Nemetschek Frilo GmbH

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Nemetschek Frilo GmbH"

Transcript

1 Seite: 1 Prestressed Concrete Girder B8 01/2017 (Frilo finalrelease) 3,75 3, Self weight prec. member not represented System: Double-pitch roof Basics: Load combinatorics: NA to BS EN 1990/A1: EN 1990:2002/AC:2010 ULS: Structural safety checks(str) permanent/variable design situation with equation 6.10 a,b Design code: NA to BS EN /A2: EN :2004 /AC:2010 Prestressing for pretensioning

2 Seite: 2 System Geometry: Total Outstand left L = m Effective L1 = m L0 = 0.15 m right L2 = 0.15 m Distance Ridge L3 = m Height beam : left H1 = 95.0 cm Ridge H2 = cm right H3 = 95.0 cm Relation eff.span to height of beam: L1/H2 = Attachment, distance from the beginning resp. end of beam: Hook L8 = 3.75 m right L9 = 3.75 m Cross-section Precast : Layer of cross-section from top to bottom Nr width Distance Remarks [cm] [cm] web begin web end Web height over beam length constant Material: Prestressing steel Make Y1770S7 Strand 7 wires dd = 4.1 mm dp = 12.3 mm Ep = N/mm 2 Ap = cm 2 fp0.1k = 1520 N/mm 2 fpk = 1770 N/mm 2 εuk = 35.0 εud = 31.5 Partial safety factor : γs = 1.15 Coeff. prestress: charact. value rsup = 1.00 rinf = 1.00 Design value γp,max = 1.10 γp,min = 0.90 Proof of crack width Equ. diameter dpv = 7.20 mm ξ = 0.60 (Tab. 6.2) Relaxation class 2 (strands, wires, low relaxation) σp0/fpk 10 h 200 h 1000 h h Losses in % by (6), example process Permitted stresses: in formwork σp <= N/mm 2 (0.90* fp0.1k) after anchor. release σp <= N/mm 2 (0.85* fp0.1k) rare Lc σp <= N/mm 2 (0.75* fp0.1k) Transmission length ηp1 = 3.20 η1 = 1.00 α1 = 1.00 α2 = 0.19 σpm0 = 882 N/mm 2 PT: fctdt = 0.81 N/mm 2 fbpt = 2.58 N/mm 2 lpt = 0.80 m Dispersion_length: d = 0.95 m ldisp = 1.24 m

3 Seite: 3 Reinforcing steel: Longitudinal Stirrup ds,b= 8 mm B 500B B 500B Es = N/mm 2 Es = N/mm 2 fyk = 500 N/mm 2 fyk = 500 N/mm 2 ftk = 540 N/mm 2 ftk = 540 N/mm 2 εuk = 50.0 εuk = 50.0 εud = 45.0 εud = 45.0 Partial safety factor : γs = 1.15 γs = 1.15 permitted stresses in SLS : σs <= 400 N/mm 2 σs <= 400 N/mm 2 (0.80 * fyk) Durability: top bottom attack on concrete attack on reinforc. X0 XC1 X0 XC1 min. concrete class C 20/25 C 20/25 stirrup φ,l = 8 mm long. reinforcement φ,m = 20 mm φ,m = 16 mm prestressed steel dp = 12.3 mm strand, s >=2.5* dp allowance in design Δcdev = 5 mm *2 Δcdev = 5 mm *2 stirrup cmin,l = 15 mm cmin,l = 15 mm concrete coverage cnom,l = 20 mm cnom,l = 20 mm longitudinal bars cmin,m = 20 mm *5 cmin,m = 16 mm *5 concrete coverage cnom,m = 28 mm *1 cnom,m = 28 mm *1 prestressing steel : cmin,p = 19 mm *5 cmin,p = 19 mm *5 concrete coverage cnom,p = 28 mm *1 cnom,p = 28 mm *1 laying dist. link c,l = 20 mm c,l = 20 mm all. crack width wmax = 0.20 mm wmax = 0.20 mm decompression not req. not req. *1:with cmin,l *2: QA *5: bond decisive Concrete: Precast C 50/60 fck = N/mm 2 αcc = 0.85 fctk0.05 = 2.85 N/mm 2 αct = 1.00 γ = kn/m 3 unit Ecm = N/mm 2 αe = 1.00 Coefficient E-modulus Gcm = N/mm 2 Partial safety factor : γc = 1.35 permitted stresses in SLS : rare Lc σc >= N/mm 2 q.perm.lc σc >= N/mm 2 Removal the anchor t= t0t(sto)= 5.1 d fcm(t) = N/mm 2 fck(t) = N/mm 2 linear creep σc >= N/mm 2 (k2=0.45) maximum σc >= N/mm 2 (k6=0.70)

4 Seite: 4 Creep coeff. & shrinkage strain Heat treatment in stressing mould Tt0= 60 o C (until releasing the anchor) teq= 4533 h (equivalent time difference for relaxation) t0t= 5.1 d (according to temperature adjusted concrete age) CementStrenght class 42,5R;52,5 ρ= 0.5 (Aging coefficient) Reference point for t0 is the start of the concreting of the precast Creep t0 LC tt1 T1 tt2 T2 tt3 T3 Days % Days o C Days o C Days o C Storage 1 50 Use precast L. Segment TQS t0 t α t0,eff βt0 ßH βc(t,t0) φrh βfcm φ(t,t0) B.9 B.5 B.8 B.7 B.3 B.4 B.1 1 Storage PcC Use precast PcC L. A U h0 ßds(t0,ts) ßds(t,ts) ßRH εcd,0 ßas εca/10e6 εcs(t,t0) [cm 2 ] [cm] [cm] 3.10 B.12 B [ ] Loads: Self weight Beam left g11 = 6.47 kn/m Ridge g12 = kn/m Beam right g13 = 6.47 kn/m Total G = kn Volume V = m 3 Surf. A = m 2 Loads during usage Units: concentrated load[kn] concentrated moment[knm] line load[kn/m] span type gle qle Dist. a gri qri Length Fact Ew. Sim. Pos. [m] [m] Load types: 1 = uniformly distr., 2 = single load at a, 3 = single moment at a 4 = trapezoidal load from a, 5 = triangle load over L Actions: Ew. γq ψ0 ψ1 ψ2 Dep. Cat. Description Tendons: W Wind loads S Snow loads <1000m Dist(BO) > 3.5 cm axis horizontal > 4.3 cm vertical > 3.7 cm lay. num- area Dist. bott. Prestressing <--- Isolations ---> No. ber Ap Yp σp (0) Count to x1 from x2 Type [cm 2 ] [cm] [N/mm 2 ] [m] [m] UK UK UK UK UK UK UK

5 Seite: 5 lay. num- area Dist. bott. Prestressing <--- Isolations ---> No. ber Ap Yp σp (0) Count to x1 from x2 Type [cm 2 ] [cm] [N/mm 2 ] [m] [m] UK x1 and x2 with respect to the left beginning from joint The calculation of the losses due to creep, shrinkage and relaxation following the method from Abelein Untensioned reinforcement: Layer num- diam. area Dist. bott. effective range No. ber Φs,l As Ys from xa to xe Type [mm] [cm 2 ] [cm] [m] [m] UK OK OK xa and xe with respect to the left beginning from joint Surface reinforcement acc.to Tab. NA.J.41 (B0 < D0) : Web (Z1/S3) AsS = 1.24 cm 2 /m (UwkS <= XC4) (per side) Top flange (Z3/S1) AsO = 0.00 cm 2 /m (UwkS <= XC4) Settings for shear resistance check Bearing width, distance bearing edge, effective height of the bearing line left bal = 0.15 m al = 0.07 m dal = 0.92 m right bar = 0.15 m ar = 0.07 m dar = 0.92 m For shear reinforcement not decisive ranges over support A and B: xare=0.99 m direct bearing (width of bearing/2 + eff. depth) xbli=0.99 m direct bearing (width of bearing/2 + eff. depth) Deflection check: Total deflection fges <= L/ 250 Increase deflection fzuw <= L/ 500 Cantilever left f <= 0.1 cm f <= 0.1 cm Span f <= 12.0 cm f <= 6.0 cm Cantilever right f <= 0.1 cm f <= 0.1 cm quasi- permanent combination and eff. char. prestress Deflection due to shrinkage considered Tension stiffening: Member rigidity, rare combination RESULTS ( summary) