ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012"

Transcript

1 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη λύση κάθε άσκησης καλό είναι να μελετούνται τα παραδείγματα και οι λυμένες ασκήσεις από τις παραπομπές στα συγγράμματα και στο βοηθητικό υλικό Οι ασκήσεις της 6 ης εργασίας αναφέρονται στα: Ενότητα ( 5) (Βασική Πιθανοθεωρία) Ενότητα ( ) (Τυχαίες μεταβλητές και χαρακτηριστικά των κατανομών τους Χρήσιμα πρότυπα κατανομών) του συγγράμματος του ΕΑΠ «Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας» Τόμος Α Πιθανότητες και Στατιστική Ι του κ Ι Κουτρουβέλη Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη ως εξής: Συνοδευτικό Εκπαιδευτικό Υλικό : Πιθανότητες Πιθανότητες Ι και Πιθανότητες ΙΙ Στόχοι: Σκοπός της εργασίας αυτής είναι : α) η κατανόηση της έννοιας της πιθανότητας καθώς και ο υπολογισμός της πιθανότητας ενδεχομένων βάσει προτάσεων από την αξιωματική θεωρία των πιθανοτήτων β) η κατανόηση της έννοιας της τυχαίας μεταβλητής και ο υπολογισμός βάσει κατάλληλων συναρτήσεων της συμπεριφοράς τυχαίων μεταβλητών που περιγράφουν τα αποτελέσματα ενός πειράματος τύχης

2 Άσκηση (0 μονάδες) Ι) (0 μονάδες) Από τον έλεγχο που έγινε σε μια ημέρα σε ένα μεγάλο αριθμό οδηγών (δείγμα) βρέθηκε ότι το 70% των οδηγών δε φορούσε ζώνη ασφαλείας το 40% των οδηγών δεν είχε πυροσβεστήρα στο αυτοκίνητο ενώ στο 0% των οδηγών διαπιστώθηκαν και οι δύο παραβάσεις Την επόμενη ημέρα ελέγχεται ένας οδηγός και θεωρούμε τα ενδεχόμενα: Α={ο οδηγός δε φορά ζώνη ασφάλειας} και Β={ο οδηγός δεν έχει πυροσβεστήρα στο αυτοκίνητό του} Να διατυπωθούν τα ενδεχόμενα B ' B' B' B' ' B και να υπολογιστεί η πιθανότητα τους ΙΙ) (0 μονάδες) Τα ποσοστά των φοιτητών του ΕΑΠ που πέρασαν τις Θεματικές Ενότητες Α Β Γ μετά την πρώτη εξεταστική είναι τα ακόλουθα: Α: 50% Β: 40% Γ: 0% Α και Β: 5% Α και Γ: 5% Β και Γ: 0% και τις τρείς Θεματικές Ενότητες: 5% Να βρεθεί το ποσοστό των φοιτητών που πέρασαν τουλάχιστον ένα από τα τρία μαθήματα Λύση Ι) Επειδή το μέγεθος του δείγματος είναι μεγάλο από το στατιστικό ορισμό πιθανότητας (βλέπε βιβλίο Ι Κουτρουβέλη σελ 6) προκύπτει (προσεγγιστικά) ότι στον πληθυσμό των οδηγών οι πιθανότητες των ενδεχομένων είναι ίσες με B B 07 P 04 P B 0 P B Τα ζητούμενα ενδεχόμενα είναι: B{ο οδηγός δε φορά ζώνη ασφάλειας ή δεν έχει πυροσβεστήρα στο αυτοκίνητό του} ' B' {ο οδηγός φορά ζώνη ασφάλειας και έχει πυροσβεστήρα στο αυτοκίνητό του} B' {ο οδηγός δε φορά ζώνη ασφάλειας και έχει πυροσβεστήρα στο αυτοκίνητό του} B' {ο οδηγός δε φορά ζώνη ασφάλειας ή έχει πυροσβεστήρα στο αυτοκίνητό του} και ' B {ο οδηγός φορά ζώνη ασφάλειας και δεν έχει πυροσβεστήρα στο αυτοκίνητό του} Από τον κανόνα της πρόσθεσης (θεώρημα 6 σελ 5 βιβλίου Ι Κουτρουβέλη) έχουμε: P B P( ) P B P B Χρησιμοποιώντας τον κανόνα του de Morgan (άσκηση 45 ΣΕΥ Πιθανότητες ) έχουμε: P ' B' P B ' P B 08 0 Επίσης παίρνουμε (σελ 5 βιβλίου Ι Κουτρουβέλη) P B' P( ) P( B) Χρησιμοποιώντας πάλι τον κανόνα της πρόσθεσης έχουμε: P B' P( ) P B' P B' 07 ( 04) Τέλος χρησιμοποιώντας το θεώρημα 5 από το βιβλίο του Ι Κουτρουβέλη (σελ 4) έχουμε: P ' B P B' ' P B' 09 0 ΙΙ) Σύμφωνα με τα δεδομένα της άσκησης έχουμε: P( B )=05 Το ζητούμενο είναι να βρεθεί το ποσοστό P( B ) Χρησιμοποιώντας τον κανόνα της πρόσθεσης P( B)=P()+P(B)-P( B) έχουμε: P() 05 P(B) 0 4 P( ) 0 P( B)=05 P( B )=P B =P()+P(B )-P B P()+P(B)+P( )-P(B )-P B P( )=05 P()+P(B)+P( )-P(B )- P( B)+P( )-P ( B) ( ) P()+P(B)+P( )-P(B )-P( B)-P( )+P( B ) P(B )= Σημειώνουμε ότι στον παραπάνω υπολογισμό χρησιμοποιήθηκε και η επιμεριστική ιδιότητα B = B (βλέπε επίσης παράδειγμα ΣΕΥ Πιθανότητες ) Επομένως το ζητούμενο ποσοστό είναι 55% και

