ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ
|
|
- Αἴσων Δασκαλόπουλος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε τους αριθμούς 2 7 και ) Να υπολογίσετε το άθροισμα 0,7+0,77 και τη διαφορά ) Η Μαρία έχει 10 ευρώ. Μπορεί να αγοράσει για τον εαυτό της και τους 22 συμμαθητές της ένα μπουκάλι νερό για τον καθένα που κοστίζει 45 λεπτά το ένα; ) Να υπολογίσετε πόσες μοίρες είναι μια αμβλεία γωνία, η οποία είναι 35 ο μεγαλύτερη της ορθής ) Ένα ορθογώνιο παραλληλόγραμμο έχει μήκος 5μ. και πλάτος 8 μ. Να βρεθούν: α) η περίμετρος του ορθογωνίου παραλληλογράμμου,
2 β) το εμβαδόν του. Αν αυξηθούν κατά 20% οι πλευρές του ορθογωνίου παραλληλογράμμου, να βρείτε: γ) την περίμετρό του, δ) το εμβαδόν του.
3 ΔΟΚΙΜΑΣΙΑ 6 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 1) Έχουμε ότι : 48 =2 24 = = = Το αντίστοιχο δενδροδιάγραμμα δίνεται παρακάτω : ) 7 2 = = = 7 7= 49 Άρα > 7 3) 0,7+ 0,77 = 1,47 0,77 0,7 = 0,07 4 ) Η Μαρία θα πρέπει να αγοράσει, για την ίδια και τους 22 συμμαθητές της, 23 μπουκάλια νερό. 23 0,45= 10,35 ευρώ. Με τα 10 ευρώ δεν μπορεί να αγοράσει μπουκάλια νερό για όλους. 5) = 125 μοίρες. 6) α) Έστω Π: {Περίμετρος Παραλληλογράμμου διαστάσεων 5 8} τότε έχουμε ότι : Π= =26 μ. β) Έστω Ε: {Εμβαδόν Παραλληλογράμμου διαστάσεων 5 8} τότε έχουμε ότι : Ε= 5 8=40.. Αν αυξηθούν κατά 20% οι πλευρές τότε το νέο παραλληλόγραμμο θα έχει: Έστω μ : {Αυξημένο Μήκος} τότε έχουμε ότι :
4 20 μ = 8+ 8 = 8+ 1,6= 9,6μ. 100 Έστω π : {Αυξημένο Πλάτος} τότε έχουμε ότι : 20 π = 5+ 5 = 5+ 1= 6μ. 100 γ) Έστω Π : {Περίμετρος Παραλληλογράμμου διαστάσεων 9.6 6} τότε έχουμε ότι : Π = = 9, ,6+ 6= 31,2μ. δ) Έστω Ε : {Εμβαδόν Παραλληλογράμμου διαστάσεων 9.6 6} τότε έχουμε ότι : Ε = 9,6 6= 57,6τ.μ.
5 ΔΟΚΙΜΑΣΙΑ 7 1) Να μετατρέψετε το κλάσμα 606 σε μικτό αριθμό. 12 2) Ένα παντελόνι με αρχική τιμή 38 πουλήθηκε στις εκπτώσεις 28,5. Πόσο % ήταν η έκπτωσή του ; ) Τα 8 τετράδια κοστίζουν 10. Πόσο κοστίζουν τα 20 ίδια τετράδια;.... 4) Να συγκρίνετε τα κλάσματα 15 9, και 6 8 5) Να βρείτε πόσους άξονες συμμετρίας έχει το ορθογώνιο παραλληλόγραμμο.
6 6) Το χωράφι του παρακάτω σχήματος έχει πλευρές ΑΒ=110 μέτρα, ΒΓ=70 μέτρα, ΓΔ=90 μέτρα και ΑΔ=30 μέτρα. Οι γωνίες Â και ˆΓ είναι ορθές. α) Πόσα μέτρα συρματόπλεγμα χρειάζονται για την περίφραξή του; Να φέρετε τη διαγώνιο ΔΒ. β) Να υπολογίσετε τα εμβαδά των ορθογωνίων τριγώνων ΑΒΔ και ΓΔΒ που σχηματίζονται. γ) Να βρείτε το εμβαδό του χωραφιού.
7 1) 606 = 50 6 = ) 38 28,5= 9,5ευρώ ήταν η έκπτωση. 9,5 25 = 0,25 = =25% ΔΟΚΙΜΑΣΙΑ 7 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 3) Το ένα τετράδιο κοστίζει 10:8=1,25 ευρώ. Άρα τα είκοσι τετράδια κοστίζουν: 20 1,25= 25 ευρώ. 4) α τρόπος (Απλοποίηση Κλασμάτων) =, =, 6 = 3 τα κλάσματα είναι ίσα β τρόπος (Μετατροπή κλασμάτων σε ομώνυμα) Ε.Κ.Π.( 8,12,20)= = = = = = = Τα κλάσματα είναι ίσα. 5 ) Το ορθογώνιο παραλληλόγραμμο έχει δύο άξονες συμμετρίας. Τις κάθετες στα μέσα των πλευρών του. 6) α) Περίμετρος χωραφιού: =300 μέτρα. Άρα χρειάζονται 300 μέτρα συρματόπλεγμα. β) Φέρνοντας τη διαγώνιο ΒΔ, σχηματίζονται δύο ορθογώνια τρίγωνα: Ε 1 : {Εμβαδόν τριγώνου ΑΒΔ} Ε 1 = ( ): 2=3300:2= 1650 τ.μ. Ε 2 : {Εμβαδόν τριγώνου ΓΔΒ} Ε 2 = ( ): 2=6300:2=3150 τ.μ.
