ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ. 1. Μπορεί ένα σύστημα σωμάτων να έχει κινητική ενέργεια χωρίς να έχει ορμή; Ισχύει το ίδιο και στην περίπτωση ενός σώματος;

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ. 1. Μπορεί ένα σύστημα σωμάτων να έχει κινητική ενέργεια χωρίς να έχει ορμή; Ισχύει το ίδιο και στην περίπτωση ενός σώματος;"

Transcript

1 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΕΡΩΤΗΣΕΙΣ ΠΡΩΤΟΥ ΚΑΙ ΔΕΥΤΕΡΟΥ ΘΕΜΑΤΟΣ 1. Μπορεί ένα σύστημα σωμάτων να έχει κινητική ενέργεια χωρίς να έχει ορμή; Ισχύει το ίδιο και στην περίπτωση ενός σώματος; 2. Ποιο από τα παρακάτω μεγέθη διατηρείται σε κάθε κρούση; α) Η κινητική ενέργεια συστήματος. β) Η μηχανική ενέργεια. γ) Η ορμή του. Επιλέξτε το σωστό. 3. Κατά την ελαστική κρούση δύο σωμάτων α) η ολική κινητική ενέργεια του συστήματος παραμένει σταθερή, β) η κινητική ενέργεια κάθε σώματος παραμένει σταθερή, γ) η κινητική ενέργεια του συστήματος αυξάνεται, δ) η κινητική ενέργεια του συστήματος μειώνεται. Επιλέξτε τη σωστή πρόταση. 4. Κατά την πλαστική κρούση δύο σωμάτων η μηχανική ενέργεια του συστήματος α) παραμένει σταθερή, β) αυξάνεται, γ) μειώνεται. Επιλέξτε το σωστό. 5. Μια σφαίρα Α συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα Β, ίσης μάζας. Η ταχύτητα της σφαίρας Α μετά την κρούση α) θα είναι ίση με την ταχύτητα που είχε πριν την κρούση, β) θα είναι αντίθετη της ταχύτητας που είχε πριν την κρούση, γ) θα είναι ίση με την ταχύτητα που θα αποκτήσει η σφαίρα Β. δ) θα μηδενιστεί. Επιλέξτε τη σωστή πρόταση. 6. Ποιες από τις προτάσεις που ακολουθούν είναι σωστές; α) Στις μετωπικές κρούσεις δύο σφαιρών οι ταχύτητες των σωμάτων πριν και μετά την κρούση έχουν την ίδια διεύθυνση. β) Κατά την ελαστική κρούση δύο σφαιρών η μηχανική ενέργεια του συστήματος διατηρείται σταθερή. γ) Κατά την πλαστική κρούση δύο σωμάτων δεν εχουμε μεταβολή της κινητικής ενέργειας του συστήματος. δ) Αν η μετωπική κρούση δύο σφαιρών με ίσες μάζες είναι ελαστική, οι σφαίρες ανταλλάσσουν ταχύτητες. 7

2 7. Σώμα μάζας m κινείται οριζόντια με ταχύτητα u. Στην πορεία του συγκρούεται ελαστικά με κατακόρυφο τοίχο. Η μεταβολή στην ορμή του σώματος έχει μέτρο: α) 0; β) mu/2; γ) mu; δ) 2mu; 8. Ένα μικρό σώμα μάζας m κινείται οριζόντια με κινητική ενέργεια Κ. Το μικρό αυτό σώμα συγκρούεται κεντρικά και πλαστικά με άλλο ακίνητο σώμα τριπλάσιας μάζας. Η απώλεια κινητικής ενέργειας του συστήματος των δύο σωμάτων εξαιτίας της πλαστικής κρούσης ισούται με: α. Κ/4 β. 3Κ/4 γ. Κ/2 δ. 2Κ/3 9. Δύο σφαίρες (1) και (2), ίσης μάζας (m 1 =m 2 ), κινούνται σε λείο οριζόντιο δάπεδο με ταχύτητες υ 1 και υ 2 αντίστοιχα, οι οποίες έχουν διαφορετικά μέτρα και κάθετες διευθύνσεις. Οι δύο σφαίρες συγκρούονται πλαστικά και το συσσωμάτωμα που δημιουργείται μετά την κρούση κινείται με ταχύτητα υ. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες; α) Το συσσωμάτωμα κινείται πάνω στη διχοτόμο της γωνίας που σχηματίζουν οι ταχύτητες υ 1 και υ 2. β) Το μέτρο της ορμής του συσσωματώματος είναι ίσο με το άθροισμα των μέτρων των ορμών που είχαν οι δύο σφαίρες πριν από την κρούση τους. γ) Για τα μέτρα των ταχυτήτων υ 1, υ 2 και υ κ ισχύει η σχέση κ 4υ 2 κ υ υ. δ) Η απώλεια μηχανικής ενέργειας του συστήματος των σφαιρών εξαιτίας της κρούσης είναι ίση με το 50% της αρχικής του ενέργειας 10. Δύο σφαίρες Σ 1 και Σ 2 έχουν μάζες m 1 και m 2 αντίστοιχα και είναι m 1 =4m 2. Οι σφαίρες κινούνται σε οριζόντιο επίπεδο στην ίδια ευθεία με αντίθετες ταχύτητες. Ο υ2 λόγος των μέτρων των ταχυτήτων των σφαιρών Σ 1 και Σ 2 μετά την κεντρική υ 1 ελαστική τους κρούση είναι ίσος με: α. 4 β. 5 γ Ένα βλήμα μάζας m που κινείται οριζόντια με ταχύτητα μέτρου υ διαπερνά ακαριαία ένα αρχικά ακίνητο σώμα μάζας Μ=2m και βγαίνει από την άλλη μεριά με ταχύτητα 2 υ. Το κλάσμα της απώλειας της μηχανικής ενέργειας κατά την κρούση Ε απωλ προς την αρχική κινητική ενέργεια Κ του βλήματος είναι ίσο με: α. 1/8 β. 3/8 γ. 5/

3 12. Μικρό σώμα (1) μάζας m 1 κινείται σε οριζόντιο δρόμο με σταθερή ορμή p 1 και συγκρούεται μετωπικά και πλαστικά με ακίνητο μικρό σώμα (2) μάζας m 2. Εξαιτίας της κρούσης των δύο σωμάτων το 20 % της αρχικής κινητικής ενέργειας του σώματος (1) μετατράπηκε σε θερμότητα. 1. Οι μάζες m 1 και m 2 των δύο σωμάτων ικανοποιούν τη σχέση Α) m 1 = 2 m 2 B) m 1 = 0,5 m 2 Γ) m 1 = 4 m 2 Να επιλέξετε τη σωστή πρόταση και να δικαιολογήσετε την επιλογή σας. 2. Η μεταβολή της ορμής του σώματος (1) εξαιτίας της κρούσης είναι ίση με Α) 0,5 p 1 Β) -0,2 p 1 Γ) -0,8 p 1 Να επιλέξετε τη σωστή πρόταση και να δικαιολογήσετε την επιλογή σας. 13. Δύο σώματα μάζας m 1 και m 2 έχουν αντίθετες ορμές και ταχύτητες μέτρου u 1 και u 2 αντίστοιχα που ικανοποιούν τις σχέσεις u 1 = 3 u και u 2 = u. Τα δύο σώματα συγκρούονται μετωπικά και ελαστικά.οι ορμές των σωμάτων και m 2 αντίστοιχα μετά την κρούση: ' p 1 και ' p 2 μάζας m 1 ' ' Α) είναι αντίθετες Β) είναι ίσες Γ) ικανοποιούν τη σχέση 3p p Να επιλέξετε τη σωστή πρόταση και να δικαιολογήσετε την επιλογή σας Σφαίρα μάζας m πέφτει κατακόρυφα και συγκρούεται ελαστικά με ταχύτητα με οριζόντιο επίπεδο. Η μεταβολή της κινητικής ενέργειας της σφαίρας είναι : (α) ΔΚ = 0 (β) ΔΚ = ½ mυ 2 (γ) ΔΚ = mυ 2 (δ) ΔΚ = 2mυ 15. Σώμα μάζας m κινείται πάνω σε οριζόντιο επίπεδο και συγκρούεται με ταχύτητα με σώμα μάζας 2m που είναι ακίνητο. Η κρούση είναι πλαστική. (α) Η ταχύτητα του συσσωματώματος είναι υ / /2. (β) Ο λόγος της τελικής κινητικής ενέργειας του συστήματος προς την αρχική του σώματος Α είναι Κ / /Κ = 1/4. (γ) Ο λόγος της τελικής ορμής του σώματος Α προς την αρχική ορμή του είναι p A / /p A = 1. 9

