ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ. «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ. «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν:"

Transcript

1 ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΑΞΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν: : = 24 : = 16 : 11 13= 17 : 11 14= 26 i 7+ 13= 76 i 9+ 21= 120 i 7 53= 24 i 6 35= Να βρεθεί το αποτέλεσμα της πράξης: = = = = = = = = = 9 9

2 3. Ποιος είναι ο αριθμός που λείπει ώστε ο παρακάτω αριθμός να είναι πολλαπλάσιο του Ποιος είναι ο αριθμός που λείπει ώστε ο παρακάτω αριθμός να είναι πολλαπλάσιο του Ποιος είναι ο αριθμός που λείπει ώστε ο παρακάτω αριθμός να είναι πολλαπλάσιο του Ποιος είναι ο αριθμός που λείπει ώστε ο παρακάτω αριθμός να είναι πολλαπλάσιο του Να βρεθεί το αποτέλεσμα της πράξης: = = i 3 i 2 = i 3 i 3 = = = = = : 10 5 = 15 5 : 16 8 = 9 15 : 16 4 = 7 21 : 5 20 = 8. Να βρεθεί το αποτέλεσμα της πράξης: 0,5 2,3= 1,5 3,7= 38,6 :12=

3 9. Χρωμάτισε το μέρος του σχήματος που αντιστοιχεί στο αποτέλεσμα της πράξης: Α = Β = Γ = 3 3 Δ = Ε = Ζ = Η = Θ = Με ποιόν αριθμό πρέπει να πολλαπλασιάσουμε το 131,0302 ώστε να προκύψει το: 1310, ,2 131, ,02

4 11. Να βρεθούν τα ζεύγη των αριθμών που το άθροισμά τους είναι ίσο με Να βρεθούν τα ζεύγη των αριθμών που το άθροισμά τους είναι ίσο με Να βρεθούν τα ζεύγη των αριθμών που το άθροισμά τους είναι ίσο με Να βρεθεί το άθροισμα των αριθμών: = = = = = 15. Να συμπληρώσεις τον αριθμό που λείπει ώστε να είναι σωστές οι ισότητες: =, =, =, =, =, = Να συμπληρώσεις τον αριθμό που λείπει ώστε να είναι σωστές οι ισότητες: = 1, = 1, + = 2, = 2, =

5 ΠΡΟΒΛΗΜΑΤΑ ΑΡΙΘΜΗΤΙΚΗΣ 1. Ο Παύλος και ο Πέτρος έχουν τα ίδια χρήματα σε ευρώ. Πόσα ευρώ πρέπει να δώσει ο Πέτρος στον Παύλο για να έχει ο Παύλος 30 ευρώ περισσότερα από τον Πέτρο; 2. Ο Νίκος ο Τάκης και ο Λάκης αν προσθέσουν τα χρήματά τους έχουν συνολικά 37 ευρώ. Ο Λάκης έχει 11 ευρώ και 40 λεπτά και ο Νίκος έχει 4,5 ευρώ περισσότερα από το Λάκη. Πόσα χρήματα έχει ο Νίκος; Πόσα χρήματα έχει ο Τάκης; 3. Ο Νίκος ο Τάκης και ο Λάκης αν προσθέσουν τα χρήματά τους έχουν συνολικά 29 ευρώ. Ο Λάκης έχει 9 ευρώ και 30 λεπτά και ο Νίκος έχει 2,7 ευρώ λιγότερα από το Λάκη. Πόσα χρήματα έχει ο Νίκος; Πόσα χρήματα έχει ο Τάκης; 4. Ο Κώστας έχει 56 κάρτες και η Μαρία έχει 40 κάρτες. Αν ο Κώστας δώρισε τα 3 7 των καρτών του, ποιό μέρος των καρτών της πρέπει να δωρίσει και η Μαρία ώστε να έχουν τον ίδιο αριθμό καρτών; 5. Τρία βιβλία και 7 τετράδια κοστίζουν συνολικά 22,5 ευρώ. Πόσο κοστίζει το κάθε βιβλίο αν το κάθε τετράδιο κοστίζει 1 ευρώ και 50 λεπτά; 6. Ένα αυτοκίνητο τρέχει με ταχύτητα 72 χμ. την ώρα. Πόσα χιλιόμετρα διανύει σε 1 ώρα και 20 λεπτά; Πόσα χιλιόμετρα διανύει σε 2 ώρες και ένα τέταρτο; Πόσα χιλιόμετρα διανύει σε 21 λεπτά; 7. Για να πραγματοποιηθεί μια εκδρομή με 20 άτομα πρέπει το καθένα να δώσει από 12 ευρώ. Αν τελικά πάνε στην εκδρομή 15 άτομα πόσα χρήματα πρέπει να πληρώσει ο καθένας; 8. Τα 4 7 των μαθητών μιας τάξης είναι κορίτσια. Αν τα κορίτσια είναι 4 περισσότερα από τα αγόρια, πόσα είναι τα κορίτσια και πόσα τα αγόρια; 9. Σε ένα σχολείο με 378 μαθητές τα κορίτσια είναι 24 περισσότερα από τα αγόρια. Πόσα είναι τα κορίτσια και πόσα τα αγόρια;