8 γ) Το συνολικό εμβαδόν του χωραφιού είναι ίσο με το άθροισμα των εμβαδών των δύο τριγώνων : Ε: {Εμβαδόν χωραφιού} Ε= = τ.μ.
9 ΔΟΚΙΜΑΣΙΑ 8 1) Να βρείτε όλους τους αριθμούς από το 130 έως και το 140 που διαιρούνται ακριβώς με το 2, το 5 και το 10 (ταυτόχρονα).. 2) Α Β Το σχήμα ΑΒΓΔ είναι τετράγωνο. Αν η πλευρά ΓΔ είναι 5 εκ, να υπολογίσετε την Περίμετρο και το Εμβαδόν του τετραγώνου. Δ 5 εκ Γ. 3) Να υπολογίσετε το παρακάτω άθροισμα , = ) Να κάνετε την παρακάτω διαίρεση: 280 : 0,8 =.
10 5) Να συμπληρώσετε τους πίνακες ποσών τιμών αν γνωρίζετε ότι 10 εργάτες ολοκληρώνουν το βάψιμο μιας πολυκατοικίας σε 8 ημέρες ΠΟΣΑ ΤΙΜΕΣ Εργάτες Ημέρες ) Την θεατρική παράσταση του Δήμου την παρακολούθησαν 200 θεατές. Το 30% από αυτούς ήταν άντρες. Το 45% από αυτούς ήταν άντρες και παιδιά. Να βρείτε: α) Πόσοι ήταν οι άντρες, πόσες οι γυναίκες και πόσα τα παιδιά;. β) Αν οι ενήλικες (γυναίκες και άντρες) πλήρωσαν 8 ευρώ εισιτήριο και κάθε παιδί πλήρωσε 20% φθηνότερο εισιτήριο από τους ενήλικες, να υπολογίσετε πόσα χρήματα συγκέντρωσε ο Δήμος από τη θεατρική παράσταση..
11 ΔΟΚΙΜΑΣΙΑ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 1) Να βρείτε όλους τους αριθμούς από το 130 έως και το 140 που διαιρούνται ακριβώς με το 2, το 5 και το 10 (ταυτόχρονα). Για να διαιρείται ένας αριθμός ακριβώς με το 2 πρέπει να τελειώνει σε 0, 2, 4, 6, 8, άρα οι αριθμοί 130, 132, 134, 136, 138, 140 διαιρούνται ακριβώς με το 2 Για να διαιρείται ένας αριθμός ακριβώς με το 5 πρέπει να τελειώνει σε 0, 5, άρα οι αριθμοί 130, 135, 140 διαιρούνται ακριβώς με το 5 Για να διαιρείται ένας αριθμός ακριβώς με το 10 πρέπει να τελειώνει σε 0, άρα οι αριθμοί 130 και 140 διαιρούνται ακριβώς με το 10 Οπότε οι αριθμοί που διαιρούνται ακριβώς με το 2, το 5 και το 10 ταυτόχρονα είναι το 130 και το ) Α Β Το σχήμα ΑΒΓΔ είναι τετράγωνο. Αν η πλευρά ΓΔ είναι 5 εκ, να υπολογίσετε την Περίμετρο και το Εμβαδόν του τετραγώνου. Δ 5 εκ Γ Αφού το σχήμα είναι τετράγωνο, τότε όλες οι πλευρές είναι ίσες. Π ΑΒΓΔ = ΑΒ + ΒΓ + ΓΔ + ΔΑ = = 20 εκ. Ε ΑΒΓΔ = πλευρά πλευρά = 5 5 = 25 τ.εκ. 3) Να υπολογίσετε το παρακάτω άθροισμα: , = 5 10 Για να λύσω την άσκηση πρέπει να κάνω όλους τους αριθμούς κλάσματα πρέπει να κάνω τα κλάσματα ομώνυμα
