοµο Εγχειρίδιο Χρήσης. του Λογισµικού Στατιστικής Επεξεργασίας. SPSS for Windows v. 8.0
Εθνικό & Καποδιστριακό Πανεπιστήµιο Αθηνών Τµήµα Μεθοδολογίας, Ιστορίας & Θεωρίας της Επιστήµης ιαπανεπιστηµιακό Πρόγραµµα Μεταπτυχιακών Σπουδών «Βασική και Εφαρµοσµένη Γνωσιακή Επιστήµη» Σύντοµο Εγχειρίδιο
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΛΥΣΕΙΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: 7 Α1. Κάθε σωστή απάντηση
Γραφικά υπολογιστών Εργαστήριο 4 Εισαγωγή στις λίστες
Γραφικά υπολογιστών Εργαστήριο 4 Εισαγωγή στις λίστες Σκοπός της 3ης άσκησης είναι να μάθουμε να φτιάχνουμε και να προσπελαύνουμε λίστες, να δούμε τι διαφορά έχουν από τα tuples και επίσης πώς μπορούμε
Περιγραφή των Δεδομένων
Τεχνικές Εξόρυξης Δεδομένων Μεγάλης Κλίμακας Χειμερινό Εξάμηνο 2017-2018 1η Άσκηση, Ημερομηνία παράδοσης: Έναρξη Εξεταστικής Χειμερινού Εξαμήνου Ομαδική Εργασία (2 Ατόμων) Σκοπός της εργασίας Σκοπός της
Αποθήκες και Εξόρυξη Δεδομένων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αποθήκες και Εξόρυξη Δεδομένων 1 Ο Εργαστήριο Εισαγωγή στο WEKA (Preprocessing Select Attributes) Στουγιάννου Ελευθερία estoug@unipi.gr -2- ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή
MOBILITY TOOL + ΝΟΕΜΒΡΙΟΣ 2014
MOBILITY TOOL + ΝΟΕΜΒΡΙΟΣ 2014 User profiles Administrator Ε.Μ.Σ. Χρήστης Ε.Μ.Σ. Δικαιούχος Διαχείριση χρηστών Ε.Μ.Σ. και δικαιούχων Πρόσβαση στα project Επικύρωση δραστηριοτήτων (mobilities) Πρόσβαση
10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη
Ιωάννης Τσαούσης, Πανεπιστήμιο Κρήτης Τμήμα Ψυχολογίας
Η Ανάλυση Παραγόντων (Factor Analysis) Τι είναι η ανάλυση παραγόντων Σκοπός της ανάλυσης παραγόντων (ΑΠ) είναι να συνοψίσει τις σχέσεις ανάμεσα σε ένα μεγάλο αριθμό μεταβλητών με έναν περιεκτικό και ακριβή
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία. Εργαστήριο 4 ο : MATLAB
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ηλεκτρονική Υγεία Εργαστήριο 4 ο : MATLAB Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
Μια πρόταση διδασκαλίας για το μάθημα του προγραμματισμού Η/Υ στο Λύκειο με τη μεθοδολογία STEM
Μια πρόταση διδασκαλίας για το μάθημα του προγραμματισμού Η/Υ στο Λύκειο με τη μεθοδολογία STEM Οδηγίες για την υλοποίηση της διδακτικής παρέμβασης 1η διδακτική ώρα: Υλοποίηση του φύλλου εργασίας 1 με
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Πρακτική με SPSS (1)
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Πρακτική με SPSS (1) Εισαγωγή στο SPSS Παρουσίαση ποσοτικών και ποιοτικών δεδομένων Φίλιππος Ορφανός Εργαστήριο Υγιεινής, Επιδημιολογίας και Ιατρικής Στατιστικής, Πανεπιστήμιο Αθηνών orfanos@nut.uoa.gr
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 25/10/07
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 25/10/07 Αριθμητική στο δυαδικό σύστημα (γενικά) Συμπληρωματικά για δυαδικό σύστημα Η πρόσθεση στηρίζεται στους κανόνες: 0 + 0 = 0, 0 + 1 = 1, 1
ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης
ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι
ΚΕΦΑΛΑΙΟ 5. Matlab GUI για FWSVM και Global SVM
ΚΕΦΑΛΑΙΟ 5 Matlab GUI για FWSVM και Global SVM Προκειμένου να γίνουν οι πειραματικές προσομοιώσεις του κεφαλαίου 4, αναπτύξαμε ένα γραφικό περιβάλλον (Graphical User Interface) που εξασφαλίζει την εύκολη
Υπερπροσαρμογή (Overfitting) (1)
Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης
Κεφάλαιο 15. Παραγοντική ανάλυση διακύµανσης. Παραγοντική
Κεφάλαιο 15 Παραγοντική ανάλυση διακύµανσης 1 Παραγοντική ανάλυση διακύµανσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη των επιδράσεων περισσότερων από µια ανεξάρτητων µεταβλητών στην εξαρτηµένη καθώς
Σεμινάριο Προηγμένα Θέματα Στατιστικής. Dr. Nikolaos Mittas Dr. Theodosios Theodosiou
Σεμινάριο Προηγμένα Θέματα Στατιστικής Dr. Nikolaos Mittas Dr. Theodosios Theodosiou Λογιστική Παλινδρόμηση Binary Logistic Regression Dr. Nikolaos Mittas Dr. Theodosios Theodosiou Γενικά-Το κίνητρο (1/2)