3 Άσκηση (0 μονάδες) Ι) (0 μονάδες) Μια κάλπη περιέχει 4 διακεκριμένα άσπρα και διακεκριμένα μαύρα σφαιρίδια Επιλέγουμε τυχαία το ένα μετά το άλλο δύο σφαιρίδια από την κάλπη χωρίς επανάθεση (α) ( μονάδες) Να δοθεί ο δειγματικός χώρος του πειράματος (β) Θεωρώντας τα ενδεχόμενα: Α ={το πρώτο σφαιρίδιο είναι άσπρο} και Α ={το δεύτερο σφαιρίδιο είναι άσπρο} να υπολογισθεί η πιθανότητα να είναι: (β) ( μονάδες) το δεύτερο σφαιρίδιο άσπρο (β) ( μονάδες) το πρώτο σφαιρίδιο άσπρο δοθέντος ότι το δεύτερο ήταν άσπρο και (β) ( μονάδες) και τα δύο σφαιρίδια άσπρα δοθέντος ότι τουλάχιστον ένα ήταν άσπρο ΙΙ) (0 μονάδες) Ρίχνουμε ένα νόμισμα τέσσερις φορές και θεωρούμε τα εξής ενδεχόμενα: Α={στην πρώτη ρίψη έρχεται κεφαλή} Β={έρχονται τουλάχιστον φορές γράμματα} και Γ={στη δεύτερη ρίψη έρχεται κεφαλή και στην τέταρτη έρχεται γράμματα} (α) ( μονάδες) Να βρείτε το δειγματοχώρο Ω του παραπάνω πειράματος Πόσα στοιχεία έχει; (β) ( μονάδες) Να βρείτε ποια υποσύνολά του αντιστοιχούν στα ενδεχόμενα Α Β και Γ και στη συνέχεια να υπολογίσετε τις πιθανότητες Ρ(Α) Ρ(Β) Ρ(Γ) (γ) (4 μονάδες) Να υπολογίσετε τις πιθανότητες P( ) P( ) και P( ) Λύση Ι) (α) Ας υποθέσουμε ότι τα άσπρα σφαιρίδια είναι αριθμημένα από το έως το 4 και τα μαύρα σφαιρίδια από το 5 έως το 7 Η πρώτη σφαίρα μπορεί να επιλεγεί με 7 τρόπους και η δεύτερη με 6 αφού η πρώτη σφαίρα δεν ξαναμπαίνει στην κάλπη Επομένως έχουμε 6*7=4 δυνατά αποτελέσματα Συγκεκριμένα ο δειγματικός χώρος Ω του πειράματος τύχης είναι: : 7 και {() () (4) (5) (6) (7) () () (4) (5) (6) (7) () () (4) (5) (6) (7) (4) (4) (4) (45) (46) (47) (5) (5) (5) (54) (56) (57) (6) (6) (6) (64) (65) (67) (7) (7) (7) (74) (75) (76)} Πράγματι βλέπουμε ότι το πλήθος των στοιχείων του Ω είναι Ν(Ω)=4 (β) Επίσης έχουμε: Α ={() () (4) (5) (6) (7) () () (4) (5) (6) (7) () () (4) (5) (6) (7) (4) (4) (4) (45) (46) (47)} Ν(Α )=4 Α ={() () (4) () () (4) () () (4) (4) (4) (4) (5) (5) (5) (54) (6) (6) (6) (64) (7) (7) (7) (74)} Ν(Α )=4 (β) Από τον κλασσικό ορισμό της πιθανότητας (σελ 4 βιβλίου Ι Κουτρουβέλη) έχουμε: (β) Έχουμε ότι Ν( ) P 4 4 ( ) 4 7 {() () (4) () () (4) () () (4) (4) (4) (4)} Από τον ορισμό της δεσμευμένης πιθανότητας (σελ 4 βιβλίου Ι Κουτρουβέλη) έχουμε ότι η ζητούμενη πιθανότητα είναι ίση με Ν( ) P ( ) P 4 P Ν( ) 4 ( ) 4 (β) Για τη ζητούμενη πιθανότητα έχουμε P P P Όμως {το ενδεχόμενο οι σφαίρες να είναι άσπρες και τουλάχιστον σφαίρα να είναι άσπρη} = {το ενδεχόμενο οι σφαίρες να είναι άσπρες} = Οπότε παίρνουμε

4 P P P P P P P ΙΙ) (α) Ο δειγματικός χώρος Ω αποτελείται από όλες τις διατεταγμένες τετράδες (α β γ δ) όπου τα α β γ δ ανήκουν στο σύνολο {Κ Γ} (Κ = κεφαλή Γ = γράμματα} των δυνατών αποτελεσμάτων της ρίψης του νομίσματος Οπότε το Ω θα έχει στοιχεία Συγκεκριμένα έχουμε Ω = {(ΚΚΚΚ) (ΚΚΚΓ) (ΚΚΓΚ) (ΚΚΓΓ) (ΚΓΚΚ) (ΚΓΚΓ) (ΚΓΓΚ) (ΚΓΓΓ) (ΓΚΚΚ) (ΓΚΚΓ) (ΓΓΚΚ) (ΓΓΚΓ) (ΓΚΓΚ) (ΓΚΓΓ) (ΓΓΓΚ) (ΓΓΓΓ)} Το πλήθος των στοιχείων του Ω είναι Ν(Ω)=6 (β) Το γεγονός Α={στην πρώτη ρίψη έρχεται κεφαλή} περιέχει τις ακόλουθες 8 τετράδες = {(ΚΚΚΚ) (ΚΚΚΓ) (ΚΚΓΚ) (ΚΚΓΓ) (ΚΓΚΚ) (ΚΓΚΓ) (ΚΓΓΚ) (ΚΓΓΓ)} Οπότε το πλήθος των στοιχείων του Α είναι Ν(Α)=8 Το γεγονός Β={έρχονται τουλάχιστον φορές γράμματα} περιέχει τις ακόλουθες 5 τετράδες Β = {(ΚΓΓΓ) (ΓΓΚΓ) (ΓΚΓΓ) (ΓΓΓΚ) (ΓΓΓΓ)} Οπότε το πλήθος των στοιχείων του Β είναι Ν(Β)=5 Τέλος το γεγονός Γ={στη δεύτερη ρίψη έρχεται κεφαλή και στην τέταρτη έρχεται γράμματα} περιέχει 4 τετράδες Γ = {(ΚΚΚΓ) (ΚΚΓΓ) (ΓΚΚΓ) (ΓΚΓΓ)} Οπότε το πλήθος των στοιχείων του Γ είναι Ν(Γ)=4 Επομένως οι πιθανότητες των ενδεχομένων είναι ( ) 8 ( ) 6 ( B) 5 ( ) 6 και 4 6 ( ) 4 ( ) 6 4 (γ) Από το (β) έχουμε ότι ={(ΚΓΓΓ)} ={(ΚΚΚΓ) (ΚΚΓΓ)} και Β Γ= {(ΚΓΓΓ) (ΓΓΚΓ) (ΓΓΓΚ) (ΓΓΓΓ)} οπότε έχουμε ότι ( ) P( ) ( ) 6 και τέλος ( ) 4 P( ) ( ) 6 4 ( ) P( ) ( ) 6 P( ) P( ) ( ) 4 ( ) 6 4