12 Οπότε ΕΚΠ (5, 10) = = = ) Να κάνετε την παρακάτω διαίρεση 280 : 0,8 = 280 0, ) Να συμπληρώσετε τους πίνακες ποσών τιμών, αν γνωρίζετε ότι 10 εργάτες ολοκληρώνουν το βάψιμο μιας πολυκατοικίας σε 8 ημέρες. Τα ποσά εργάτες - ημέρες είναι αντιστρόφως ανάλογα. Οπότε 2 Χ = Χ = 80 Χ = 80 : 2 Χ = 40 Χ 16 = 8 10 Χ 16 = 80 Χ = 80 : 16 Χ = 5 4 Χ = Χ = 80 Χ = 80 : 4 Χ = 20
13 ΠΟΣΑ ΤΙΜΕΣ Εργάτες Ημέρες ) Τη θεατρική παράσταση του Δήμου την παρακολούθησαν 200 θεατές. Το 30% από αυτούς ήταν άντρες. Το 45% από αυτούς ήταν άντρες και παιδιά. Να βρείτε: α) Πόσοι ήταν οι άντρες, πόσες οι γυναίκες και πόσα τα παιδιά; = = = 60 θεατές είναι άντρες = = = 90 θεατές είναι άντρες και παιδιά Οπότε = 30 θεατές είναι παιδιά Άρα = 110 θεατές είναι γυναίκες Απάντηση: Οι άνδρες είναι 60, τα παιδιά είναι 30 και οι γυναίκες είναι 110. β) Αν οι ενήλικες (γυναίκες και άντρες) πλήρωσαν 8 ευρώ εισιτήριο και κάθε παιδί πλήρωσε 20% φθηνότερο εισιτήριο από τους ενήλικες, να υπολογίσετε πόσα χρήματα συγκέντρωσε ο Δήμος από τη θεατρική παράσταση. Οι ενήλικες, άντρες και γυναίκες είναι = 170 Οι ενήλικες πλήρωσαν = 1360 ευρώ Τα παιδιά πλήρωσαν 20% φθηνότερο εισιτήριο. Δηλαδή: = = = 1,6 ευρώ λιγότερα για κάθε εισιτήριο Άρα κάθε παιδί πλήρωσε 8 1,60 = 6,40 ευρώ Οπότε 30 6,40 = 192 ευρώ β τρόπος 100% 20% = 80% της τιμής του εισιτηρίου πλήρωσαν τα παιδιά = = = 6,40 ευρώ πλήρωσε κάθε παιδί Οπότε 30 6,40 = 192 ευρώ Συνολικά οι θεατές πλήρωσαν = 1552 ευρώ Απάντηση: Ο Δήμος συγκέντρωσε συνολικά 1552 ευρώ
14 ΔΟΚΙΜΑΣΙΑ 9 1) Να βρείτε τον άγνωστο x έτσι ώστε να ισχύει η ισότητα (19 36) : x = ) Να συμπληρώσετε τους αριθμούς που λείπουν α) 1, 2, 4, 8,,,, 128 β) 1, 1, 2, 3, 5, 8,,,, 55 3) Να υπολογίσετε την τιμή της αριθμητικής παράστασης 65 + (63 49) : 7 = 12 4) Να βρείτε πόσα κιλά είναι τα του τόνου ) Να βρείτε την τιμή του Χ ώστε τα κλάσματα να είναι ισοδύναμα = = Χ Χ 21
15 6) Το παρακάτω ραβδόγραμμα παρουσιάζει τους κατοίκους ενός χωριού. Αριθμός κατοίκων α) Τι μέρος (κλάσμα) των κατοίκων είναι τα παιδιά; Τι μέρος (κλάσμα) των κατοίκων είναι οι γυναίκες; Τι μέρος (κλάσμα) των κατοίκων είναι οι άνδρες; β) Αν οι κάτοικοι του χωριού αυτού είναι 1200, να βρείτε πόσα παιδιά έχει το χωριό. Παιδιά Γυναίκες Άνδρες 7) Να υπολογίσετε το Εμβαδόν και την Περίμετρο του παρακάτω σχήματος (ΑΕ = ύψος στην πλευρά ΓΔ). Πλευρά ΑΒ = 15 εκ., πλευρά ΒΓ = 8 εκ. και ύψος ΑΕ = 7 εκ. Α 15 εκ. Β Δ Ε Γ 7 εκ. 8εκ.....
16 ΔΟΚΙΜΑΣΙΑ 9 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 1) Να βρείτε τον άγνωστο x έτσι ώστε να ισχύει η ισότητα: (19 36) : x = 38 (19 36) : x = : x = 38 x = 684 : 38 x = 18 2) Να συμπληρώσετε τους αριθμούς που λείπουν α) 1, 2, 4, 8,,,, 128 β) 1, 1, 2, 3, 5, 8,,,, 55 α) κάθε αριθμός προκύπτει από τον πολλαπλασιασμό του προηγούμενου αριθμού με το 2: 1, 2, 4, 8, 16, 32, 64, 128 β) κάθε αριθμός προκύπτει από την πρόσθεση των δύο προηγούμενων αριθμών: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 3) Να υπολογίσετε την τιμή της αριθμητικής παράστασης 65 + (63 49) : 7 = Σύμφωνα με τη σειρά που γίνονται οι πράξεις στις αριθμητικές παραστάσεις: 65 + (63 49) : 7 = = : 7 = = 65+2 = ) Να βρείτε πόσα κιλά είναι τα του τόνου 20 α τρόπος = = = 600 κιλά β τρόπος Με αναγωγή στην κλασματική μονάδα: 20 Τα είναι 1000 κιλά 20
17 1 Το είναι 1000 : 20 = 50 κιλά Τα είναι = 600 κιλά 5) Να βρείτε την τιμή του Χ ώστε τα κλάσματα να είναι ισοδύναμα = = Χ Χ 21 Στα ισοδύναμα κλάσματα τα χιαστί γινόμενα είναι ίσα. Οπότε: 2 Χ = Χ = Χ = Χ = 126 Χ = 60 : 2 Χ = 126 : 18 Χ = 30 Χ = 7 6) Το παρακάτω ραβδόγραμμα παρουσιάζει τους κατοίκους ενός χωριού. Αριθμός κατοίκων α) Τι μέρος (κλάσμα) των κατοίκων είναι τα παιδιά; Τι μέρος (κλάσμα) των κατοίκων είναι οι γυναίκες; Τι μέρος (κλάσμα) των κατοίκων είναι οι άνδρες; β) Αν οι κάτοικοι του χωριού αυτού είναι 1200, να βρείτε πόσα παιδιά έχει το χωριό. Παιδιά Γυναίκες Άνδρες Μετρώντας τα τετράγωνα βρίσκω πως συνολικά είναι 12. Επομένως τα 12/12 είναι το σύνολο των κατοίκων του χωριού. α) Τι μέρος των κατοίκων είναι τα παιδιά; Μετρώντας τα τετράγωνα που αντιστοιχούν στα παιδιά σχηματίζω το κλάσμα 3/12 Τι μέρος των κατοίκων είναι οι γυναίκες; Μετρώντας τα τετράγωνα που αντιστοιχούν στις γυναίκες σχηματίζω το κλάσμα 4/12 Τι μέρος των κατοίκων είναι οι άντρες; Μετρώντας τα τετράγωνα που αντιστοιχούν στους άντρες σχηματίζω το κλάσμα 5/12
18 β) Αν οι κάτοικοι του χωριού αυτού είναι 1200, να βρείτε πόσα παιδιά έχει το χωριό. Πρέπει να βρω τα 3/12 των κατοίκων του χωριού (1200) α τρόπος = = 300 κάτοικοι είναι τα παιδιά β τρόπος Με αναγωγή στην κλασματική μονάδα: 12 Τα είναι 1200 κάτοικοι 12 1 Το είναι 1200 : 12 = 100 κάτοικοι 12 3 Τα είναι = 300 κάτοικοι Απάντηση: Το χωριό έχει 300 παιδιά 7) Να υπολογίσετε το Εμβαδόν και την Περίμετρο του παρακάτω σχήματος (ΑΕ = ύψος στην πλευρά ΓΔ). Πλευρά ΑΒ = 15 εκ., πλευρά ΒΓ = 8 εκ. και ύψος ΑΕ = 7 εκ. Α 15 εκ. Β Δ Ε Γ 7 εκ. 8εκ. Π ΑΒΓΔ = ΑΒ + ΒΓ + ΓΔ + ΔΑ = = 46 εκ. Ε ΑΒΓΔ = βάση ύψος = ΓΔ ΑΕ = 15 7 = 105 τ.εκ.
19 ΔΟΚΙΜΑΣΙΑ 10 1) Να κάνετε τις παρακάτω πράξεις με το νου. 0, = = = 100 2,5 =. 1,06 : 10 =.. 46 : 100 =.. 62,75 : 100 =.. 0,6 : 100 =.. 2) Να μετατρέψετε τους δεκαδικούς αριθμούς σε δεκαδικά κλάσματα και το αντίστροφο. 5 2,75 = =. 10 6,05 = = ) Να κάνετε την παρακάτω διαίρεση: 6,75 : 0, ) Να διατάξετε τους παρακάτω αριθμούς από τον μεγαλύτερο στον μικρότερο. 23,2 30,08 30,5 12,5 17,1 31,3 37,5 23,08 5) Να υπολογίσετε τις παρακάτω δυνάμεις. 2 4 =. 5 3 =..
20 6) Ο Δημήτρης θέλει να αγοράσει 3 βιβλία που το καθένα κοστίζει 5,20 ευρώ. Σε πόσες ημέρες θα μαζέψει το ποσό που του χρειάζεται αν κάθε μέρα βάζει στον κουμπαρά του 1,30 ευρώ; 7) Ένα αυτοκίνητο που τρέχει με σταθερή ταχύτητα 80 χιλιομέτρων την ώρα, διανύει την απόσταση Αθήνα Τρίπολη σε 120 λεπτά. Με πόση ταχύτητα πρέπει να τρέξει ένα δεύτερο αυτοκίνητο για να διανύσει την ίδια απόσταση σε 100 λεπτά;
21 ΔΟΚΙΜΑΣΙΑ 10 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 1) Να κάνετε τις παρακάτω πράξεις με το νου. 0, = = = ,5 = 250 1,06 : 10 = 0, : 100 = 0,46 62,75 : 100 = 0,6275 0,6 : 100 = 0,006 2) Να μετατρέψετε τους δεκαδικούς αριθμούς σε δεκαδικά κλάσματα και το αντίστροφο ,75 = = 0, ,05 = = 0, ) Να κάνετε την παρακάτω διαίρεση. 6,75 : 0,15 6,75 0, ) Να διατάξετε τους παρακάτω αριθμούς από τον μεγαλύτερο στον μικρότερο. 23,2 30,08 30,5 12,5 17,1 31,3 37,5 23,08 37,5 31,3 30,5 30,08 23,2 23,08 17,1 12,5
22 5) Να υπολογίσετε τις παρακάτω δυνάμεις. 2 4 = = = = 125 6) Ο Δημήτρης θέλει να αγοράσει 3 βιβλία που το καθένα κοστίζει 5,20 ευρώ. Σε πόσες ημέρες θα μαζέψει το ποσό που του χρειάζεται αν κάθε μέρα βάζει στον κουμπαρά του 1,30 ευρώ; Και τα 3 βιβλία που θέλει να αγοράσει ο Δημήτρης κοστίζουν 3 5,20 = 15,60 ευρώ Αν βάζει στον κουμπαρά του κάθε μέρα 1,30 τότε θα χρειαστεί 15,60 : 1,30 = 12 ημέρες Απάντηση: Ο Δημήτρης θα χρειαστεί 12 ημέρες για να μαζέψει όλο το ποσό. 7) Ένα αυτοκίνητο που τρέχει με σταθερή ταχύτητα 80 χιλιομέτρων την ώρα, διανύει την απόσταση Αθήνα Τρίπολη σε 120 λεπτά. Με πόση ταχύτητα πρέπει να τρέξει ένα δεύτερο αυτοκίνητο για να διανύσει την ίδια απόσταση σε 100 λεπτά; Για να λύσουμε το πρόβλημα θα κάνουμε ένα πίνακα ποσών τιμών ΠΟΣΑ ΤΙΜΕΣ ταχύτητα (χμ/ώρα) 80 Χ χρόνος (λεπτά) Τα ποσά ταχύτητα και χρόνος είναι αντιστρόφως ανάλογα. Οπότε: 100 Χ = Χ = 9600 Χ = 9600 : 100 Χ = 96 χιλιόμετρα την ώρα Απάντηση: Το δεύτερο αυτοκίνητο πρέπει να κινηθεί με 96 χιλιόμετρα την ώρα
5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.
1 ΑΣΚΗΣΕΙΣ 1. Ένα παραλληλόγραμμο ΑΒΓΔ έχει μια πλευρά ίση με 48 και το αντίστοιχο σε αυτή την πλευρά ύψος είναι 4,5 dm. Να βρείτε το εμβαδό του παραλληλογράμμου 2. Ένα παραλληλόγραμμο έχει εμβαδό 72 2
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ. «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν:
ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΑΞΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν: : 11+ 15= 24 : 17+ 11= 16 : 11 13= 17 : 11 14= 26 i 7+
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου
Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Διαβάστε περισσότεραΑ.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ
ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής
Διαβάστε περισσότεραΠρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού
Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραΤετραγωνική ρίζα πραγματικού αριθμού
Τετραγωνική ρίζα του θετικού αριθμού α, ονομάζεται ο θετικός αριθμός χ, όταν χ = α. Ορίζουμε επίσης ότι: 0 0. Δηλαδή αν α, x > 0 και x, τότε x. Συνέπειες του ορισμού Για κάθε πραγματικό αριθμό x ισχύει:
Διαβάστε περισσότεραΑ σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών
Μαθηματικά Β Γυμνασίου Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών 1. Να χρησιμοποιήσετε μεταβλητές για να εκφράσετε με μια αλγεβρική παράσταση τις παρακάτω φράσεις: a. Η διαφορά δυο
Διαβάστε περισσότερα3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή
ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του
Διαβάστε περισσότεραΣυνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα
Γ Ε Ω Μ Ε Τ Ρ Ι Α Β Λ Υ Κ Ε Ι Ο Υ Συνοπτική θεωρία Οι σημαντικότερες αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα Μαθηματικός Περιηγητής 1 ΚΕΦΑΙΑΟ 9 ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Ποια κλάσματα λέγονται ισοδύναμα; Με ποιους τρόπους μπορούμε να φτιάξουμε ισοδύναμα κλάματα; Ποια διαδικασία ονομάζουμε απλοποίηση ενός κλάσματος; Πότε ένα κλάσμα λέγεται ανάγωγο; Ποια κλάσματα λέγονται
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότεραΕπιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ
Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε
Διαβάστε περισσότεραB τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα. Αν ισχύει ότι 4x 5y = 0, να βρείτε την τιμή της παράστασης Η
Διαβάστε περισσότεραΣυνοπτική Θεωρία Μαθηματικών Α Γυμνασίου
Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται
Διαβάστε περισσότεραΑ ΓΥΜΝΑΣΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. πότε ίσο με το 1. Δώστε από ένα παράδειγμα
49 0 ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2011-2012 Α ΓΥΜΝΑΣΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : 22 ΜΑΪΟΥ 2012 ΘΕΩΡΙΑ 1 η : Να γράψετε πότε ένα κλάσμα είναι μικρότερο,
Διαβάστε περισσότερα3, ( 4), ( 3),( 2), 2017
ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
Διαβάστε περισσότεραΕνδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια
ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 1 (ΜΟΝΑΔΕΣ 40) α) Ο αριθμός 1.047 έχει διαιρέτη το 3; Να δικαιολογήσετε την απάντησή σας. β) Να βάλετε
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
Διαβάστε περισσότεραΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΘΕΩΡΙΑ : Μήκος κύκλου: L = Εμβαδόν κύκλου: Ε = ( όπου π = 3,14) Γνωρίζοντας ότι σε γωνία 360 0 αντιστοιχεί κύκλος με μήκος L και εμβαδόν Ε έχουμε : α) ημικύκλιο
Διαβάστε περισσότεραΗ κλασματική γραμμή είναι η πράξη της διαίρεσης.
όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική γραμμή είναι η πράξη της διαίρεσης. Τα κόκκινα κομμάτια αποτελούν
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότεραΑ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι
Διαβάστε περισσότεραΥπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση
ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας
Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο
Διαβάστε περισσότερα1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ
1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;
Διαβάστε περισσότεραΑπό τι αποτελούνται; 4 όροι. Θεωρία. Κλάσμα ονομάζω τον αριθμό που φανερώνει. Κλάσματα ομώνυμα και ετερώνυμα. Μαθηματικά. Όνομα:
Μαθηματικά Κεφάλαιο Όνομα: Ημερομηνία: / / Θεωρία Κλάσμα ονομάζω τον αριθμό που φανερώνει ένα μέρος ενός συνόλου. Παράδειγμα Τα κλάσματα τα χρησιμοποιούμε για να δηλώσουμε το μέρος ενός πράγματος, δηλαδή
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Α' Γυμ. - Επαναληπτικές Ασκήσεις 1 Επαναληπτικές Ασκήσεις Άλγεβρα-Γεωμετρία Άσκηση 1 Σημείωσε με Χ ποιοι από τους παρακάτω αριθμούς είναι Φυσικοί, Ακέραιοι ή/και Ρητοί: Αριθμοί Φυσικοί Ακέραιοι Ρητοί 0
Διαβάστε περισσότερα1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 25 να διαιρείται ακριβώς με το 2, το 3 και το 5
Μαθηματικά Α' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 5 να διαιρείται ακριβώς με το, το και το 5 (β)
Διαβάστε περισσότεραΣτόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης
Στόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΚΕΦΑΛΑΙΑ ΣΤΟΧΟΙ ΧΡΟΝΟΣ Αριθμοί και πράξειςακέραιοι 2, 3, 4, 5 2. να μπορούν να εκφράζουν αριθμούς μέχρι και το 1.000.000 με διάφορους τρόπους
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο
Διαβάστε περισσότεραΑριθμητής = Παρονομαστής
Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ To κλάσμα κ εκφράζει τα κ μέρη από τα ν ίσα μέρη στα οποία έχει χωριστεί μία ποσότητα ν Αριθμητής = Παρονομαστής Το ν α = 0 = α κ ν = κ ν ονομάζεται κλασματική μονάδα 8 = α α = Άρα
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
Δ/ΝΣΗ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΧΧΧΧΧΧΧΧΧΧ ΓΥΜΝΑΣΙΟ ΧΧΧΧΧΧΧΧΧΧ Α ΤΑΞΗ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2016-2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
Διαβάστε περισσότεραΜαθηματικα A Γυμνασιου
Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
Διαβάστε περισσότεραΥπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση
ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα
Διαβάστε περισσότεραΡητοί Αριθμοί - Η ευθεία των αριθμών
ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ρητοί Αριθμοί - Η ευθεία των αριθμών Ρητοί αριθμοί (ℚ ονομάζονται οι αριθμοί οι οποίοι μπορούν να εκφραστούν με ένα κλάσμα με ακέραιους όρους. Με
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ
ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά
Διαβάστε περισσότεραΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Α ΘΕΩΡΙΑ ΘΕΜΑ 1 ο : Α. Τι ονομάζουμε απόλυτη τιμή ενός ρητού αριθμού α και πως συμβολίζεται; Β. Πότε δύο αριθμοί λέγονται αντίθετοι; Γ. Να χαρακτηρίσετε
Διαβάστε περισσότερα3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις
24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ
Διαβάστε περισσότερα1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ
ΜΕΡΟΣ Α 1.4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ 59 1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ Πολλαπλασιασμός μονωνύμου με πολυώνυμο Ο πολλαπλασιασμός μονώνυμου με πολυώνυμο γίνεται ως εξής: Πολλαπλασιάζουμε το μονώνυμο με
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,
Διαβάστε περισσότεραΕνδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα
Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην
Διαβάστε περισσότεραΜαθηματικά A Γυμνασίου
Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Διαβάστε περισσότεραΕνότητα: Τετράπλευρα (Ιδιότητες Ταξινόμηση) Keywords: parallelogram, rectangular, rhombus, square, diagonals, height.
Νέο Αναλυτικό Πρόγραμμα Σπουδών Σχολικό έτος 2016-17 Σπύρος Γ. Γλένης spyrosglenis@gmail.com Ενότητα: Τετράπλευρα (Ιδιότητες Ταξινόμηση) Keywords: parallelogram, rectangular, rhombus, square, diagonals,
Διαβάστε περισσότεραΚαθηγήτρια : Ιωάννα Ερωτοκρίτου τηλ:
ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13 5. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...25
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
1 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1. Να λυθούν οι παρακάτω εξισώσεις: 5 x - 3 + 10 2-5x + 10x= - 15 + 10x i. ( ) ( ) ( ) ii. 9( 8-x) -10( 9-x) -4( x - 1)
Διαβάστε περισσότεραβ =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3
Β ΓΥΜΝΑΣΙΟΥ Να βρείτε την τιμή της παράστασης: α αν δίνεται ότι: 3 β =. 3β + α α 3β 13 Α= 10 +, β α 3 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και Γ= ˆ Α ˆ. Το τετράπλευρο ΑΓΔΕ είναι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ
ΚΕΦΑΛΑΙΟ 2 Ο : ΚΛΑΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Όταν ένα μέγεθος ή ένα σύνολο χωριστεί σε ν ίσα μέρη, το κάθε ένα από αυτά ονομάζεται.. και συμβολίζεται : 2. Κάθε τμήμα του μεγέθους ή του συνόλου αντικειμένων,
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,
Διαβάστε περισσότεραΑσκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα
Ασκήσεις Επανάληψης Τάξη Δ 016-017 Εν. 1: Διανύσματα 1. Να ονομάσετε τα στοιχεία ενός διανύσματος.. Δίνεται το παραλληλόγραμμο ΑΒΓΔ, όπως φαίνεται στο σχήμα. Να χαρακτηρίσετε ΣΩΣΤΟ ή ΛΑΘΟΣ τις πιο κάτω
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ
Ημερομηνία: 23 Mαρτίου 2016 Διάρκεια: 1 ώρα και 15 λεπτά Βαθμός:.. ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Ονοματεπώνυμο:... 1 ΜΕΡΟΣ Α: Να λύσετε όλες τις ασκήσεις. Κάθε άσκηση βαθμολογείται με 5 μονάδες. 1.
Διαβάστε περισσότεραΑπάντηση: Οι θεατές άνδρες και γυναίκες ήταν συνολικά. ΘΕΜΑ 3 ο Κύκλωσε το σωστό σύμβολο 1 1 :1 2
Επιτροπή Διαγωνισμού του περιοδικού «Ο μικρός Ευκλείδης» 8 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» 04 Για μαθητές της Στ Τάξης Δημοτικού ΘΕΜΑ ο Πόσες φορές ο δεκαδικός αριθμός 4.400,800
Διαβάστε περισσότεραΗ Έννοια του Κλάσµατος
Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).
Διαβάστε περισσότεραΣε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ
ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ.
ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΑΞΗ: B ΜΑΘΗΜΑ: Μαθηματικά ΔΙΑΡΚΕΙΑ: 2 ώρες ΗΜΕΡΟΜΗΝΙΑ: 12 / 6 / 2013 Βαθμός: Ολογράφως: Υπογραφή: Όνομα μαθητή
Διαβάστε περισσότερα2 Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2010 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 00 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ Α. Να αντιστοιχίσετε κάθε στοιχείο της πρώτης στήλης με το αντίστοιχο στοιχείο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραΑ ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή
Διαβάστε περισσότεραΣτ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΟΓΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΟΓΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 6 Ο ΑΝΑΛΟΓΑ ΠΟΣΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Προκειμένου να προσδιορίσουμε τη θέση ενός
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΕ ΟΛΟ ΤΟ ΚΕΦΑΛΑΙΟ 2
ΜΑΘΗΜΑΤΙΚΑ Β ΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΑΣΚΗΣΕΙΣ ΣΕ ΟΛΟ ΤΟ ΚΕΦΑΛΑΙΟ 2 ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΤΡΙΩΝΟΜΕΤΡΙΚΟΥΣ ΑΡΙΘΜΟΥΣ 1. Από το διπλανό σχήμα να βρείτε τα: 2. Σε ένα ορθογώνιοι τρίγωνο (Α = 90 ) είναι και Α
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ : ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Σχ.έτος:
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ : ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Σχ.έτος: 2018-2019 Α ΜΕΡΟΣ : ΑΡΙΘΜΗΤΙΚΗ - ΑΛΓΕΒΡΑ 1. Δίνονται οι παραστάσεις 2 2 2 A = 3 4 + 2 10 (2 10 ) :5 και Β = 2 6 + : 3 2 5 1 1 3 2 α) Να κάνεις τις
Διαβάστε περισσότεραΒασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2
ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι
Διαβάστε περισσότεραΚεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί
ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις
Μαθηματικά Α Γυμνασίου Επαναληπτικές Ασκήσεις.: Δυνάμεις φυσικών αριθμών.4: Ευκλείδεια διαίρεση - διαιρετότητα.: Χαρακτήρες διαιρετότητας - ΜΚΔ - ΕΚΠ - Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Κεφάλαιο
Διαβάστε περισσότεραΑ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.
ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του
Διαβάστε περισσότεραΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ
qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj klzxcvλοπbnαmqwertyuiopasdfghjklz ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΘΕΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 04 / 06 / 2013
ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΘΕΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 04 / 06 / 2013 ΤΑΞΗ: A ΩΡΑ : 07:45-09:45 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ: ΑΡ. ΒΑΘΜΟΣ: ΥΠΟΓΡΑΦΗ
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 2017
ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΙΩΑΝΝΟΥ ΤΟΥ ΧΡΥΣΟΣΤΟΜΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2016 2017 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 2017 ΒΑΘΜΟΣ ΓΡΑΠΤΟΥ:... ΥΠΟΓΡΑΦΗ ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ:... ΜΑΘΗΜΑ: Μαθηματικά ΗΜΕΡΟΜΗΝΙΑ: 31/5/2017 ΤΑΞΗ: Β
Διαβάστε περισσότεραΕλληνική Μαθηματική Εταιρεία Παράρτημα Καστοριάς Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ 3ου ΔΙΑΓΩΝΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΩΝ 2η ΦΑΣΗ 5 Απριλίου 2014
Ελληνική Μαθηματική Εταιρεία Παράρτημα Καστοριάς Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ 3ου ΔΙΑΓΩΝΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΩΝ 2η ΦΑΣΗ 5 Απριλίου 2014 Αγαπητοί μαθητές, σας καλωσορίζουμε στην δεύτερη φάση του τρίτου τοπικού διαγωνισμού
Διαβάστε περισσότερα1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ
ΜΕΡΟΣ Α. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ Α Οι πραγματικοί αριθμοί και οι πράξεις τους Όπως γνωρίζουμε, το σύνολο των φυσικών αριθμών Ν είναι
Διαβάστε περισσότεραΣειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ
Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του
Διαβάστε περισσότεραΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων
ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Πότε δύο ποσά λέγονται ανάλογα; Ποια είναι η σχέση που συνδέει δύο ανάλογα ποσά x, y; Τι είναι ο συντελεστής αναλογίας; Πάνω σε τι σχήµα βρίσκονται τα ζεύγη (x, y) για δύο ανάλογα ποσά x, y; Πότε δύο ποσά
Διαβάστε περισσότεραΑσκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ
Σχολική Χρονιά: 015-016 Ασκήσεις Επανάληψης για την B Γυμνασίου Ενότητα 1: Πραγματικοί Αριθμοί Πυθαγόρειο Θεώρημα 1. Να γράψετε σε μορφή δύναμης τα πιο κάτω: 1) ².³ = ) (³) 5 = 3) 5 : 8 = 4) ( 5. 7 ) :
Διαβάστε περισσότεραΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ
ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ 1) Ο λόγος των μηκών δύο κύκλων ( Ο, ρ ) και ( Ο, ρ ) είναι 1 3. Αν ρ = 1,15 cm να βρείτε : Την ακτίνα ρ. Το μήκος του ( Ο, ρ ) Το λόγο των διαμέτρων τους. 2) Οι περίμετροι
Διαβάστε περισσότεραΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου. Ενότητα 8. β τεύχος
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 48 Ενότητα 8 Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου β τεύχος Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου 48 1η Άσκηση Να συμπληρώσεις τον
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν
Διαβάστε περισσότερα= 15 = 12. Θεωρία. Πρόσθεση και αφαίρεση ομώνυμων κλασμάτων + = = 3 - = 6. Πρόσθεση και αφαίρεση ετερώνυμων κλασμάτων = 35
Μαθηματικά Κεφάλαιο Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων Όνομα: Ημερομηνία: / / Θεωρία Πρόσθεση και αφαίρεση ομώνυμων κλασμάτων Αν τα κλάσματα είναι ομώνυμα, Προσθέτουμε τους αριθμητές τους. Αφαιρούμε
Διαβάστε περισσότερα1. 3 3cm 2. E( ) 24 3cm 3. E( ) 12 3cm ) 1. 8cm 2. 18cm 3. E 56 3 cm 4. E 20 3 cm. 6cm, cm, 3 6 cm, E cm )
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( 1) 3( ) 5( 3). 4 ( 3) 6 3. 3(4 ) 5( 1) 1 3(1 ) 3( ) 4 3 4. 1 5. 4 6 3 1 1 4( ) 1 1 3 6. 1 7. 1 3 6 3 4 3 3 1
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
Διαβάστε περισσότεραΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ
ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ 1. Η συνδρομή για την συμμετοχή στον όμιλο κολύμβησης είναι 15 τον μήνα και 5 για κάθε φορά που χρησιμοποιούμε την πισίνα. Αν τον προηγούμενο μήνα πληρώσαμε 75, πόσες
Διαβάστε περισσότερα