4 ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ 1. Σώμα μάζας m=1kg που κινείται με ταχύτητα υ=6 m/s συγκρούεται μετω- πικά και ελαστικά με ακίνητο σώμα τετραπλάσιας μάζας. α) Να υπολογιστούν οι ταχύτητες των σωμάτων μετά την κρούση. β) Να υπολογιστεί η μεταβολή της ορμής του κάθε σώματος γ) Να υπολογιστεί η μεταβολή της κινητικής ενέργειας του κάθε σώματος 2. Δύο σφαίρες με μάζες m 1 =1kg και m 2 =2kg κινούνται με αντίθετη φορά πάνω στην ίδια ευθεία με ταχύτητες u 1 =5m/s και u 2 =10m/s αντίστοιχα, και συγκρούονται πλαστικά. α) Να υπολογιστεί η ταχύτητα του συσσωματώματος μετά την κρούση. β) Να υπολογιστεί η θερμότητα που εκλύεται κατά την κρούση. γ) Ποια είναι η μεταβολή της κινητικής ενέργειας του σώματος μάζας m 1 λόγω της κρούσης; 3. Βλήμα μάζας m=0,4 kg κινείται οριζόντια με ταχύτητα υ 1 =400 m/s. Το βλήμα στην πορεία του συναντάει σώμα μάζας Μ= 2 kg που ήταν ακίνητο σε οριζόντιο επίπεδο, το διαπερνά και βγαίνει με ταχύτητα υ 2 =300 m/s. O συντελεστής τριβής ολίσθησης του σώματος μάζα Μ με το δάπεδο είναι 0,5. Να υπολογίσετε: α) την ταχύτητα του σώματος Μ, αμέσως μετά την κρούση. β) τη μηχανική ενέργεια που χάθηκε κατά την κρούση. γ) το διάστημα που θα διανύσει το Μ μέχρι να σταματήσει. Δίνεται g=10 m/s 2 4. Σφαίρα (1) μάζας m 1 =1kg προσπίπτει με ταχύτητα υ 1, σε ακίνητη σφαίρα (2) και συγκρούεται ελαστικά και κεντρικά με αυτή. Μετά την κρούση η (1) κινείται με ταχύτητα μέτρου υ 1 = υ 1 /3. Ποια πρέπει να είναι η μάζα m 2 της σφαίρας (2) ώστε α) Η υ 1 να είναι ομόρροπη της υ 1. β) Η υ 1 να είναι αντίρροπη της υ Δύο σφαίρες με μάζες m 1 =6kg και m 2 =4kg κινούνται στο οριζόντιο επίπεδο, με ταχύτητες υ 1 =8m/s και υ 2 =9m/s κάθετες μεταξύ τους, και συγκρούονται πλαστικά. 10

5 Να υπολογίσετε: α) την κοινή τους ταχύτητα μετά την κρούση. β) τη μεταβολή της κινητικής ενέργειας του συστήματος. 6. Ξύλινη πλάκα με μάζα Μ= 5 kg είναι δεμένη από σκοινί και κρέμεται κατακόρυφα. Ένα βλήμα με μάζα m=50 g και οριζόντια ταχύτητα υ 1 =520m/s χτυπά την πλάκα στο κέντρο της τη διαπερνά και βγαίνει με ταχύτητα υ 2 =80m/s Η απόσταση του κέντρου της πλάκας από το σημείο όπου είναι δεμένο το σκοινί είναι 1=2 m. α) Πόσο θα εκτραπεί το σκοινί από την κατακόρυφη θέση; β) Πόση θερμότητα εκλύεται λόγω της κρούσης; γ) Ποια η τάση του νήματος λίγο πριν την κρούση; Έχει την ίδια τιμή με αυτή αμέσως μετά την κρούση; Δίνεται g=10 m/s 2 7. Ένα σώμα με μάζα m 1 =20 kg ισορροπεί σε πλάγιο επίπεδο με κλίση φ=30. Ένα δεύτερο σώμα με μάζα m 2 =30 kg που ανεβαίνει στο πλάγιο επίπεδο, συγκρούεται πλαστικά με το πρώτο έχοντας ταχύτητα 10 m/s Ο συντελεστής τριβής ολίσθησης μεταξύ συσσωματώματος και επιπέδου είναι α) Να υπολογίσετε το διάστημα που διανύει το συσσωμάτωμα μέχρι να σταματήσει. β) Θα επιστρέψει το συσσωμάτωμα στη βάση του πλάγιου επιπέδου; Δίνεται g=10 m/s 2 8. Από την κορυφή πλάγιου επιπέδου, που έχει μήκος s=4,2 m και σχηματίζει με το οριζόντιο επίπεδο γωνία φ=30 0 αφήνεται να ολισθήσει σώμα με μάζα m=1 kg, χωρίς τριβή. Κατά την κάθοδο του και ενώ έχει διανύσει διάστημα s 1 =1,6 m συναντά ακίνητο σώμα της ίδιας μάζας και συγκρούεται πλαστικά με αυτό. Το συσσωμάτωμα που δημιουργείται από την κρούση ολισθαίνει στο πλάγιο επίπεδο και φτάνει στη βάση του με μηδενική ταχύτητα. Να υπολογίσετε: α) το συντελεστή τριβής ολίσθησης του συσσωματώματος με το πλάγιο επίπεδο. β) τη συνολική θερμότητα που παράχθηκε κατά τη διάρκεια του φαινομένου. γ) το έργο της τριβής ολίσθησης. Δίνεται g=10 m/s 2 11

6 9. Σώμα μάζας m 1 έχει ταχύτητα υ 0 και προσκρούει σε ακίνητο σώμα μάζας m 2 =2m 1 που βρίσκεται σε απόσταση x=l m (βλέπε σχ.). Μετά την κρούση, που είναι ελαστική, το πρώτο σώμα επιστρέφει και σταματά στην αρχική του θέση. Ο συντελεστής τριβής ολίσθησης των δυο σωμάτων με το δάπεδο είναι μ=0,5. Να υπολογίσετε: α) την αρχική ταχύτητα υο του πρώτου σώματος. β) το διάστημα που θα διανύσει το δεύτερο σώμα μέχρι να σταματήσει. γ) σε πόσο χρόνο σταματά μετά την κρούση; Δίνεται g=10 m/s Αρχικά η σφαίρα m 1 βρίσκεται ακίνητη και το νήμα σε κατακόρυφη θέση. Εκτρέπουμε τη σφαίρα μάζας m 1 = m από την αρχική της θέση ώστε το νήμα μήκους l=1,6 m να σχηματίζει με την κατακόρυφο γωνία =60 o και την αφήνουμε ελεύθερη. Όταν αυτή περάσει από την αρχική της θέση ισορροπίας συγκρούεται ελαστικά με ακίνητο σώμα μάζας m 2 =3 m που βρισκόταν πάνω σε οριζόντιο επίπεδο με τριβές. Το σώμα m 2 μετά την κρούση, αφού διανύσει διάστημα s σταματάει. Να βρεθούν: α) Το μέτρο της ταχύτητας υ 1 του σώματος μάζας m ελάχιστα πριν την κρούση. β) Το συνημίτονο της τελικής γωνίας απόκλισης θ που θα σχηματίσει το νήμα με την κατακόρυφο μετά την ελαστική κρούση. γ) Το διάστημα s μέχρι να σταματήσει το σώμα m 2. δ) Το ποσοστό απώλειας της κινητικής ενέργειας του m 1 κατά την κρούση. Δίνονται ο συντελεστής τριβής ολίσθησης μεταξύ σώματος και επιπέδου μ=0,2 και g=10m/s 2. 12

7 ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΦΥΣΙΚΗΣ ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΟΡΜΗΣ (ΑΔΟ) ΜΕΘΟΔΟΛΟΓΙΑ ΤΩΝ ΑΣΚΗΣΕΩΝ Η ορμή είναι ένα διανυσματικό μέγεθος. Πρέπει να χρησιμοποιούμε τη διανυσματική πρόσθεση για να υπολογίσουμε την ολική ορμή ενός συστήματος. Στις ασκήσεις που θα χρειάζεται να εφαρμόζουμε την αρχή διατήρησης της ενέργειας (ΑΔΟ), θα εργαζόμαστε ως εξής: 1. Ορίζουμε έναν άξονα, τον άξονα της κίνησης, και τη θετική φορά που εμείς θέλουμε. Είναι τις περισσότερες φορές ευκολότερο να επιλέγουμε τον άξονα x έτσι που να έχει τη διεύθυνση μιας από τις αρχικές ταχύτητες (αν το πρόβλημα μας είναι για μονοδιάστατη κίνηση στον άξονα x. Αν μιλάμε για κίνηση στον κατακόρυφο άξονα, θα παίρνουμε ως άξονα κίνησης, τον άξονα y). Τα περισσότερα προβλήματα σε αυτό το κεφάλαιο αναφέρονται σε κινήσεις σε μία διάσταση (ή την x ή την y). Αντίστοιχα και τα διανύσματα των διαφόρων ποσοτήτων θα έχουν συνιστώσες στον άξονα x ή y. Όλα όσα ακολουθούν μπορούν να γενικευθούν και για μελέτη δισδιάστατης κίνησης (κίνηση στο επίπεδο, όπου λαμβάνουμε υπόψιν τόσο την κίνηση κατά τον άξονα x όσο και κατά τον άξονα y). 2. Κάνουμε διαγράμματα με τις καταστάσεις πριν και μετά την κρούση (ή την ανάκρουση, ή την έκρηξη, ή την πλαστική κρούση, ανάλογα τι μας ζητάει το πρόβλημα) και συμπεριλαμβάνουμε στο καθένα διανύσματα που συμβολίζουν όλες τις γνωστές ταχύτητες. Σημειώνουμε στα διανύσματα τα μεγέθη τους, τις γωνίες, ή όποια άλλη πληροφορία μας δίνεται και δίνουμε σε κάθε άγνωστο μέγεθος ένα σύμβολο. 3.Υπολογίζουμε τις συνιστώσες x (ή y, ή και τις δύο μαζί ανάλογα το πρόβλημα) κάθε σωματίου, τόσο πριν όσο και μετά την κρούση (ή την ανάκρουση, ή την έκρηξη, ή την πλαστική κρούση, ανάλογα τι μας ζητάει το πρόβλημα), χρησιμοποιώντας τις σχέσεις p x =mu x (ή p y =mu y, ή και τις δύο μαζί ανάλογα με την άσκηση). Ακόμα και όταν έχουμε κίνηση μόνο στον ένα άξονα, πρέπει να είμαστε πολύ προσεκτικοί με τα πρόσημα. 4. Γράφουμε μια εξίσωση εξισώνοντας την ολική αρχική συνιστώσα x της ορμής, με την ολική τελική συνιστώσα x της ορμής.( αν το πρόβλημα αναφέρεται σε κίνηση στον άξονα y κάνουμε το ίδιο ή αν η κίνηση είναι σε δύο διαστάσεις, τότε παίρνουμε εξισώσεις και για 13

8 τους δύο άξονες). Αυτή η εξίσωση θα εκφράζει την ΑΔΟ (Προσοχή: το σύστημά μας πρέπει να είναι μονωμένο). 5. Λύνουμε την εξίσωση για να προσδιορίσουμε τα ζητούμενα μεγέθη. ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ: α) Η ορμή είναι διανυσματικό μέγεθος και δίνεται από τη σχέση p m u. Άρα έχει i) μέτρο: p=mu ii) διεύθυνση και φορά τη διεύθυνση και τη φορά της ταχύτητας iii)μονάδα μέτρησης το 1kg m/s Ως διάνυσμα μπορούμε να την αναλύουμε σε άξονες όπως φαίνεται στο ακόλουθο σχήμα p p p. Το μέτρο της p θα δίνεται από τη σχέση x y των ορμών στους άξονες x και y αντίστοιχα. Για τις ορμές του σχήματος ισχύει η διανυσματική πρόσθεση p p p, όπου p x, p y τα μέτρα 2 2 x y ΠΩΣ ΘΑ ΒΡΙΣΚΟΥΜΕ ΤΗΝ ΟΡΜΗ: Για να βρούμε την ορμή θα κάνουμε τα εξής: α) θα ορίζουμε έναν άξονα, τον άξονα x αν το σώμα κινείται σε οριζόντιο επίπεδο (και σε μία διάσταση) ή τον y αν το σώμα κινείται στην κατακόρυφη διεύθυνση. β) θα ορίζουμε μια θετική φορά του άξονα γ) αν η ταχύτητα του σώματος έχει φορά ίδια με τη φορά που ορίσαμε ως θετική, τότε η ορμή θα είναι θετική. Αν έχει αντίθετη, τότε θα είναι αρνητική. ΜΕΤΑΒΟΛΗ ΤΗΣ ΟΡΜΗΣ: Η μεταβολή της ορμής είναι επίσης διανυσματικό μέγεθος: p p p m u m u. Όταν μας ζητάνε τη μεταβολή της ορμής ενός σώματος θα εργαζόμαστε ως εξής: i) Σχεδιάζουμε τα p, p και ορίζουμε αυθαίρετα μια θετική φορά. 14

9 ii) Όποια ορμή έχει φορά προς τα θετικά του άξονα, την παίρνουμε ως θετική. Όποια ορμή έχει φορά προς τα αρνητικά του άξονα την παίρνουμε ως αρνητική και κάνουμε τις πράξεις. (δε βάζουμε πλέον διανύσματα, αφού έχουμε αντικαταστήσει με τις αλγεβρικές τιμές) iii) Αν μετά τις πράξεις η μεταβολή της ορμής προκύψει θετική, τότε θα έχει τη διεύθυνση και τη φορά αυτής που πήραμε ως θετική. Αν έχει αρνητικό πρόσημο (η μεταβολή της ορμής), θα έχει φορά αντίθετη από αυτή που πήραμε ως θετική εμείς. ΤΟ ΘΕΩΡΗΜΑ ΤΗΣ ΜΕΤΑΒΟΛΗΣ ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ (ΘΜΚΕ) ΚΑΙ ΠΩΣ ΕΦΑΡΜΟΖΕΤΑΙ: Η μαθηματική του έκφραση είναι W F. Πριν εφαρμοσθεί το ΘΜΚΕ χρειάζεται μια προεργασία που είναι η εξής: α) κάνουμε καλό σχήμα και σχεδιάζουμε στο σώμα όλες τις δυνάμεις στα διάφορα στάδια της διαδρομής του. Στη συνέχεια τις υπολογίζουμε ή τις εκφράζουμε. (πχ Τ=μmg). Θα σχεδιάζουμε τις δυνάμεις ως επί το πλείστον σε τυχαία ενδιάμεση σχέση. β) αναλύουμε τις δυνάμεις σε δύο συνιστώσες που η μία είναι κάθετη στον αντίστοιχο δρόμο και η άλλη παράλληλη σε αυτόν. γ) ορίζουμε τη διαδρομή που θα εφαρμόσουμε το ΘΜΚΕ και στη συνέχεια το εφαρμόζουμε μόνο για τις συνιστώσες που βρίσκονται πάνω στο δρόμο (οι συνιστώσες που είναι κάθετες στο δρόμο έχουν έργο μηδέν και κατά συνέπεια τις αγνοούμε) δ) υπολογίζουμε το έργο της κάθε δύναμης προσέχοντας ιδιαίτερα τα έργα των μεταβλητών δυνάμεων που τα υπολογίζουμε γραφικά και στη συνέχεια τα αντικαθιστούμε στη μαθηματική έκφραση του ΘΜΚΕ. ε) για να γράψουμε σωστά τα έργα των δυνάμεων, θα σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα σε τυχαία ενδιάμεση θέση και i) αν η δύναμη έχει αντίθετη φορά από την κίνηση τότε το έργο της θα είναι αρνητικό ii) αν η δύναμη έχει την ίδια φορά με την κίνηση τότε το έργο της θα είναι θετικό ΠΡΟΣΟΧΗ: Για να γράψουμε σωστά το έργο που προκαλεί η δύναμη του ελατηρίου δεν θα λαμβάνουμε υπόψη τη φορά της. Σε κάθε περίπτωση θα γράφουμε U U όπου,,, U, η δυναμική ενέργεια του ελατηρίου στην αρχική θέση και U, η δυναμική ενέργεια του ελατηρίου στην τελική θέση. 15

10 Από τη σχέση WF U, U θα προκύπτει το, WF με το σωστό του πρόσημο. ΕΡΓΟ ΣΥΝΤΗΡΗΤΙΚΩΝ ΔΥΝΑΜΕΩΝ: Το έργο των συντηρητικών δυνάμεων δεν εξαρτάται από τη διαδρομή, αλλά μόνο από την αρχική και τελική θέση. Άρα: για να βρούμε το έργο του βάρους ή της δύναμης του ελατηρίου χρειαζόμαστε μόνο την αρχική και την τελική θέση, ενώ για να βρούμε το έργο της τριβής (που είναι μη συντηρητική δύναμη) χρειαζόμαστε όλη την απόσταση της διαδρομής. Οι συντηρητικές δυνάμεις δεν προκαλούν μεταβολή της μηχανικής ενέργειας στο σύστημα που ασκούνται. Η ΑΡΧΗ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ (ΑΔΜΕ) ΚΑΙ ΠΩΣ ΕΦΑΡΜΟΖΕΤΑΙ: Διατύπωση: όταν σε σώμα ή σε ένα σύστημα σωμάτων ασκούνται μόνο συντηρητικές δυνάμεις η μηχανική ενέργεια του σώματος ή του συστήματος δε μεταβάλλεται. Πριν εφαρμόσουμε την ΑΔΜΕ κάνουμε την εξής προεργασία: α) Αναγνωρίζουμε τις δυνάμεις που ασκούνται στο σώμα ή στο σύστημα και αν διαπιστώσουμε ότι όλες είναι συντηρητικές τότε μόνο έχουμε τη δυνατότητα να εφαρμόσουμε την ΑΔΜΕ. Έτσι για δύο καταστάσεις; Του συστήματος Α, Γ, μπορούμε να γράψουμε E E β) Ορίζουμε ένα οριζόντιο επίπεδο αναφοράς που το λέμε και επίπεδο μηδενικής δυναμικής ενέργειας ώστε από αυτό να μετράμε τα ύψη h 1, h 2 που θα είναι απαραίτητα για τον τύπο της δυναμικής ενέργειας U=mgh γ) Αν υπάρχει στο σύστημα και ελατήριο, τότε στην αρχή του σχήματος το εμφανίζουμε στο φυσικό του μήκος, ώστε από την ελεύθερη άκρη του να μετράμε τις παραμορφώσεις του x 1, x 2... που είναι απαραίτητες για τον τύπο της δυναμικής του ενέργειας U ελ =1/2 kx 2. ΠΑΡΑΤΗΡΗΣΕΙΣ: α) συμφέρει σαν επίπεδο U=0 να παίρνουμε αυτό που περνά από την κατώτερη θέση που έφτασε το κέντρο βάρους κάποιου σώματος του συστήματος. β) αν χρειαστεί η ΑΔΜΕ να εφαρμοστεί δύο ή περισσότερες φορές σε μια άσκηση, μπορούμε κάθε φορά να ορίζουμε νέο επίπεδο αναφοράς αν μας συμφέρει. γ) i) η δυναμική ενέργεια σώματος που βρίσκεται πάνω από το επίπεδο αναφοράς είναι θετική + mgh 16

11 ii) η δυναμική ενέργεια σώματος που βρίσκεται στο επίπεδο αναφοράς είναι μηδέν iii) η δυναμική ενέργεια σώματος που βρίσκεται κάτω από το επίπεδο αναφοράς είναι αρνητική mgh. Η ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΕΝΕΡΓΕΙΑΣ (ΑΔΕ) ΚΑΙ ΠΩΣ ΕΦΑΡΜΟΖΕΤΑΙ: Η ενέργεια ενός συστήματος παραμένει σταθερή, όταν αυτό είναι ενεργειακά μονωμένο από το περιβάλλον. Εφαρμόζεται συνήθως σε σύστημα σωμάτων που οι δυνάμεις δεν είναι όλες συντηρητικές. Για δύο καταστάσεις του συστήματος μπορούμε να γράψουμε Ε ΑΡΧ =Ε ΤΕΛ, όπου Ε ΑΡΧ, Ε ΤΕΛ, το άθροισμα των ενεργειών κάθε μορφής του συστήματος, στην αρχική και τελική κατάσταση αντίστοιχα. Και εδώ κάνουμε τις ενέργειες β) και γ) όπως και στη ΑΔΜΕ. 17

12 ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ Γ ΛΥΚΕΙΟΥ Μετατόπιση Δx Είναι ένα διάνυσμα από την αρχική μέχρι την τελική θέση του σώματος. Τροχιά Σε ευθεία γραμμή ισχύει σε μέτρα Δx = x 2 -x 1 Α Μετατόπιση ΑΓ Γ Διάστημα S Είναι το συνολικό μήκος της τροχιάς του σώματος. Είναι μονόμετρο μέγεθος Διαφορές μετατόπισης-διαστήματος Μετατόπιση Διανυσματικό μέγεθος Εξαρτάται μόνο από την αρχική και την τελική θέση του κινητού Η αλγεβρική τιμή της είναι θετική ή αρνητική Μονόμετρο μέγεθος Διάστημα Εξαρτάται από τη διαδρομή που ακολουθεί το κινητό Είναι πάντα θετικός αριθμός Ταχύτητα u Είναι ο ρυθμός μεταβολής της θέσης ενός σώματος Δx x2 x1 Σε ευθεία γραμμή u και με μέτρο u ή και απλούστερα Δt t -t 2 1 x u t Μονάδα m/sec Μέση Ταχύτητα: u S (διανυσματικό μέγεθος) ολ u (μονόμετρο μέγεθος) tολ Ευθύγραμμη Ομαλή Κίνηση Ορισμός: Είναι η ευθύγραμμη κίνηση με σταθερή σε μέτρο και φορά ταχύτητα. ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΑΧΥΤΗΤΑ ΣΤΑΘΕΡΗ Εξισώσεις u = σταθερή x = x o + u(t t o ) ή x = x o + ut ή x = ut (αν x o =0) 18

13 όπου x o η αρχική θέση του σώματος (την t o =0 sec) Διαγράμματα Διάγραμμα Ταχύτητας Χρόνου Διάγραμμα Θέσης Χρόνου (ή μετατόπισης χρόνου ή διαστήματος χρόνου) U (m/sec) S (m) 0 t (sec) 0 t (sec) Η ταχύτητα ούτε αυξάνεται ούτε μειώνεται Ευθεία γραμμή στο διάγραμμα x-t σημαίνει σταθερή ταχύτητα άρα Ε.Ο.Κ. ή ακίνητο σώμα. Επιτάχυνση Φυσικό μέγεθος που μας δείχνει πόσο γρήγορα αλλάζει το διάνυσμα της ταχύτητας u Η στιγμιαία τιμή της Δu u -u α= = Δt t -t Μονάδα m/sec 2 Το διάνυσμα της επιτάχυνσης είναι ίδιας κατεύθυνσης με αυτό της μεταβολής της ταχύτητας Δu, άρα: Η επιτάχυνση α έχει την ίδια φορά με την ταχύτητα όταν αυτή αυξάνεται (επιτάχυνση) Ο U o α U +x Η επιτάχυνση α έχει την αντίθετη φορά με την ταχύτητα όταν αυτή μειώνεται (επιβράδυνση) Ο U o α U +x 19

14 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ ΕΠΙΤΑΧΥΝΣΗ ΣΤΑΘΕΡΗ Ευθύγραμμη Ομαλά επιταχυνόμενη κίνηση Είναι η κίνηση στην οποία το σώμα κινείται σε ευθεία γραμμή και η επιτάχυνσή του α είναι σταθερή. Εξισώσεις Ευθύγραμμης Ομαλά Επιταχυνόμενης κίνησης Εξισώσεις Ε.Ο.Ε.Κ. με αρχική ταχύτητα (u o 0) Επιτάχυνση (α>0) α = σταθερή u =u o + αt Δx = u o t αt2 Επιβράδυνση (α<0) α = σταθερή u =u o - α t Δx = u o t α t2 Εξισώσεις Ε.Ο.Ε.Κ. χωρίς αρχική ταχύτητα (u o = 0) Επιτάχυνση (α>0) Επιβράδυνση (α<0) α = σταθερή u =αt (Δεν γίνεται!) Δx = 1 2 αt2 20

15 Γραφική παράσταση επιτάχυνσης-χρόνου α(t) Εμβαδόν Ε=α(t 2 -t 1 )=α Δt α(m/s 2 ) Ισχύει α Δυ Δt Δυ α Δt Άρα το εμβαδόν της γραφικής παράστασης είναι αριθμητικά ίσο με τη μεταβολή της ταχύτητας για το χρονικό διάστημα Δt= t 2 -t 1 : α t(sec) t 1 Ε t 2 Ε = Δυ Γραφική παράσταση ταχύτητας-χρόνου υ(t) υο υ υο υο αt E1 t t Εμβαδόν 2 2 υ(m/s) υ E υοt αt Άρα το γραμμοσκιασμένο εμβαδόν είναι ίσο με το μέτρο της μετατόπισης Δx του κινητού για το χρονικό διάστημα Δt. υ o φ Ε 1 Δt t Δυ t(sec) Δυ Η κλίση της ευθείας είναι: κλίση εφφ α και είναι αριθμητικά ίση με την Δt αλγεβρική τιμή της επιτάχυνσης. Στην ευθύγραμμη ομαλά επιβραδυνόμενη κίνηση η επιτάχυνση είναι αρνητική (α<0) και η ταχύτητα μειώνεται με την πάροδο του χρόνου, άρα οι γραφικές παραστάσεις α(t) και υ(t) έχουν τη μορφή που φαίνεται στα παρακάτω σχήματα. υ(m/s) 0 t(sec) -α Γραφική παράσταση μετατόπισηςχρόνου x(t) (1) : Ευθύγραμμη ομαλά επιταχυνόμενη κίνηση α>0 (2) : Ευθύγραμμη ομαλή κίνηση α=0 (3) : Ευθύγραμμη ομαλά επιβραδυνόμενη κίνηση α<0 υ ο x(m) α>0 (1) t(sec) α=0 (2) α<0 (3) t(sec) 21

16 Αρχή της ανεξαρτησίας των κινήσεων Όταν ένα κινητό μετέχει δύο ή περισσοτέρων κινήσεων τότε αυτές γίνονται ανεξάρτητα η μία από την άλλη και η συνολική μετατόπιση μετά από χρόνο t είναι ίδια είτε αυτές γίνονται ταυτόχρονα για χρόνο t είτε διαδοχικά για τον ίδιο χρόνο t η καθεμία. Δύναμη Η αιτία που προκαλεί την παραμόρφωση των σωμάτων ή την μεταβολή της κινητικής τους κατάστασης. Μονάδα Newton = Kg m/sec 2 ΣΥΝΙΣΤΑΜΕΝΗ ΔΥΝΑΜΕΩΝ F 1 F 2 F ολ F 1 F 2 F ολ Ομόρροπα διανύσματα Αντίρροπα διανύσματα F ολ =F 2 +F 1 και έχει την φορά της μεγαλύτερης F ολ =F 2 -F 1 και έχει την φορά της μεγαλύτερης F 2 F ολ F 2 Ν F ολ Μ θ φ θ π-φ φ F 2 ημφ F 1 Ο F 1 Κ F 2 συν Λ Διανύσματα κάθετα Διανύσματα σε τυχαία γωνία φ 22

17 2 2 F ολ = F F F ολ = F F 2F F συνφ F2 εφθ = F 1 εφθ = F2 ημφ F F συνφ 1 2 Ανάλυση διανύσματος σε συνιστώσες: y F Προσοχή: Fy = Fημθ Ο θ F x = Fσυνθ x Η συνιστώσα που πρόσκειται (ακουμπάει) στη γωνία θ παίρνει το συνημίτονο και αυτή που είναι απέναντι από τη γωνία θ παίρνει το ημίτονο. Νόμος Hooke Η ελαστική παραμόρφωση των σωμάτων είναι ανάλογη της αιτίας που την προκάλεσε. F=Kx, όπου K : σταθερά ελατηρίου, x : παραμόρφωση ελατηρίου. ΠΡΟΣΟΧΗ!!! Το x το μετράμε από τη θέση φυσικού μήκους του ελατηρίου. Η δύναμη του ελατηρίου έχει πάντα κατεύθυνση προς τη θέση φυσικού μήκους. 23

18 Ο Α νόμος Newton Κάθε σώμα διατηρεί την κατάσταση ακινησίας ή ευθύγραμμης ομαλής κίνησης αν δεν ασκείται σε αυτό δύναμη ΣF = 0 Ακινησία ή Ε. Ο. Κ. Ο Β Νόμος Newton Η ασκούμενη σε ένα σώμα δύναμη προκαλεί επιτάχυνση με την κατεύθυνση της δύναμης και μέτρο ίσο με το πηλίκο της δύναμης προς την μάζα του σώματος ΣF α = m ή ΣF = mα Γενικότερος ορισμός: Δp ΣF = (δύναμη = ρυθμός μεταβολής της ορμής) Δt Σε άξονες x και y η σχέση γίνεται: ΣF x =ma x και ΣF y =ma y Πιο απλά: F = mα Συνέπειες από τον β νόμο της κίνησης: Σταθερή δύναμη Σταθερή επιτάχυνση άρα Ε.Ο.Ε.Κ. Δύναμη μηδέν Επιτάχυνση μηδέν άρα Ε.Ο.Κ. Μεταβλητή δύναμη Μεταβλητή επιτάχυνση. Ο Γ Νόμος Newton (δράσης αντίδρασης) Αν ένα σώμα Α ασκεί δύναμη F AB σε ένα άλλο σώμα Β, τότε και το Β ασκεί στο σώμα Α μία ίσου μέτρου και αντίθετη δύναμη F BA. : F =-F AB BA Στατική Τριβή: όπου: 0 Τ σ Τ σ,max όπου T σ,max =μ σ F k 24

19 μ σ : συντελεστής στατικής τριβής F k : κάθετη δύναμη που συμπιέζει τις δύο επιφάνειες που εφάπτονται. Η στατική τριβή είναι πάντοτε αντίθετη με την (οριζόντια) δύναμη που τείνει να κινήσει το σώμα εφόσον Τ σ < Τ σ,max Η στατική τριβή είναι πάντοτε παράλληλη στο επίπεδο επαφής Τριβή Ολίσθησης: T = μ ο F k ισχύει μ ο μ σ (μ ο μ σ ) Η τριβή ολίσθησης έχει πάντα τιμή Τ= μοf κ και είναι ανεξάρτητη από την ταχύτητα ολίσθησης και το εμβαδό επαφής Ορμή ορισμός p=mu (kg m/s) Ολική ορμή συστήματος Είναι το διανυσματικό άθροισμα των ορμών των σωμάτων του συστήματος Αρχή διατήρησης ορμής Αν σε ένα σύστημα σωμάτων δεν ασκούνται εξωτερικές δυνάμεις (ή ασκούνται αλλά η συνισταμένη τους είναι μηδέν) τότε η συνολική ορμή του συστήματος παραμένει σταθερή. Αν ΣF εξ =0 τότε p αρχ =p τελ Κυκλική κίνηση Περίοδος Τ : Χρόνος για ένα κύκλο Συχνότητα f : Αριθμός κύκλων ανά sec f = αριθμός στροφών N, μονάδα Hz=s -1 αντίστοιχος χρόνος t Σχέση συχνότητας - περιόδου: 1 f= T υ(m/s) 25

20 Γραμμική ταχύτητα u Γωνιακή ταχύτητα ω Ορισμός: ΔS u= Δt Ορισμός: ω = Δφ Δt u = 2πR T και u =2πRf ω = 2π T και ω = 2πf μονάδα: m/sec μονάδα: rad/sec R ΔS u ω u Δφ Η γραμμική ταχύτητα u είναι πάντοτε εφαπτόμενη στην τροχιά της κίνησης. Η γωνιακή ταχύτητα είναι αξονικό διάνυσμα! Ασκείται πάνω στον άξονα περιστροφής και όχι στο σώμα. Είναι κάθετο στο επίπεδο της κυκλικής κίνησης και η φορά της καθορίζεται από τον κανόνα του δεξιού χεριού ή του δεξιόστροφου κοχλία. Σχέση γραμμικής - γωνιακής ταχύτητας : u = ωr Κεντρομόλος επιτάχυνση: Είναι η επιτάχυνση που έχει ένα σώμα λόγω αλλαγής της κατεύθυνσής του. Είναι πάντα κάθετη στη γραμμική ταχύτητα u, άρα έχει τη διεύθυνση της ακτίνας, και φορά προς το κέντρο της κυκλικής κίνησης. α κ = 2 u R Κεντρομόλος δύναμη: Η αναγκαία και ικανή δύναμη για να κάνει ένα σώμα κυκλική κίνηση. Εχει την διεύθυνση της ακτίνας και φορά προς το κέντρο της κυκλικής κίνησης: F κ =mα κ F κ = mu R 2 α κ R u 26