6 10. Τα 2 7 των παιδιών μιας τάξης παίζουν μπάσκετ. Τα υπόλοιπα 20 παιδιά παίζουν βόλεϋ. Πόσα παιδιά παίζουν μπάσκετ; 11. Μια ομάδα τεσσάρων παιδιών σε έναν διαγωνισμό μαθηματικών τους δόθηκαν για λύση από 12 ασκήσεις. Ο Τάκης έλυσε το 1 2 των ασκήσεων, ο Λάκης έλυσε τα 2 3 των ασκήσεων, ο Σούλης έλυσε τα 3 4 των ασκήσεων και ο Παύλος τα 5 6 των ασκήσεων. Πόσες ασκήσεις έλυσε το κάθε παιδί; 12. Να γράψεις τον αριθμό που ακολουθεί σε κάθε μια από τις παρακάτω σειρές αριθμών: Το άθροισμα των ηλικιών τριών φίλων είναι 42 χρόνια. Ποιο ήταν το άθροισμα των ηλικιών τους πριν τρία χρόνια; Ποιο θα είναι το άθροισμα των ηλικιών τους σε τρία χρόνια; 14. Ποιοι αριθμοί βρίσκονται στα κουτάκια;

7 15. Ποιοι αριθμοί βρίσκονται στα κουτάκια; 16. Ένας αγώνας ξεκίνησε στις 10 :15 και τελείωσε στις 12:00. Αν το διάλειμμα μεταξύ των δύο ημιχρόνων ήταν 15 λεπτά, πόσο διήρκεσε κάθε ημίχρονο; 17. Ο Τάκης και ο Λάκης έχουν μαζί 47 ευρώ. Αν ο Λάκης έχει 11 ευρώ περισσότερα από τον Τάκη, πόσα ευρώ έχει το κάθε παιδί;

8 ΠΡΟΒΛΗΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ 1. Τα παρακάτω σχήματα έχουν την ίδια περίμετρο. Αν το τετράγωνο έχει πλευρά 9εκ. και μια από τις πλευρές του ορθογωνίου είναι 4εκ., να βρεθούν τα εμβαδά των δύο σχημάτων. 2. Αν το παρακάτω τετράγωνο έχει διπλάσια περίμετρο από το ορθογώνιο, να βρεθούν τα εμβαδά των δύο σχημάτων. 3. Αν ένα τετράγωνο με πλευρά 12εκ. έχει διπλάσιο εμβαδό από ένα ορθογώνιο που η μια του πλευρά είναι 8εκ., να βρεθεί η περίμετρος του ορθογωνίου. 4. Ένα τετράγωνο και ένα ορθογώνιο έχουν το ίδιο εμβαδόν. Αν η περίμετρος του τετραγώνου είναι 32εκ. να βρεθούν τα μήκη των πλευρών του ορθογωνίου αν είναι γνωστό ότι η μια του πλευρά είναι τετραπλάσια της άλλης.

9 5. Το τετράγωνο ΑΒΓΔ αποτελείται από δύο μικρότερα τετράγωνα με εμβαδά 25 τ.εκ. και 9 τ.εκ. και από δύο ορθογώνια παραλληλόγραμμα. Να βρεθεί το εμβαδόν και η περίμετρος του κάθε ορθογωνίου. Να βρεθεί το εμβαδόν και η περίμετρος του τετραγώνου ΑΒΓΔ 6. Αν το κάθε τετραγωνάκι έχει πλευρά 2εκ. να βρεθεί το εμβαδόν του χρωματισμένου μέρους σε καθένα από τα παρακάτω σχήματα.

10 7. Να σχεδιαστεί το συμμετρικό του παρακάτω σχήματος: 8. Να σχεδιαστεί το συμμετρικό του παρακάτω σχήματος: 9. Να σχεδιαστεί το συμμετρικό του παρακάτω σχήματος:

11 10. Να σχεδιαστεί το συμμετρικό του παρακάτω σχήματος: Ποιο το εμβαδόν του σχήματος αν κάθε τετραγωνάκι έχει πλευρά 3 εκ.; 11. Να σχεδιαστεί το συμμετρικό του παρακάτω σχήματος: Ποιο το εμβαδόν του αρχικού σχήματος αν κάθε τετραγωνάκι έχει πλευρά 2 εκ.; 12. Να σχεδιαστεί το συμμετρικό του παρακάτω σχήματος: Ποιο το εμβαδόν του σχήματος αν κάθε τετραγωνάκι έχει πλευρά 2 εκ.;

12 13. Να βρεθεί το εμβαδόν και η περίμετρος του παρακάτω σχήματος αν είναι γνωστό ότι αυτό αποτελείται από δύο ίσα τετράγωνα και ένα ορθογώνιο. 14. Να βρεθεί το εμβαδόν του παρακάτω σχήματος αν είναι γνωστό ότι αυτό αποτελείται από δύο ίσα ορθογώνια τρίγωνα και ένα ορθογώνιο παραλληλόγραμμο. 15. Αν είναι γνωστό ότι το εμβαδόν του παρακάτω σχήματος είναι 50 τ.εκ. να βρεθεί το εμβαδόν του ορθογωνίου ΑΒΓΔ.

13 16. Πόσα τρίγωνα υπάρχουν στο παρακάτω σχήμα; 17. Πόσα τετράγωνα υπάρχουν στο παρακάτω σχήμα; 18. Στο παρακάτω σχήμα τα τέσσερα ορθογώνια είναι ίσα μεταξύ τους, έχουν μήκος 8εκ. και πλάτος 6εκ. και σχηματίζουν δύο τετράγωνα. Να βρεθούν τα εμβαδά και οι περίμετροι των δύο τετραγώνων.

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

Επιτροπή Διαγωνισμού του περιοδικού. 2 ος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

Επιτροπή Διαγωνισμού του περιοδικού. 2 ος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

2. Οι ζητούμενοι αριθμοί είναι οι : 1.541, 7.686, 3.352, (8)

2. Οι ζητούμενοι αριθμοί είναι οι : 1.541, 7.686, 3.352, (8) ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 Επιτροπή Διαγωνισμού του περιοδικού «Ο μικρός Ευκλείδης» 2 ος Μαθητικός Διαγωνισμός

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 1 (ΜΟΝΑΔΕΣ 40) α) Ο αριθμός 1.047 έχει διαιρέτη το 3; Να δικαιολογήσετε την απάντησή σας. β) Να βάλετε

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 61652-617784 - Fax: 641025 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Βαθμός ΘΕΜΑ 1. 1 ο. συνολικά. ΘΕΜΑ 2 ο. Λύση ΘΕΜΑ 3. 3 ο. x: ο ΘΕΜΑ 4 = x 2. 5 ο ΘΕΜΑ 5. ποτήρια. Λύση.

Βαθμός ΘΕΜΑ 1. 1 ο. συνολικά. ΘΕΜΑ 2 ο. Λύση ΘΕΜΑ 3. 3 ο. x: ο ΘΕΜΑ 4 = x 2. 5 ο ΘΕΜΑ 5. ποτήρια. Λύση. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Επιτροπή ιαγωνισμού τουυ περιοδικού «ΟΟ μικρός Ευκλείδης» 10 ος Πανελλήνιος Μαθητικός ιαγωνισμός «Παιχνίδι και Μαθηματικά» 4-3 - 2016 Για μαθητές της Στ Τάξης ημοτικού Ονοματεπώνυμο:.

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Τα παρακάτω σχήματα έχουν χωριστεί σε ίσα τετράγωνα. Σε ποια από αυτά έχουμε γραμμοσκιάσει του σχήματος; Να κυκλώσεις το σωστό.

ΘΕΜΑ 1 ο Τα παρακάτω σχήματα έχουν χωριστεί σε ίσα τετράγωνα. Σε ποια από αυτά έχουμε γραμμοσκιάσει του σχήματος; Να κυκλώσεις το σωστό. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Επιτροπή ιαγωνισμού του περιοδικού «Ο μικρός Ευκλείδης» 10 ος Πανελλήνιος Μαθητικός ιαγωνισμός «Παιχνίδι και Μαθηματικά» 4-3 - 2016 Για μαθητές της Ε Τάξης ημοτικού Ονοματεπώνυμο:.

Διαβάστε περισσότερα

5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.

5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του. 1 ΑΣΚΗΣΕΙΣ 1. Ένα παραλληλόγραμμο ΑΒΓΔ έχει μια πλευρά ίση με 48 και το αντίστοιχο σε αυτή την πλευρά ύψος είναι 4,5 dm. Να βρείτε το εμβαδό του παραλληλογράμμου 2. Ένα παραλληλόγραμμο έχει εμβαδό 72 2

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 0-0 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 0 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής). THE G

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ

ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ 1. Η συνδρομή για την συμμετοχή στον όμιλο κολύμβησης είναι 15 τον μήνα και 5 για κάθε φορά που χρησιμοποιούμε την πισίνα. Αν τον προηγούμενο μήνα πληρώσαμε 75, πόσες

Διαβάστε περισσότερα

Ελληνική Μαθηματική Εταιρεία Παράρτημα Καστοριάς Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ 3ου ΔΙΑΓΩΝΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΩΝ 2η ΦΑΣΗ 5 Απριλίου 2014

Ελληνική Μαθηματική Εταιρεία Παράρτημα Καστοριάς Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ 3ου ΔΙΑΓΩΝΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΩΝ 2η ΦΑΣΗ 5 Απριλίου 2014 Ελληνική Μαθηματική Εταιρεία Παράρτημα Καστοριάς Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ 3ου ΔΙΑΓΩΝΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΩΝ 2η ΦΑΣΗ 5 Απριλίου 2014 Αγαπητοί μαθητές, σας καλωσορίζουμε στην δεύτερη φάση του τρίτου τοπικού διαγωνισμού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Ακέραιοι- Συμμιγείς

ΜΑΘΗΜΑΤΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Ακέραιοι- Συμμιγείς Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Διαγωνισμός 2007 Διαγωνισμός 2012 Διαγωνισμός 2008 Διαγωνισμός 2013 Διαγωνισμός 2009 Διαγωνισμός 2014 Διαγωνισμός 2010 Διαγωνισμός 2015 Διαγωνισμός 2011 ΜΑΘΗΜΑΤΙΚΑ Κλάσματα-Δεκαδικοί

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου. Ενότητα 8. β τεύχος

ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου. Ενότητα 8. β τεύχος ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 48 Ενότητα 8 Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου β τεύχος Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου 48 1η Άσκηση Να συμπληρώσεις τον

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2017-2018 ΜΑΘΗΜΑΤΙΚΑ Αυτό το γραπτό αποτελείται από 18 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής.

Διαβάστε περισσότερα

Ποιος είναι ο 66ος όρος στην ακολουθία γραμμάτων ΑΒΒΓΓΓΔΔΔΔΕΕΕΕΕ, όπου Α, Β, Γ, Δ, Ε είναι γράμματα του ελληνικού αλφαβήτου;

Ποιος είναι ο 66ος όρος στην ακολουθία γραμμάτων ΑΒΒΓΓΓΔΔΔΔΕΕΕΕΕ, όπου Α, Β, Γ, Δ, Ε είναι γράμματα του ελληνικού αλφαβήτου; Πρόβλημα 214 Τα θρανία στην τάξη του Γιάννη είναι τοποθετημένα σε γραμμές και στήλες. Το θρανίο του Γιάννη είναι στην τρίτη γραμμή από την αρχή και στην τέταρτη από το τέλος. Είναι επίσης στην τρίτη στήλη

Διαβάστε περισσότερα

Ποια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση.

Ποια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση. 5Η ΕΝΟΤΗΤΑ ΑΣΚΗΣΕΩΝ 5.1 Ποια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση. Α. Οι κύκλοι είναι διπλάσιοι σε αριθμό από τα τετράγωνα. Β.

Διαβάστε περισσότερα

1 2. Το Ε. Βαθμός. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Λύση. Απάντηση: ΘΕΜΑ 3 ο. ΘΕΜΑ 4 ο. Να βάλεις. στη σειρά. ΘΕΜΑ 5 ο. Στ ΤΑΞΗ -1- MATHEMATICAL SOCIETY

1 2. Το Ε. Βαθμός. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Λύση. Απάντηση: ΘΕΜΑ 3 ο. ΘΕΜΑ 4 ο. Να βάλεις. στη σειρά. ΘΕΜΑ 5 ο. Στ ΤΑΞΗ -1- MATHEMATICAL SOCIETY ΕΛΛΗΝΙΚΗΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 799 - Athens - HELLAS Τηλ. 366532-367784

Διαβάστε περισσότερα

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι :

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι : ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 010 Χρόνος: 60 λεπτά Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Η τιμή της αριθμητικής παράστασης Α = 010 009 + 008 007 + 006 005 +...+ 4 3 + 1 είναι

Διαβάστε περισσότερα

(6) 2. Βρίσκουμε το άθροισμα =66, οπότε ο αριθμός που δεν προστέθηκε είναι ο 66-56=10. (6)

(6) 2. Βρίσκουμε το άθροισμα =66, οπότε ο αριθμός που δεν προστέθηκε είναι ο 66-56=10. (6) ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 Επιτροπή Διαγωνισμού του περιοδικού «ο μικρός Ευκλείδης» 1 ος Μαθητικός Διαγωνισμός

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ Ενότητα 1: Σύνολα 1. Με τη βοήθεια του πιο κάτω διαγράμματος να γράψετε με αναγραφή τα σύνολα: Ω A 5. 1. B Ω =. 6. 4. 3. 7. 8.. Από το διπλανό διάγραμμα, να γράψετε με αναγραφή τα σύνολα: 3. Δίνεται το

Διαβάστε περισσότερα

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 2 Ο : ΚΛΑΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Όταν ένα μέγεθος ή ένα σύνολο χωριστεί σε ν ίσα μέρη, το κάθε ένα από αυτά ονομάζεται.. και συμβολίζεται : 2. Κάθε τμήμα του μεγέθους ή του συνόλου αντικειμένων,

Διαβάστε περισσότερα

Επιτροπή Διαγωνισμού του περιοδικού. 2 ος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

Επιτροπή Διαγωνισμού του περιοδικού. 2 ος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-361774 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Θέματα: - Εξισώσεις - Σχέσεις/μοτίβα

ΑΛΓΕΒΡΑ. Θέματα: - Εξισώσεις - Σχέσεις/μοτίβα ΑΛΓΕΒΡΑ Θέματα: - Εξισώσεις - Σχέσεις/μοτίβα 1 Εξισώσεις 1. Η Αντωνία διάβασε τις πρώτες 78 σελίδες ενός βιβλίου, που έχει συνολικά 130 σελίδες. Ποια μαθηματική πρόταση μπορεί να χρησιμοποιήσει η Αντωνία,

Διαβάστε περισσότερα

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 193. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Με την βοήθεια των εξισώσεων δευτέρου βαθμού λύνουμε πολλά προβλήματα της καθημερινής ζωής και διαφόρων επιστημών.

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2007 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο:... Όνοµα:... Όνοµα πατέρα:... e-mail:... ιεύθυνση:... Τηλέφωνο:... Εξεταστικό Κέντρο:... Σχολείο προέλευσης:... Τάξη:... Θέµατα Καγκουρό 007 Επίπεδο: (για

Διαβάστε περισσότερα

B τάξη Γυμνασίου : : και 4 :

B τάξη Γυμνασίου : : και 4 : Τηλ. 10 6165-10617784 - Fax: 10 64105 Tel. 10 6165-10617784 - Fax: 10 64105 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 014 B τάξη Γυμνασίου Να βρείτε τους αριθμούς 0 4 1 1 77 16 60 19 7 : 000 : και 4 : 4 9

Διαβάστε περισσότερα

4 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

4 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 6 79 ΑΘΗΝΑ Τηλ. 366532-367784 - Fax: 36425 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 6 79 - Athens

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2015-2016 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 20 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω. ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β

Διαβάστε περισσότερα

5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ )

5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 27 34) Πηγή πληροφόρησης: e-selides ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤA MΑΘΗΜΑΤΙΚΑ Δ' 5 η επανάληψη Μαθήματα 27-34

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 15 λεπτά

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 15 λεπτά ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 15 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε στο χώρο που σας

Διαβάστε περισσότερα

κάθε σχήματος. 1. Σκιάζω τα 3 4

κάθε σχήματος. 1. Σκιάζω τα 3 4 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 Επιτροπή Διαγωνισμού του περιοδικού «ο μικρός Ευκλείδης» 1 ος Μαθητικός Διαγωνισμός

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Ποιος από τους παρακάτω αριθμούς έχει ακριβώς 33 εκατοντάδες και 24 μονάδες; (Κυκλώνω το σωστό)

ΘΕΜΑ 1 ο Ποιος από τους παρακάτω αριθμούς έχει ακριβώς 33 εκατοντάδες και 24 μονάδες; (Κυκλώνω το σωστό) ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-361774 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες:

Διαβάστε περισσότερα

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα.

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. THE GRAMMAR SCHOOL ΑΡΙΘΜΟΣ: ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011 ΘΕΜΑ : ΧΡΟΝΟΣ : ΜΑΘΗΜΑΤΙΚΑ 1 ΩΡΑ ΚΑΙ 30 ΛΕΠΤΑ Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. 2. Απαγορεύεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Διαγωνισμός Μαθηματικών ικανοτήτων ΠΥΘΑΓΟΡΑΣ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΙΑ ΤΗΝ Α και Β ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ Θέμα 1 ο Από τους αριθμούς 12, 13, 14, 15, 17 αυτός που έχει τους περισσότερους

Διαβάστε περισσότερα

Θεωρία. Αντιστρόφως ανάλογα ή αντίστροφα λέγονται δύο ποσά, στα. Ιδιότητα αντιστρόφως ανάλογων ποσών. Αντιστρόφως ανάλογα ή αντίστροφα ποσά

Θεωρία. Αντιστρόφως ανάλογα ή αντίστροφα λέγονται δύο ποσά, στα. Ιδιότητα αντιστρόφως ανάλογων ποσών. Αντιστρόφως ανάλογα ή αντίστροφα ποσά Μαθηματικά Κεφάλαιο 36 Αντιστρόφως ανάλογα Όνομα: Ημερομηνία: / / ή αντίστροφα ποσά Θεωρία Αντιστρόφως ανάλογα ή αντίστροφα λέγονται δύο ποσά, στα οποία, όταν πολλαπλασιάζεται η τιμή του ενός ποσού με

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ :

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΤΑΞΗ : Β ΧΡΟΝΟΣ : 2 ΩΡΕΣ ΑΡΙΘΜΟΣ ΣΕΛΙΔΩΝ : 8 ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΤΜΗΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΟΓΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΟΓΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΟΓΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 6 Ο ΑΝΑΛΟΓΑ ΠΟΣΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Προκειμένου να προσδιορίσουμε τη θέση ενός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΕΙΣ ΓΝΩΣΕΩΝ ΔΕΞΙΟΤΗΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΕΙΣ ΓΝΩΣΕΩΝ ΔΕΞΙΟΤΗΤΩΝ 1. Φτιάχνουμε στόχους με άδεια κουτιά. Αν χρειαστήκαμε 6 κουτιά για να στήσουμε 3 σειρές, πόσα κουτιά θα χρειαστούμε για να στήσουμε μία παρόμοια πυραμίδα με 5 σειρές; Α. Β. Γ. Δ. 2. Πόσα κουτιά θα χρειαστούμε

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ 3 ΙΑΝΟΥΑΡΙΟΥ 2016 Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΑΣΚΗΣΗ 1 η Να γίνουν οι πράξεις στις παρακάτω παραστάσεις: i. 3 5 + 2 = ii. 3 ( 2) + 4 5 ( 3) = iii. iv. 2 ( 3) : 3 2 3 2 4 1 ( 2) 6 1+( 2) 1 v.

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2016-2017 ΜΑΘΗΜΑΤΙΚΑ Αυτό το γραπτό αποτελείται από 18 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής.

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΡΧΑΓΓΕΛΟΥ ΛΑΚΑΤΑΜΕΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:...ΤΜΗΜΑ:...ΑΡ.:... (α) Να ελέγξετε ότι το γραπτό αποτελείται από 11 σελίδες.

ΓΥΜΝΑΣΙΟ ΑΡΧΑΓΓΕΛΟΥ ΛΑΚΑΤΑΜΕΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:...ΤΜΗΜΑ:...ΑΡ.:... (α) Να ελέγξετε ότι το γραπτό αποτελείται από 11 σελίδες. ΓΥΜΝΑΣΙΟ ΑΡΧΑΓΓΕΛΟΥ ΛΑΚΑΤΑΜΕΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011 2012 ΠΡΟΑΓΩΓΙΚΕΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΒΑΘΜΟΣ Αρ.:..... Ολογρ.:..... ΥΠΟΓΡΑΦΗ:..... ΗΜΕΡΟΜΗΝΙΑ: 05.06.2012 ΔΙΑΡΚΕΙΑ:

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 8 / 6 / 2015 Αριθμητικά :.... ΒΑΘΜΟΣ:... ΤΑΞΗ: Β Ολογράφως:......

Διαβάστε περισσότερα

1+ 1. Α Γυμνασίου. Πρόβλημα 1 ο α) Να υπολογίσετε τις παραστάσεις Α = Β = Α= 9 1 : : 5 = 9 1 : 9 5 = (2 μονάδες)

1+ 1. Α Γυμνασίου. Πρόβλημα 1 ο α) Να υπολογίσετε τις παραστάσεις Α = Β = Α= 9 1 : : 5 = 9 1 : 9 5 = (2 μονάδες) ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΡΚΥΡΑΣ 2 ος όροφος Δημοτικού Θεάτρου 400 Κέρκυρα e-mail emekerkyra@dide.ker.sch.gr Greek Mathematical Society Branch of Corfu 2 nd floor Public Theater of Corfu

Διαβάστε περισσότερα

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών Μαθηματικά Β Γυμνασίου Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών 1. Να χρησιμοποιήσετε μεταβλητές για να εκφράσετε με μια αλγεβρική παράσταση τις παρακάτω φράσεις: a. Η διαφορά δυο

Διαβάστε περισσότερα

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος. . Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω

Διαβάστε περισσότερα

Ενδεικηικές Δύζεις και κάθε άλλη μαθημαηικά ηεκμηριωμένη λύζη είναι αποδεκηή

Ενδεικηικές Δύζεις και κάθε άλλη μαθημαηικά ηεκμηριωμένη λύζη είναι αποδεκηή Ενδεικηικές Δύζεις και κάθε άλλη μαθημαηικά ηεκμηριωμένη λύζη είναι αποδεκηή ΘΕΜΑ 1ο Η ζηρογγσλοποίηζη ενός αριθμού ζηις δεκάδες, έδωζε ηον αριθμό 680. Ποιος από παρακάηω ήηαν ο αρτικός αριθμός; Κύκλωζε

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-2015 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 20 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

(6) 2. Βρίσκουμε το άθροισμα =66, οπότε ο αριθμός που δεν προστέθηκε είναι ο 66-56=10. (6)

(6) 2. Βρίσκουμε το άθροισμα =66, οπότε ο αριθμός που δεν προστέθηκε είναι ο 66-56=10. (6) ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 Επιτροπή Διαγωνισμού του περιοδικού «ο μικρός Ευκλείδης» 1 ος Μαθητικός Διαγωνισμός

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ 1. Να λύσετε τις εξισώσεις ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ 3 50 3 5 0 0 ή 3 5 0 0 ή 3 5 0 ή 8 50 8 5 αδύνατη 3 60 3 6 6 3 3 4 510, α = 4, β = -5 και γ = 1 Δ = 4 5 4 4 15169 5 9 4 53 8 1 ή 4 410

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 06/06/2014

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 06/06/2014 ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 06/06/014 ΤΑΞΗ: Β ΧΡΟΝΟΣ: ώρες (10:15 1:15) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:..

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 4: Η έννοια της γωνίας και του εμβαδού Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό ΟΝΟΜΑ: 1) 2) ΗΜΕΡΟΜΗΝΙΑ:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 5 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα και δεκαδικούς αριθμούς,

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 2

ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 2 THE G C SCHOOL OF CAREERS UΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 2 Χρόνος: ώρα και 30 λεπτά UΜΑΘΗΜΑΤΙΚΑ Αυτό το γραπτό αποτελείται από 25 ερωτήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στο

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ Σχολική Χρονιά: 015-016 Ασκήσεις Επανάληψης για την B Γυμνασίου Ενότητα 1: Πραγματικοί Αριθμοί Πυθαγόρειο Θεώρημα 1. Να γράψετε σε μορφή δύναμης τα πιο κάτω: 1) ².³ = ) (³) 5 = 3) 5 : 8 = 4) ( 5. 7 ) :

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΘΕΩΡΙΑ : Μήκος κύκλου: L = Εμβαδόν κύκλου: Ε = ( όπου π = 3,14) Γνωρίζοντας ότι σε γωνία 360 0 αντιστοιχεί κύκλος με μήκος L και εμβαδόν Ε έχουμε : α) ημικύκλιο

Διαβάστε περισσότερα

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ ΜΕΡΟΣ Α 1.4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ 59 1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ Πολλαπλασιασμός μονωνύμου με πολυώνυμο Ο πολλαπλασιασμός μονώνυμου με πολυώνυμο γίνεται ως εξής: Πολλαπλασιάζουμε το μονώνυμο με

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 1 ο ΣΥΣΤΗΜΑΤΑ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Όταν έχουμε δύο γραμμικές εξισώσεις αx+βy=γ και α x+β y=γ και ζητάμε τις κοινές λύσεις τους, τότε λέμε ότι έχουμε να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΠΑΡΑΓΡΑΦΟΣ Β.1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ. 2 cm

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΠΑΡΑΓΡΑΦΟΣ Β.1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ. 2 cm ΠΑΡΑΡΑΦΟΣ Β.1.3 ΕΜΒΑΑ ΕΠΙΠΕΩΝ ΣΧΗΜΑΤΩΝ Τετράγωνο -Ορθογώνιο ΑΣΚΗΣΕΙΣ 1) Ένα τετράγωνο έχει εμβαδό 81 cm 2. Με πόσο ισούται η πλευρά του; (Απάντηση: 9 cm) 2) Ένα τετράγωνο έχει περίμετρο 32 m. Nα υπολογίσετε

Διαβάστε περισσότερα

6. Πόσα πολλαπλάσια του αριθμού 9 υπάρχουν μεταξύ των αριθμών και 22550;

6. Πόσα πολλαπλάσια του αριθμού 9 υπάρχουν μεταξύ των αριθμών και 22550; 100 ΜΑΘΗΜΑΤΙΚΑ ΚΟΥΙΖ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΓΙΑ ΜΙΚΡΟΥΣ ΚΑΙ ΜΕΓΑΛΟΥΣ ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΤΑΞΕΩΝ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΦΑΝΤΑΣΙΑ (ΕΧΟΥΝ ΗΔΗ ΑΝΑΡΤΗΘΕΙ ΑΛΛΕΣ 2 ΦΟΡΕΣ ΠΑΡΟΜΟΙΟΙ ΓΡΙΦΟΙ ΣΤΗΝ ΙΣΤΟΣΕΛΙΔΑ ΤΟΥ ΣΧΟΛΕΙΟΥ ΜΑΣ)

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 1 Α. 1.2. Οι αριθμοί 0, 1, 2, 3, 4, 5, 6... 98, 99, 100... 1999, 2000, 2001,... ονομάζονται

Διαβάστε περισσότερα

Απάντηση: Οι θεατές άνδρες και γυναίκες ήταν συνολικά. ΘΕΜΑ 3 ο Κύκλωσε το σωστό σύμβολο 1 1 :1 2

Απάντηση: Οι θεατές άνδρες και γυναίκες ήταν συνολικά. ΘΕΜΑ 3 ο Κύκλωσε το σωστό σύμβολο 1 1 :1 2 Επιτροπή Διαγωνισμού του περιοδικού «Ο μικρός Ευκλείδης» 8 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» 04 Για μαθητές της Στ Τάξης Δημοτικού ΘΕΜΑ ο Πόσες φορές ο δεκαδικός αριθμός 4.400,800

Διαβάστε περισσότερα

5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y

5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y . Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. β.

Διαβάστε περισσότερα

7. Ποιο είναι το άθροισμα των ψηφίων του (δεκαδικού) αριθμού ; Α: 4 Β: 6 Γ: 7 Δ: 10

7. Ποιο είναι το άθροισμα των ψηφίων του (δεκαδικού) αριθμού ; Α: 4 Β: 6 Γ: 7 Δ: 10 20 Φεβρουαρίου 2010 1. Σ ένα ημερολόγιο διαγράφουμε τις ημερομηνίες του μηνός Ιουλίου 2004 οι οποίες περιέχουν ένα τουλάχιστον περιττό ψηφίο. Ποιος είναι ο αριθμός των ημερών που μένουν; Α: 9 Β: 10 Γ:

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1. Να λυθούν οι παρακάτω εξισώσεις: 5 x - 3 + 10 2-5x + 10x= - 15 + 10x i. ( ) ( ) ( ) ii. 9( 8-x) -10( 9-x) -4( x - 1)

Διαβάστε περισσότερα

Α.Π.Σ. «ΟΙ ΑΜΠΕΛΟΚΗΠΟΙ»

Α.Π.Σ. «ΟΙ ΑΜΠΕΛΟΚΗΠΟΙ» Α.Π.Σ. «ΟΙ ΑΠΕΛΟΚΗΠΟΙ» ΑΘΗΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΟΣ ΓΙΑ ΠΑΙΔΙΑ ΤΗΣ Β? ΔΗΟΤΙΚΟΥ Διάρκεια : 120 λεπτά ΕΠΙΠΕΔΟ 1 Ονοματεπώνυμο:.... Σχολείο :... Τηλέφωνο επικ/νίας Θέματα 5 μονάδων Επιμέλεια θεμάτων κυκλώ στε τη

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου

Μαθηματικά Α Γυμνασίου Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο

Διαβάστε περισσότερα

Ονοματεπώνυμο:. Βαθμός. ημοτικό Σχολείο... Τάξη/Τμήμα

Ονοματεπώνυμο:. Βαθμός. ημοτικό Σχολείο... Τάξη/Τμήμα ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 8 /

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 8 / Εξισώσεις Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr 7 / 8 / 8 A ΛΥΚΕΙΟΥ κεφάλαιο 5 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο Επιλεγμένες

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Ημερομηνία: 23 Mαρτίου 2016 Διάρκεια: 1 ώρα και 15 λεπτά Βαθμός:.. ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Ονοματεπώνυμο:... 1 ΜΕΡΟΣ Α: Να λύσετε όλες τις ασκήσεις. Κάθε άσκηση βαθμολογείται με 5 μονάδες. 1.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού 108 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθµό, να υπολογιστεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 4ο Γεωμετρικά Στερεά Χρύσα Παπαγεωργίου Μαθηματικός - Πληροφορικός Το ορθό πρίσμα και τα στοιχεία του Κάθε ορθό πρίσμα έχει: Δύο έδρες παράλληλες, που είναι ίσα

Διαβάστε περισσότερα

The G C School of Careers

The G C School of Careers The G C School of Careers ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗ Στ ΤΑΞΗ Χρόνος: 1 ώρα Αυτό το γραπτό αποτελείται από 15 ασκήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στον χώρο που σου δίνεται

Διαβάστε περισσότερα

The G C School of Careers

The G C School of Careers The G C School of Careers ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗ Στ ΤΑΞΗ Χρόνος: 1 ώρα Αυτό το γραπτό αποτελείται από 15 ασκήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στον χώρο που σου δίνεται

Διαβάστε περισσότερα