5 Άσκηση (0 μονάδες) Ι) (0 μονάδες) Σε μία έκθεση ζωγραφικής υπάρχουν πίνακες από τους οποίους 0 είναι αυθεντικοί και είναι αντίγραφα Ένας επισκέπτης επιλέγει στην τύχη έναν πίνακα και πριν τον αγοράσει ρωτά τη γνώμη ενός ειδικού για την αυθεντικότητα του πίνακα Ο ειδικός μπορεί να εκφέρει σωστή γνώμη τόσο για ένα αυθεντικό πίνακα όσο και για ένα αντίγραφο κατά μέσο όρο 9 στις 0 φορές (α) (5 μονάδες) Αν ο ειδικός αποφανθεί ότι ο πίνακας είναι αυθεντικός ποια είναι η πιθανότητα να είναι πράγματι αυθεντικός; (β) (5 μονάδες) Εάν ο ειδικός αποφανθεί ότι ο πίνακας είναι αντίγραφο και ο επισκέπτης τον επιστρέψει και αγοράσει τυχαία έναν από τους υπόλοιπους πίνακες ποια είναι πιθανότητα ο πίνακας που αγόρασε να είναι αυθεντικός; Υπόδειξη: Στο ερώτημα (α) θεωρήστε τα ενδεχόμενα Α={ο πίνακας είναι αυθεντικός} Β={ο ειδικός θεωρεί τον πίνακα αυθεντικό} και στο ερώτημα (β) τα ενδεχόμενα Α={ο δεύτερος πίνακας που επιλέγει ο επισκέπτης είναι αυθεντικός} Η={ο ειδικός θεωρεί σωστά ότι ο πρώτος πίνακας είναι αντίγραφο} Η={ο ειδικός θεωρεί λανθασμένα ότι ο πρώτος πίνακας είναι αντίγραφο} ΙΙ) (0 μονάδες) Ένα κατάστημα ηλεκτρονικών ειδών προμηθεύεται φορητές μνήμες από εργοστάσια Από το εργοστάσιο Α προμηθεύεται το 0% από το εργοστάσιο Β το 0% και από το εργοστάσιο Γ το 50% των μνημών Η πιθανότητα μια μνήμη να είναι ελαττωματική είναι %% και 4% από το εργοστάσια Α Β και Γ αντίστοιχα Αγοράζει κάποιος μια φορητή μνήμη από το κατάστημα (α) (5 μονάδες) Ποια η πιθανότητα να είναι ελαττωματική η μνήμη; (β) (5 μονάδες) Αν η μνήμη είναι ελαττωματική ποιά η πιθανότητα να έχει παραχθεί από το εργοστάσιο Γ; Λύση Ι) (α) Θεωρώντας τα ενδεχόμενα: Α={ο πίνακας είναι αυθεντικός} και Β={ο ειδικός θεωρεί τον πίνακα αυθεντικό} ψάχνουμε την πιθανότητα P(/B) Από τα δεδομένα της άσκησης έχουμε: 9 P(B/)= 0 = P(B'/') οπότε P(B /)= P()= = 6 P(B/ ) οπότε και P( )= = 6 Ο κανόνας του Bayes (θεώρημα 4 σελ 4 βιβλίου Ι Κουτρουβέλη) δίνει 5 9 P( B) P()P(B/) P(/B)= P(B) P()P(B/)+P( )P(B/ ) (β) Έστω το ενδεχόμενο Α={ο δεύτερος πίνακας που επιλέγει ο επισκέπτης είναι αυθεντικός} Αυτό μπορεί να πραγματοποιηθεί μόνο σε συνδυασμό με ένα από τα δυο ξένα μεταξύ τους ενδεχόμενα: Η={ο ειδικός θεωρεί σωστά ότι ο πρώτος πίνακας είναι αντίγραφο} και Η={ο ειδικός θεωρεί λανθασμένα ότι ο πρώτος πίνακας είναι αντίγραφο} Ψάχνουμε την πιθανότητα 0 P(/H)= P(H)= 0 P() 9 P(/H)= Από τα δεδομένα της άσκησης έχουμε: 5 9 P(H)= 0 Από το θεώρημα ολικής πιθανότητας (θεώρημα σελ 4 βιβλίου Ι Κουτρουβέλη) έχουμε: P()=P(H) P(/H)+P(H) P(/H)= ΙΙ) (α) Θεωρούμε τα ακόλουθα ενδεχόμενα: Α={η φορητή μνήμη έχει παραχθεί από το εργοστάσιο Α} Β={η φορητή μνήμη έχει παραχθεί από το εργοστάσιο Β} Γ={η φορητή μνήμη έχει παραχθεί από το εργοστάσιο Γ} και Ε={η μνήμη να είναι ελαττωματική} Τότε γνωρίζουμε τα εξής:

6 P( E / ) 00 P( E / B) 00 P( E / ) 004 P( ) 00 P( B) 00 P( ) 050 Έχουμε ότι τα ενδεχόμενα Α Β Γ είναι ξένα ανά δύο και ότι από αυτά προέρχεται όλη η παραγωγή Εφαρμόζοντας το θεώρημα ολικής πιθανότητας παίρνουμε: P( E) P( E / ) P( ) P( E / B) P( B) P( E / ) P( ) Άρα η πιθανότητα να αγοράσουμε μια ελαττωματική μνήμη είναι % (β) Γνωρίζουμε ότι μια μνήμη είναι ελαττωματική η πιθανότητα να έχει παραχθεί από το εργοστάσιο Γ είναι P( / E) P( E ) P( E / ) P( ) 00 P( / E) 0645 P( E) P( E) 00 Δηλαδή η πιθανότητα μια ελαττωματική μνήμη να έχει παραχθεί από το εργοστάσιο Γ είναι 645% 6

7 Άσκηση 4 (0 μονάδες) Η τυχαία μεταβλητή X έχει συνάρτηση πυκνότητας πιθανότητας 0 x a f( x) be bx x a όπου abπραγματικοί αριθμοί και μέση τιμή ίση με (α) (5 μονάδες) Να προσδιορισθούν τα ab (β) (4 μονάδες) Να βρεθεί η διακύμανση της τυχαίας μεταβλητής X (γ) ( μονάδες) Να βρεθεί η μέση τιμή και η διακύμανση της τυχαίας μεταβλητής (δ) (4 μονάδες) Να βρεθεί η πιθανότητα η τυχαία μεταβλητή X να είναι μεγαλύτερη από 9 (ε) (4 μονάδες) Να βρεθεί η τιμή k κάτω από την οποία βρίσκεται το 50% των τιμών της X Λύση (α) Για να είναι η f( x) συνάρτηση πυκνότητας πιθανότητας πρέπει 7 f ( x) dx Από τον τύπο της συνάρτησης για τον κλάδο όπου x a Αν όμως b 0 έχουμε f( x) 0 Υπολογίζουμε το αόριστο ολοκλήρωμα οπότε και έχουμε f ( x) dx 0 bx bx f ( x) dx be dx e c Στη συνέχεια υπολογίζουμε το γενικευμένο ολοκλήρωμα a Y 6X 00 f( x) 0 και bx f ( x) 0 be 0 b 0 Επομένως θα πρέπει bx bx bx f ( x) dx 0dx be dx lim be dx lim e a b ba ba lim e e e ( b0) a a b 0 Συνεπώς πρέπει Από τον ορισμό της μέσης τιμής μια τυχαίας μεταβλητής (σελ 78 βιβλίου Ι Κουτρουβέλη) έχουμε ba e ba ln ab 0 a 0 0 bx bx E( X ) xf ( x) dx x0 dx xbe dx xbe dx 0 0 Υπολογίζουμε το αόριστο ολοκλήρωμα χρησιμοποιώντας παραγοντική ολοκλήρωση (σχέση (95) σελ 49 βιβλίου Γ Δάσιου): bx bx bx bx xf ( x) dx xbe dx x e dx x e x e dx Τότε bx bx bx bx xe e dx xe e c b bx bx bx bx E( X ) xf ( x) dx xbe dx lim xbe dx lim xe e b 0 0 b b lim e e b b b b Όπου το όριο το lim ( e ) υπολογίζεται με κανόνα L Hospital b b e e b e b ' e ' lim ( ) lim ( ) lim lim lim 0 b be Έχουμε EX ( ) από όπου παίρνουμε b b 0

8 (β) Για τη διακύμανση της X έχουμε Var( X ) E X E X Ι Κουτρουβέλη) Για τον υπολογισμό της ποσότητας EX ( ) έχουμε: 0 x x E( X ) x f ( x) dx x 0dx x e dx lim x e dx Υπολογίζουμε το αόριστο ολοκλήρωμα Οπότε τελικά παίρνουμε Όπου το 0 0 x x x x x e dx x e dx x e x e dx x x x x x e xe dx x e 6xe dx x x x x x x (σχέση (9) σελ 8 βιβλίου x e 6xe 6 e dx x e 6xe 8 e c x x x ( ) lim 6 8 lim E X x e xe e e e e b lim ( e ) 0 υπολογίζεται όμοια με τα όσα υπολογίσαμε παραπάνω όπου ' ' b b lim ( e ) lim ( e ) lim lim lim lim b b b b ' e e be be lim 0 b be ' b και Συνεπώς έχουμε Var X E X E X ( ) 8 9 (γ) Εφαρμόζοντας τις σχέσεις (4) και (4) του βιβλίου του Ι Κουτρουβέλη έχουμε για την μέση τιμή και την διακύμανση της τυχαίας μεταβλητής Y 6X 00 E( Y) E(6X 00) 6 E( X ) 00 8 Var Y Var X Var X ( ) (6 00) 6 ( ) 4 (δ) Για να βρούμε την πιθανότητα PX ( 8) εργαζόμαστε ως εξής 9 x x 9 ( 9) ( 9) P X P X e dx e e e 0 0 (ε) Έστω k η τιμή κάτω από την οποία βρίσκεται το 50% των τιμών X δηλαδή P( X k) 05 Επομένως έχουμε: k x x k k k ( ) P X k e dx e e e 0 0 k ln(05) k ln(05) k

9 Άσκηση 5 (0 μονάδες) Το βάρος του περιεχομένου μιας κονσέρβας τόνου ακολουθεί την κανονική κατανομή με μέση τιμή 50 γρ και τυπική απόκλιση σ Είναι γνωστό ότι η πιθανότητα το βάρος του περιεχομένου μιας κονσέρβας να είναι λιγότερο από 40 γρ είναι ίση με 587% (α) (4 μονάδες) Να βρεθεί η τυπική απόκλιση σ (β) (4 μονάδες) Να βρεθεί η πιθανότητα το βάρος μιας κονσέρβας που επιλέγεται τυχαία να είναι μεταξύ 45 γρ και 55 γρ (γ) (4 μονάδες) Κάτω από ποια τιμή βρίσκεται το βάρος του περιεχομένου του 90% των κονσερβών; (δ) (4 μονάδες) Να βρεθεί η πιθανότητα μια κονσέρβα που επιλέγεται τυχαία να περιέχει παραπάνω από 65 γρ τόνου (ε) (4 μονάδες) Να βρεθεί η πιθανότητα σε 0 κονσέρβες που επιλέγονται τυχαία τουλάχιστον οι να περιέχουν ποσότητα μεγαλύτερη από 65 γρ Λύση Η τυποποιημένη τυχαία μεταβλητή Z X 50 (θεώρημα 4 σελ βιβλίου Ι Κουτρουβέλη): (α) Γνωρίζουμε ότι και έχουμε: PX ( 40) 0587 Η πιθανότητα αυτή αντιστοιχεί σε ακολουθεί την τυπική κανονική κατανομή Z X 50 N(0) Οπότε για να υπολογίσουμε το σ θέτουμε 0 P( Z 50 40) 0587 PZ 0587 ( ) () 0587 Π στη σελ 78 του βιβλίου του Ι Κουτρουβέλη) Συνεπώς έχουμε (β) Ζητάμε την πιθανότητα P(45 X 55) Θέτοντας N(0) 50 (με χρήση των στοιχείων του πίνακα Z 0 παίρνουμε P(45 X 55) P(45 0Z 50 55) P( 5 0Z 5) P( 05 Z 05) (05) ( 05) (05) (05) (05) 080 (γ) Θέλουμε να βρούμε την τιμή Κ για την οποία ισχύει ότι 50 P(0Z 50 ) 09 P( Z ) 09 Επειδή Φ(8) = 09 έχουμε ότι 0 και επομένως Κ = 68 γρ (δ) Για τη ζητούμενη πιθανότητα έχουμε: P( X 65) P(0Z 50 65) P(0Z 5) P( Z 5) PZ ( 5) ( 5) PX ( ) 09 ή ισοδύναμα 50 = 8 0 (ε) Αν θεωρήσουμε επιτυχία το να περιέχει η κονσέρβα περισσότερο από 65 γρ τότε η πιθανότητα της επιτυχίας είναι 668% Αν είναι ο αριθμός των επιτυχιών τότε η τυχαία μεταβλητή ακολουθεί την διωνυμική κατανομή Bernoulli με 0 δοκιμές Δηλαδή Y 0 0 P Y k p p k k k 0k k 0k ( ) ( ) ( ) Ζητάμε την πιθανότητα να έχουμε τουλάχιστον επιτυχίες σε 0 δοκιμές Δηλαδή την πιθανότητα P( Y ) P( Y ) P( Y 0) P( Y ) P( Y ) ( ) ( ) ( ) p p p p p p Y 9

10 Για τον προγραμματισμό της μελέτης σας υπάρχει το Χρονοδιάγραμμα Μελέτης που περιέχεται στον Οδηγό Σπουδών της ΘΕ Ο ακόλουθος πίνακας δεν έχει σκοπό να υποκαταστήσει το Χρονοδιάγραμμα Μελέτης αλλά να υποδείξει ορισμένα σημεία του διδακτικού υλικού που σχετίζονται άμεσα με τις ασκήσεις της Εργασίας 6 Άσκ Θεωρία Συναφείς Ασκήσεις Άλλες Ασκήσεις Η άσκηση αναφέρεται στον υπολογισμό πιθανοτήτων Η αντίστοιχη θεωρία είναι: Κεφάλαιο και του βιβλίου (δες επίσης ΣΕΥ Κεφ από Πιθανότητες Ι) Εργασία 6 η Ασκ 8 Α) Εργασία Ασκ γ) Συμπληρωματικές Σημειώσεις στις Πιθανότητες Παράδειγμα σελίδα 7 Άσκηση Άσκηση και Άσκηση -ΣΕΥ Ασκήσεις 4 και ειδικότερα Η άσκηση αναφέρεται στην εύρεση του δειγματοχώρου και τον υπολογισμό πιθανοτήτων δεσμευμένων πιθανοτήτων Η αντίστοιχη θεωρία είναι: Κεφάλαιο 4 και 5 του βιβλίου (δες επίσης ΣΕΥ Κεφ και από Πιθανότητες Ι) Η άσκηση αυτή αναφέρεται στη δεσμευμένη πιθανότητα το θεώρημα ολικής πιθανότητας και το θεώρημα Bayes Θα πρέπει να μελετήσετε: Βιβλίο 5 Δεσμευμένη πιθανότητα ΣΕΥ Πιθανότητες Ι Δεσμευμένη Πιθανότητα 4 Η άσκηση αυτή αφορά τις κατανομές των τυχαίων μεταβλητών την μέση τιμή και την διακύμανση τους Θα πρέπει να μελετήσετε: Βιβλίο Κεφ Τυχαίες ματαβλητές και μονοδιάστατες κατανομές Κεφ Περιγραφικά μέτρα κατανομών ΣΕΥ Πιθανότητες ΙΙ Διακριτές και συνεχείς τυχαίες μεταβλητές Αριθμητικά χαρακτηριστικά μιας τυχαίας μεταβλητής 5 Η άσκηση 5 αναφέρεται στην κανονική κατανομή Η αντίστοιχη θεωρία είναι στο κεφάλαιο 4 παράγραφο 45 και ο πίνακας στην σελίδα 78 (δες επίσης ΣΕΥ Κεφ από Πιθανότητες ΙΙ) Ασκ αυτοαξιολόγησης σελ (βιβλίο Πιθανότητες και Στατιστική) Εργασία Ασκ Εργασία Ασκ Εργασία 5 00-Ασκ Συμπληρωματικές Σημειώσεις στις Πιθανότητες Παράδειγμα σελίδα Βιβλίο Παραδείγματα 8 και 9 Άσκηση 6 σελ 4-44 ΣΕΥ Πιθανότητες Ι Άκσηση 4 Εργασία Άσκηση 4 Εργασία 5 00 Άσκηση 4 Βιβλίο Παράδειγμα σελ6 Άσκηση σελ 6 ΣΕΥ Πιθανότητες ΙΙ Άσκηση 6 Εργασία 5 00 Άσκηση 5 Εργασία 6 00 Άσκηση 6β Εργασία Άσκηση 6β Άσκηση αυτοαξιολόγησης 45 σελ 4 και η απάντηση σελ 6 7 (βιβλίο Πιθανότητες και Στατιστική) Εργασία Ασκ 6 Εργασία Ασκ 5β 5γ Εργασία Ασκ 6 Εργασία Ασκ 6 Εργασία Ασκ 5β Εργασία Ασκ 8Γ Εργασία Ασκ 8 -ΣΕΥ Ασκήσεις 4 και ειδικότερα Εργασία Άσκηση 4 Εργασία 6 00 Άσκηση 6α Εργασία Άσκηση 6α Εργασία Άσκηση 5 Εργασία Άσκηση 5α Εργασία Άσκηση 5α ΣΕΥ ασκήσεις 6 και ειδικότερα Σημείωση: Οι παραπάνω παραπομπές αναφέρονται στο βιβλίο «Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας» Τόμος Α Πιθανότητες και Στατιστική Ι του κ Ι Κουτρουβέλη (αναφέρεται ως Βιβλίο στον προηγούμενο πίνακα) στο υλικό ΣΕΥ και στις εργασίες παλαιοτέρων ετών που υπάρχουν αναρτημένα στην ιστοσελίδα 0

Έντυπο Υποβολής Αξιολόγησης Γ.Ε.

Έντυπο Υποβολής Αξιολόγησης Γ.Ε. Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Άσκηση 1. (15 μονάδες) Να υπολογίσετε τα ολοκληρώματα: (ii) (i)

Άσκηση 1. (15 μονάδες) Να υπολογίσετε τα ολοκληρώματα: (ii) (i) http://larn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις 5 ης Γραπτής Εργασίας ΠΛΗ -: Άσκηση. (5 μονάδες) Να υπολογίσετε τα ολοκληρώματα: + (i) d (ii) cos( ) + + d (iii) + + d Υπόδειξη:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ TOMEAΣ ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΕΙΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΕΚΠΑΙΔΕΥΣΗ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 26 Σεπτεμβρίου 2014 Ομάδα Θεμάτων Α ΘΕΜΑ 1 Ρίχνουμε ένα αμερόληπτο νόμισμα (δύο δυνατά

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: Φεβρουαρίου Ημερομηνία παράδοσης της Εργασίας: 6 Μαρτίου Πριν από την λύση κάθε άσκησης καλό είναι να

Διαβάστε περισσότερα

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B) Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα

Έντυπο Υποβολής Αξιολόγησης Γ.Ε.

Έντυπο Υποβολής Αξιολόγησης Γ.Ε. Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0.

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0. ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 8:-: ΑΠΑΝΤΗΣΕΙΣ Θέμα (Α) ( 5 μονάδες) Δίδονται οι πίνακες Α=,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 5 η Ηµεροµηνία Αποστολής στον Φοιτητή: Μαρτίου 8 Ηµεροµηνία παράδοσης της Εργασίας: Μαϊου 8 Πριν από την

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 12 Ιανουαρίου 2009

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 12 Ιανουαρίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Ιανουαρίου 009 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 009. Πριν

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 7: Ανεξάρτητα ενδεχόμενα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

P(200 X 232) = =

P(200 X 232) = = ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι Ονοματεπώνυμο: Όνομα Πατρός:... ΑΜ:. Ημερομηνία: Σ Παρακαλώ μη γράφετε στα παρακάτω τετράγωνα Μέρος

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 6: Πιθανότητες Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα Πιθανότητες και Αρχές Στατιστικής (2η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 54 Περιεχόμενα

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 009 Θέμα (0 μονάδες) Έστω U = (, y, z, w) = z, y = w υποσύνολο του και V ο υπόχωρος

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Έντυπο Υποβολής Αξιολόγησης Γ.Ε.

Έντυπο Υποβολής Αξιολόγησης Γ.Ε. Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018

ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018 ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018 Διδάσκουσα: Β. Πιπερίγκου Σε μια ενδονοσοκομειακή έρευνα, καταγράφηκε ο χρόνος ύπνου, μετά τη χορήγηση ενός συγκεκριμένου αναισθητικού, σε 33 ασθενείς και πήραμε

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008 ΘΕΜΑΤΑ B Σεπτέμβριος 8. Να προσδιοριστούν με τη μέθοδο των ελαχίστων τετραγώνων οι συντελεστές a και b της εξίσωσης y = be a, ώστε να περιγράφει τα πειραματικά σημεία ( i, y i ), i =,,, N.. Να υπολογιστούν

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές

Στοχαστικές Στρατηγικές Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Δοκιμές Bernoulli Ας θεωρήσουμε μία ακολουθία (σειρά) πειραμάτων στην οποία ισχύουν τα επόμενα

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Διωνυμική Κατανομή. x Αποδεικνύεται ότι για την διωνυμική κατανομή ισχύει: Ε(Χ)=np και V(X)=np(1-p).

Διωνυμική Κατανομή. x Αποδεικνύεται ότι για την διωνυμική κατανομή ισχύει: Ε(Χ)=np και V(X)=np(1-p). Διωνυμική Κατανομή Ορισμός: Μια τυχαία μεταβλητή Χ λέγεται ότι ακολουθεί την διωνυμική κατανομή αν πληρούνται οι ακόλουθες τρεις συνθήκες: α) Υπάρχουν n επαναλαμβανόμενες δοκιμές οι οποίες είναι στατιστικώς

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ ΣΥΝΟΔΕΥΤΙΚΟ ΕΝΤΥΠΟ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΡΓΑΣΙΕΣ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Μαρτίου 7 Ημερομηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) o ΘΕΜΑ A. Aν n

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 8 Σειρά Α Θέματα ως 7 και αναλυτικές (ή σύντομες) απαντήσεις ΘΕΜΑ : Το δοχείο Δ περιέχει 6 άσπρες και 4 μαύρες μπάλες ενώ το δοχείο Δ περιέχει 5 άσπρες και μαύρες μπάλες.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I

Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I ΟΔΗΓΙΕΣ Να μην αντιγράψετε τα θέματα στην κόλα σας. Να γράψετε το ονοματεπώνυμό σας και τον αριθμό μητρώου σας (ΑΜ) στα θέματα και σε κάθε κόλα που θα χρησιμοποιήσετε. Τα θέματα

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Θεωρία Πιθανοτήτων Δρ. Αγγελίδης Π. Βασίλειος 2 Περιεχόμενα Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους 3 Πείραμα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β =

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β = ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ 005 ΘΕΜΑ ο Α.. Θεωρία s s Α.. CV =, αν > 0, ενώ CV =, αν < 0. - Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. ΘΕΜΑ ο α. Πρέπει > 0, άρα A f = (0, + ). β. f () = (α

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο ΘΕΜΑ 1 ο (ΜΟΝΑΔΕΣ 10) Μια βιοτεχνία καθαρισμού ρούχων λειτουργεί καθημερινά 8 ώρες. Η βιοτεχνία δέχεται κατά μέσο όρο 4 παραγγελίες την ημέρα για καθαρισμό ενδυμάτων. (ι). Να υπολογισθεί η πιθανότητα να

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Μέρος ΙΙ. Τυχαίες Μεταβλητές

Μέρος ΙΙ. Τυχαίες Μεταβλητές Μέρος ΙΙ. Τυχαίες Μεταβλητές Ορισμοί Συναρτήσεις κατανομής πιθανότητας και πυκνότητας πιθανότητας Διακριτές τυχαίες μεταβλητές Ειδικές κατανομές διακριτών τυχαίων μεταβλητών Συνεχείς τυχαίες μεταβλητές

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12)

ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12) ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη) Για διακριτή τυχαία μεταβλητή ισχύει μία συνάρτηση πιθανότητας ικανοποιεί τις ακόλουθες δύο ιδιότητες: (α) ( ) 0, για κάθε i,, i (β) ( i ) i S Παράδειγμα

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,... Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 96) Άσκηση ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Έστω οι παρατηρήσεις δυο δειγμάτων αντίστοιχα των μεταβλητών Χ και Ψ Δίνεται ότι η μέση τιμή

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 εκεµβρίου 29 5.1. Στο τυχαίο πείραµα της ϱίψης δύο διακεκριµένων κύβων έστω X η ένδειξη του πρώτου κύβου και Y η µεγαλύτερη από τις δύο ενδείξεις. Να προσδιορισθούν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

Πιθανότητες & Στατιστική. Μέρος I. Εισαγωγή στις Πιθανότητες. Τυχαία Πειράματα (φαινόμενα)

Πιθανότητες & Στατιστική. Μέρος I. Εισαγωγή στις Πιθανότητες. Τυχαία Πειράματα (φαινόμενα) Πιθανότητες & Στατιστική Μέρος I. Εισαγωγή στις Πιθανότητες. 3 βασικές έννοιες Τυχαία Πειράματα (φαινόμενα) Δειγματικός χώρος Ενδεχόμενα Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής,

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

Σημειώσεις Στατιστική & Πιθανότητες

Σημειώσεις Στατιστική & Πιθανότητες Σημειώσεις Στατιστική & Πιθανότητες https://github.com/kongr45gpen/ece-notes 26, Εαρινό εξάμηνο Περιεχόμενα I Πιθανότητες 2 2. Πείραμα τύχης.......................................... 2.. Πράξεις..........................................

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:

Διαβάστε περισσότερα

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών να αντιληφθούν τη σημασία της εν λόγω κατανομής

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ . ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 5 η : Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 9 Φεβουαρίου 007 Ημερομηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 5 και Ρ(Β) = Ρ(Α ). Αν τα Α, Β είναι ασυµβίβαστα, να εξετάσετε αν είναι ασυµβίβαστα και τα Α, Β 5 i είξτε ότι Ρ(Α Β)=

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα:

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: 1 Η Έννοια της Πιθανότητας Η Έννοια της Πιθανότητας 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: α) Να εμφανιστεί περιττός αριθμός κατά την ρίψη ενός ζαριού. (1/2) β) Να εμφανιστεί τουλάχιστον

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

Α (i) Από την έκφραση «το πολύ 85 λεπτά», δηλαδή λιγότερο από 85 λεπτά συμπεραίνουμε ότι η ζητούμενη πιθανότητα είναι η P X 85. Χ = 85 μ = 100 Επομένως από τον τύπο της κανονικής κατανομής (σχετικό βίντεο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1. Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 7 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ). Υπενθυμίσεις Παραδείγματα Ασκήσεις Μελέτη 31 Οκτωβρίου 2014 Πιθανότητες και Στατιστική Διάλεξη 7 Ασκήσεις ΙΙ Δεσμευμένη πιθανότητα, Συνδυαστικά επιχειρήματα Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε

Διαβάστε περισσότερα