21 Ο β νόμος Newton στην κυκλική κίνηση: ΣF R =F κ = 2 mu R Δηλαδή η συνισταμένη των δυνάμεων στην διεύθυνση της ακτίνας είναι η κεντρομόλος δύναμη Έργο - Ενέργεια Έργο σταθερής δύναμης W=FSσυνφ όπου: F: η δύναμη που δρα στο σώμα S: η μετατόπιση του σώματος φ: η γωνία F και S. φ F S Μονάδα Joule ( J = Newton m) ΔΙΕΡΕΎΝΗΣΗ ΤΗΣ ΣΧΕΣΗΣ W F = Fxσυνθ: o o α) αν 0 90 το συνθ>0 άρα το έργο της δύναμης είναι θετικό. Συνεπώς η δύναμη παράγει έργο o o β) αν το συνθ<0 άρα το έργο της δύναμης είναι αρνητικό. Συνεπώς η δύναμη καταναλώνει έργο. γ) αν F x τότε θ=0 ο άρα συνθ=1 και W=Fx δ) αν F x τότε θ=90 ο άρα συνθ=0 οπότε και W=0 ε) αν F x τότε θ=180 ο άρα συν180 ο =-1, οπότε W=-Fx 27

22 Έργο μεταβλητής δύναμης F= (x) Βρίσκεται από το εμβαδό της γραφικής παράστασης F= (x) μέχρι τον άξονα x. F F 1 W = εμβαδό στο F= (x) διάγραμμα. Δx x Έργο Τριβής: T φ=90 S W=TSσυν180 ή W=-TS Έργο Ελατηρίου (από x 1 έως x 2 ) : W ελ = 1 2 Κx Κx 2 2 Θ.Φ Μ. Tα x 1, x 2 είναι μετρημένα από την θέση φυσικού μήκους του ελατηρίου. (Θ.Φ.Μ.) Κ (Ο τύπος δίνει αυτόματα και το πρόσημο του έργου) Δυναμική Ενέργεια x 1 x 2 Μέγεθος που ορίζεται μόνο για τις συντηρητικές δυνάμεις έτσι ώστε όταν μετακινήσουμε ένα σώμα από ένα σημείο Α του πεδίου σε ένα σημείο Β η αρνητική μεταβολή του ΔU AB να είναι ίση με το έργο της συντηρητικής δύναμης του πεδίου για την μετακίνηση ΑΒ ή ΔU ΑΒ = - W Α Β 28

23 Δυναμική Ενέργεια βαρύτητας U B = mgh ( h είναι το ύψος από ένα επίπεδο που εμείς έχουμε θεωρήσει ότι η βαρυτική δυναμική ενέργεια είναι μηδέν) Δυναμική Ενέργεια Ελατηρίου U Eλ = 1 2 Κx2 To x μετρημένο από την θέση φυσικού μήκους του ελατηρίου. Κινητική Ενέργεια Κ = 1 2 mu2 Συντηρητικές Δυνάμεις Είναι αυτές που το έργο τους για μία κλειστή διαδρομή είναι μηδέν, ή Είναι αυτές που το έργο τους είναι ανεξάρτητο της διαδρομής. Τέτοιες δυνάμεις είναι: Βαρυτική, ηλεκτρική (Coulomb), ελατηρίου, κάθε σταθερή δύναμη ΔΕΝ είναι συντηρητικές: Τριβή, αντίσταση, δύναμη ανθρώπου, μαγνητική δύναμη Μόνο όταν οι δυνάμεις είναι συντηρητικές ορίζεται δυναμική ενέργεια για το πεδίο τους Μηχανική Ενέργεια Ε = Κ + U 29

24 Αρχή Διατήρησης Μηχανικής Ενέργειας Όταν σε ένα σύστημα σωμάτων ασκούνται μόνο συντηρητικές δυνάμεις (ή η συνισταμένη των μη συντηρητικών δυνάμεων είναι μηδέν) τότε η Μηχανική Ενέργεια του συστήματος παραμένει σταθερή, δηλαδή Ε αρχ = Ε τελ ή Κ 1 + U 1 = K 2 + U 2 Μεταβολή της Μηχανικής Ενέργειας Η μεταβολή της Μηχανικής ενέργειας σε ένα σύστημα πάντα ισούται με το έργο των μη συντηρητικών δυνάμεων ΔE ΜΗΧ =W ΣFμη-συντηρ (= θερμότητα Q) Θεώρημα Έργου Ενέργειας (ή Θεώρημα Μεταβολής Κινητικής Ενέργειας, Θ.Μ.Κ.Ε.) Η μεταβολή της κινητικής ενέργειας ενός σώματος ισούται με το αλγεβρικό άθροισμα των έργων των δυνάμεων που ενέργησαν στο σώμα ΔΚ = W ΣF Κ τελ Κ αρχ = W F1 +W F2 + (To Θ.Μ.Κ.Ε. ισχύει π ά ν τ α, αρκεί η μάζα του σώματος να παραμένει σταθερή) Αρχή Διατήρησης Ενέργειας Σε κάθε απομονωμένο σύστημα σωμάτων η ολική ενέργεια διατηρείται σταθερή Ισχύς Είναι ο ρυθμός παραγωγής έργου ή ενέργειας: P = ΔW Δt = ΔΕ Δt Ισχύει ακόμα P = E/t Για τον (στιγμιαίο) ρυθμό παραγωγής έργου από δύναμη F έχουμε: P = Fu(συνφ) όπου: u η στιγμιαία ταχύτητα του σώματος και φ η γωνία F και u Μονάδες ισχύος: Watt, W=Joule/sec Τι εκφράζει το έργο μίας δύναμης: Το έργο εκφράζει μετατροπή ενέργειας από μία μορφή σε άλλη, ή Το έργο εκφράζει μεταφορά ενέργειας από ένα σώμα σε κάποιο άλλο 30

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ Θέµα ο ΦΥΣΙΚΗ Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Α Λυκείου

Διαγώνισμα Φυσικής Α Λυκείου Διαγώνισμα Φυσικής Α Λυκείου Δυναμιική.. Θέμα 1 ο 1. Συμπληρώστε την παρακάτω πρόταση. H αρχή της αδράνειας λέει ότι όλα ανεξαιρέτως τα σώματα εκδηλώνουν μια τάση να διατηρούν την... 2. Ένα αυτοκίνητο

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ : η μετατόπιση ενός σώματος (m) () Δx x x x : η τελική θέση του σώματος (m) x : η αρχική θέση

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ Θέση, μετατόπιση και διάστημα Όταν ένα σημειακό αντικείμενο κινείται ευθύγραμμα, για να μελετήσουμε την κίνησή του θεωρούμε σαν σύστημα αναφοράς έναν άξονα χ χ. Στην αρχή του

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ ΒΑΡΕΛΑΣ ΔΗΜΗΤΡΗΣ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ 1 Στις ερωτήσεις 1-5 να γράψετε στη κολλά σας τον αριθμό της ερώτησης και δίπλα το γράμμα που

Διαβάστε περισσότερα

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης.

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης. Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m / s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς από τις παρακάτω προτάσεις Α1 έως Α3 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Το μέτρο της

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1 A' ΛΥΚΕΙΥ ΖΗΤΗΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1. Το µέτρο της µετατόπισης

Διαβάστε περισσότερα

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση 4.1.α.. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. Μια πλάκα µάζας Μ=4kg ηρεµεί στο πάνω άκρο ενός κατακόρυφου ελατηρίου, σταθεράς k=250ν/m, το άλλο άκρο του οποίου στηρίζεται στο έδαφος. Εκτρέπουµε

Διαβάστε περισσότερα

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6 ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται

Διαβάστε περισσότερα

Στεφάνου Μ. 1 Φυσικός

Στεφάνου Μ. 1 Φυσικός 1 ΕΡΓΟ ΕΝΕΡΓΕΙΑ Α. ΤΟ ΠΡΟΒΛΗΜΑ Βιομηχανική επανάσταση ατμομηχανές καύσιμα μηχανές απόδοση μιας μηχανής φως θερμότητα ηλεκτρισμός κ.τ.λ Οι δυνάμεις δεν επαρκούν πάντα στη μελέτη των αλληλεπιδράσεων Ανεπαρκείς

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

Οριζόντια βολή κυκλική κίνηση Ορμή-Κρούσεις

Οριζόντια βολή κυκλική κίνηση Ορμή-Κρούσεις 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Οριζόντια βολή κυκλική κίνηση Ορμή-Κρούσεις ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Ευθύγραμμη ομαλή κίνηση: Είναι κάθε ευθύγραμμη κίνηση στην οποία το διάνυσμα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Μαΐου 014 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από Α1-Α4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

Ο Ι Τ Ρ Ε Ι Σ Ν Ο Μ Ο Ι Τ Ο Υ N E W T O N

Ο Ι Τ Ρ Ε Ι Σ Ν Ο Μ Ο Ι Τ Ο Υ N E W T O N taexeiola.gr Φυσική Α Λυκείου Οι Τρεις Νόμοι του Νεύτωνα - 1 Ο Ι Τ Ρ Ε Ι Σ Ν Ο Μ Ο Ι Τ Ο Υ N E W T O N Α. Ο ΠΡΩΤΟΣ ΝΟΜΟΣ Κάθε σώμα διατηρεί την κατάσταση ακινησίας ή ευθύγραμμης ομαλής κίνησης αν δεν ασκείται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2014-2015

ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2014-2015 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: 23-11-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.- ΚΑΤΣΙΛΗΣ Α.- ΠΑΠΑΚΩΣΤΑΣ Τ.- ΤΖΑΓΚΑΡΑΚΗΣ Γ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική Α ΤΑΞΗ ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική ΜΕΡΟΣ 1 : Ευθύγραμμες Κινήσεις 1. Να επαναληφθεί το τυπολόγιο όλων των κινήσεων - σελίδα 2 (ευθύγραμμων και ομαλών, ομαλά μεταβαλλόμενων) 2. Να επαναληφθούν όλες οι

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΘΕΜΑ 1 o ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η ορµή ενός σώµατος

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΑΤΟΛΙΣΜΟΥ Διαγωνίσματα 2014-2015 1 ο Διαγώνισμα Θεματικό πεδίο: Επαναληπτικό (Οριζόντια ολή Κυκλική Κίνηση Κρούσεις) Ημερομηνία 16 οεμβρίου 2014 Διάρκεια Επιμέλεια 2 Ώρες ΘΕΜΑ 1 25

Διαβάστε περισσότερα

Δυναμική στο επίπεδο. Ομάδα Γ.

Δυναμική στο επίπεδο. Ομάδα Γ. 1.3.21. Η τριβή και η κίνηση. στο επίπεδο. Ομάδα Γ. Ένα σώμα μάζας 2kg ηρεμεί σε οριζόντιο επίπεδο με το οποίο παρουσιάζει συντελεστές τριβής μ=μ s =0,2. Σε μια στιγμή t 0 =0 στο σώμα ασκείται μεταβλητή

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ.

ΕΡΩΤΗΣΕΙΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ. ΕΡΩΤΗΣΕΙΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ. 1 η κατηγορια ερωτησεων 1. Η γραφική παράσταση της απομάκρυνσης σε συνάρτηση με το χρόνο για ένα σημειακό αντικείμενο που εκτελεί Α.Α.Τ.φαινεται στο σχήμα : Με ποια

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις ΕΡΓΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις Α. Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο φύλλο των απαντήσεών

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ. Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΜΑΤΙΚΗΣ

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ. Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΜΑΤΙΚΗΣ ΠΕΙΡΑΜΑΤΙΚΟ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ Σ (Το τυπολόγιο αυτό δεν αντικαθιστά το βιβλίο. Συγκεντρώνει απλώς τις ουσιώδεις σχέσεις του βιβλίου και σχολιάζει κάποια σημεία τους).

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ μονόμετρα. διανυσματικά Η μάζα ενός σώματος αποτελεί το μέτρο της αδράνειάς του, πυκνότητα ενός υλικού d = m/v

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ μονόμετρα. διανυσματικά Η μάζα ενός σώματος αποτελεί το μέτρο της αδράνειάς του, πυκνότητα ενός υλικού d = m/v ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Υπάρχουν φυσικά μεγέθη που ορίζονται πλήρως, όταν δοθεί η αριθμητική τιμή τους και λέγονται μονόμετρα.. Μονόμετρα μεγέθη είναι ο χρόνος, η μάζα, η θερμοκρασία, η πυκνότητα, η ενέργεια,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 214-2 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/1/214 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 01 Ε_3.Φλ1(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ 1 ο Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Να

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Φυσική Α Λυκείου Στο παρών παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 2 ο, 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ 1η εξεταστική περίοδος από 4/10/15 έως 08/11/15 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α Α Στις ερωτήσεις Α1-Α4 να επιλέξετε τη σωστή

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.4 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Μια ευθύγραμμη κίνηση στην οποία το διάνυσμα της ταχύτητας δεν μένει σταθερό, δηλαδή έχουμε μεταβολή της ταχύτητας, την ονομάζουμε ευθύγραμμη μεταβαλλόμενη κίνηση.

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΘΕΜΑ Δ-1 Δ1. Δ2. Δ3. Δ4. Δ3. Δ4.

ΘΕΜΑ Δ-1 Δ1. Δ2. Δ3. Δ4. Δ3. Δ4. ΘΕΜΑ Δ-1 Ένα σώμα μάζας m = 1kg κινείται ευθύγραμμα πάνω σε οριζόντιο επίπεδο περνώντας από ένα σημείο Α του επιπέδου, στη θέση x0 = 0, με ταχύτητα u0 = 10m/s. Ο συντελεστής τριβής ολίσθησης σώματος και

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. 5. Συνδυάστε τα στοιχεία της πρώτης στήλης με τα αντίστοιχα της δεύτερης στήλης: α) περίοδος

ΦΥΣΙΚΗ. 5. Συνδυάστε τα στοιχεία της πρώτης στήλης με τα αντίστοιχα της δεύτερης στήλης: α) περίοδος Α ΛΥΚΕΙΟΥ- ΦΥΣΙΚΗ ΦΥΣΙΚΗ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΕΡΩΤΗΣΕΙΣ Ερωτήσεις πολλαπλής επιλογής Αντιστοίχισης Συμπλήρωσης Κενού-Σωστού, Λάθους. Αν η θέση ενός σημειακού αντικειμένου είναι 5cm τότε η θέση ενός άλλου

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ η εξεταστική περίοδος 03-4 - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 6-0-03 Διάρκεια: 3 ώρες Ύλη: Κυκλική κίνηση - Βολή - Ορμή - Κρούση Καθηγητής:

Διαβάστε περισσότερα

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 Ο : ΚΡΟΥΣΕΙΣ ΦΑΙΝΟΜΕΝΟ DOPPLER ENOTHT 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ Κρούση: Κρούση ονομάζουμε το φαινόμενο κατά το οποίο δύο ή περισσότερα σώματα έρχονται σε επαφή για πολύ μικρό χρονικό διάστημα κατά

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 28 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ.

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2.21. Έργο και µέγιστη Κινητική Ενέργεια. Ένα σώµα µάζας 2kg κινείται σε οριζόντιο επίπεδο και σε µια στιγµή περνά από την θέση x=0 έχοντας ταχύτητα υ 0 =8m/s,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΩΝ ΕΞΕΤΑΣΕΩΝ 04 ΦΥΣΙΗ ΑΤΕΥΘΥΝΣΗΣ Θέμα Α Στις ερωτήσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη φράση η οποία συμπληρώνει

Διαβάστε περισσότερα

Μερικές προαπαιτούμενες γνώσεις από τη Υυσική της Α Λυκείου

Μερικές προαπαιτούμενες γνώσεις από τη Υυσική της Α Λυκείου Μερικές προαπαιτούμενες γνώσεις από τη Υυσική της Α Λυκείου Βαγγέλης Κολτσάκης, Υυσικός ΠΕΡΙΕΦΟΜΕΝΑ Μερικές προαπαιτούμενες γνώσεις από τη Υυσική της Α Λυκείου 1 1. Η ευθύγραμμη κίνηση Πληροφορίες που

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σε όλες τις περιπτώσεις που θα εξετάσουμε το δάπεδο είναι λείο. Επίσης τα σύμβολα των διανυσματικών μεγεθών αντιπροσωπεύουν τις αλγεβρικές τους τιμές. Α. Η επιφάνεια

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το

Διαβάστε περισσότερα

Ένα σώμα κινείται πάνω σε μια λεία επιφάνεια, υπό την επίδραση πλάγιας δύναμης όπως το σχήμα

Ένα σώμα κινείται πάνω σε μια λεία επιφάνεια, υπό την επίδραση πλάγιας δύναμης όπως το σχήμα 1 ΦΕΠ 01 Φυσική και Εφαρμογές Διάλεξη 8 η Ένα σώμα κινείται πάνω σε μια λεία επιφάνεια, υπό την επίδραση πλάγιας δύναμης όπως το σχήμα Νόμοι του Νεύτωνα: Fx = Fσυνθ = m α Χ (1) Fy + N = mg (δεν υπάρχει

Διαβάστε περισσότερα

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας.

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Επαναληπτικό 4 ΘΕΜ aa ΤΕΣΤ 16 1. Στη διάταξη του σχήματος, ασκούμε κατακόρυφη δύναμη σταθερού μέτρου F στο άκρο του νήματος, ώστε ο τροχός () να ανέρχεται κυλιόμενος χωρίς ολίσθηση στο κεκλιμένο επίπεδο.

Διαβάστε περισσότερα

Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://www.perifysikhs.

Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://www.perifysikhs. Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός hp://www.perifysikhs.com Αναζητώντας την αιτία των κινήσεων Η µελέτη των κινήσεων,

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΠΛΑΓΙΑ ΚΡΟΥΣΗ.. Σώμα που κινείται με κάποια ταχύτητα που σχηματίζει γωνία ως προς το κεκλιμένο επίπεδο συγκρούεται πλαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Ξύλινο

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά)

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά) ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 31/05/2010 ΤΑΞΗ: Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΧΡΟΝΟΣ: 07:30 10:00 π.μ. ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:...

Διαβάστε περισσότερα

ΜΕΡΟΣ Α Αποτελείται από 6 ερωτήσεις. Κάθε ορθή απάντηση βαθμολογείται με 5 μονάδες. Να απαντήσετε όλες τις ερωτήσεις.

ΜΕΡΟΣ Α Αποτελείται από 6 ερωτήσεις. Κάθε ορθή απάντηση βαθμολογείται με 5 μονάδες. Να απαντήσετε όλες τις ερωτήσεις. ΛΥΚΕΙΟ ΑΓ. ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΤΑΞΗ: Α ΗΜΕΡ.: 02/06/2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ονοματεπώνυμο: ΔΙΑΡΚΕΙΑ: 2 ώρες Τάξη: ΟΔΗΓΙΕΣ : α) Το εξεταστικό

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

Β) Να υπολογίσετε τα μέτρα των δυνάμεων που σχεδιάσατε, σε συνάρτηση με τα βάρη Β 1 και Β 2 των δύο σφαιρών. Μονάδες 7

Β) Να υπολογίσετε τα μέτρα των δυνάμεων που σχεδιάσατε, σε συνάρτηση με τα βάρη Β 1 και Β 2 των δύο σφαιρών. Μονάδες 7 Β ΘΕΜΑ Β 1. Δύο μεταλλικές σφαίρες Σ 1, Σ 2 έχουν βάρη Β 1 και Β 2 αντίστοιχα και κρέμονται ακίνητες με τη βοήθεια λεπτών νημάτων αμελητέας μάζας από την οροφή, όπως παριστάνεται στο σχήμα. Α) Να μεταφέρετε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις.

1.1. Μηχανικές Ταλαντώσεις. 1.1. Μηχανικές. 1) Εξισώσεις ΑΑΤ Ένα υλικό σηµείο κάνει α.α.τ. µε πλάτος 0,1m και στην αρχή των χρόνων, βρίσκεται σε σηµείο Μ µε απο- µάκρυνση 5cm, αποµακρυνόµενο από τη θέση ισορροπίας. Μετά από 1s περνά

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Α.1

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Α.1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως και Α.4 να γράψετε τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή πρόταση. Α1) Ένα σώμα κάνει α.α.τ.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 50. Σε ένα σώμα μάζας m=2kg που ηρεμεί σε λείο επίπεδο ενεργεί οριζόντια δύναμη F=10Ν για χρόνο t=20s. Να βρεθεί πόσο διάστημα διανύει το σώμα σε χρόνο 25s και να γίνει γραφική παράσταση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ - ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ Δυναμική ενέργεια δυο φορτίων Δυναμική ενέργεια τριών ή περισσοτέρων

Διαβάστε περισσότερα

Κίνηση σε μια διάσταση

Κίνηση σε μια διάσταση Κίνηση σε μια διάσταση Θεωρούμε κίνηση κατά μήκος μιας ευθύγραμμης διαδρομής. Η απόσταση x του κινούμενου σώματος από ένα σημείο του άξονα της κίνησης που παραμένει ακίνητο χρησιμοποιείται ως συντεταγμένη.

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης, Κυριτσάκας Βαγγέλης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Κυριακή 17-10-2010

Διαβάστε περισσότερα

Ασκήσεις στη Κυκλική Κίνηση

Ασκήσεις στη Κυκλική Κίνηση 1 Ασκήσεις στη Κυκλική Κίνηση 1.Δυο τροχοί ακτινών R 1=40cm και R 2=10cm συνδέονται με ιμάντα και περιστρέφονται ο πρώτος με συχνότητα f 1=4Hz, ο δε δεύτερος με συχνότητα f 2. Να βρεθεί ο αριθμός των στροφών

Διαβάστε περισσότερα

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004)

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004) Άσκηση (Μονάδες ) 4 η Εργασία (Ηµεροµηνία Παράδοσης: -5-4) Α) Αστροναύτης µάζας 6 Κg βρίσκεται µέσα σε διαστηµόπλοιο που κινείται µε σταθερή ταχύτητα προς τον Άρη. Σε κάποιο σηµείο του ταξιδιού βρίσκεται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ 1 Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 015 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ Σχολική Χρονιά 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2014. Μάθημα: ΦΥΣΙΚΗ Τάξη: A Ενιαίου Λυκείου Βαθμός:...

ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ Σχολική Χρονιά 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2014. Μάθημα: ΦΥΣΙΚΗ Τάξη: A Ενιαίου Λυκείου Βαθμός:... 1 ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ Σχολική Χρονιά 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2014 Μάθημα: ΦΥΣΙΚΗ Τάξη: A Ενιαίου Λυκείου Βαθμός:... Ημερομηνία: 3/06/2014 Διάρκεια: 2 ώρες Ονοματεπώνυμο:...

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΘΕΣΗ ΤΡΟΧΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΙ ΔΙΑΣΤΗΜΑ. Παρατηρώντας τις εικόνες προσπαθήστε να ορίσετε τις θέσεις των διαφόρων ηρώων των κινουμένων σχεδίων. Ερώτηση: Πότε ένα σώμα

Διαβάστε περισσότερα

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1 H θέση ενός κινητού που κινείται σε ένα επίπεδο, προσδιορίζεται κάθε στιγμή αν: Είναι γνωστές οι συντεταγμένες του κινητού (x,y) ως συναρτήσεις του χρόνου Είναι γνωστό

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΦΡΟΝΤΙΣΤΗΡΙΟ ΓΝΩΣΗ ΘΕΜΑ 1 1. Σε μια ελαστική κρούση δύο σωμάτων διατηρείται: α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

ΚΡΟΥΣΕΙΣ Θέµατα Εξετάσεων

ΚΡΟΥΣΕΙΣ Θέµατα Εξετάσεων ΚΡΟΥΣΕΙΣ Θέµατα Εξετάσεων ΚΡΟΥΣΕΙΣ. Θέµατα Εξετάσεων 1) Σε κάθε κρούση ισχύει α. η αρχή διατήρησης της µηχανικής ενέργειας. β. η αρχή διατήρησης της ορµής. γ. η αρχή διατήρησης του ηλεκτρικού φορτίου.

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως εφαρμόζουμε την αρχή διατήρησης της μηχανικής ενέργειας στα στερεά σώματα Πριν δούμε την μεθοδολογία, ας θυμηθούμε ότι : Για να εφαρμόσουμε την αρχή διατήρησης της μηχανικής ενέργειας (Α.Δ.Μ.Ε.) για

Διαβάστε περισσότερα

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F ΘΕΜΑ Β Β 1. Ένας μικρός μεταλλικός κύβος βρίσκεται αρχικά ακίνητος σε λείο οριζόντιο δάπεδο. Στον κύβο ασκείται την χρονική στιγμή t= 0 s οριζόντια δύναμη της οποίας η τιμή σε συνάρτηση με το χρόνο παριστάνεται

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίου, 2013 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από πέντε (5) σελίδες και πέντε (5) θέματα. 2) Να απαντήσετε σε

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

Δ Ι ΑΓ Ω Ν ΙΜ Α: A Σ ΑΞ Η ΛΤ Κ Ε Ι ΟΤ Υ Τ Ι Κ Η

Δ Ι ΑΓ Ω Ν ΙΜ Α: A Σ ΑΞ Η ΛΤ Κ Ε Ι ΟΤ Υ Τ Ι Κ Η Μ Α Θ Η Μ Α : Δ Ι ΑΓ Ω Ν ΙΜ Α: A Σ ΑΞ Η ΛΤ Κ Ε Ι ΟΤ Υ Τ Ι Κ Η Ε Π Ω Ν Τ Μ Ο : < < < < < <

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα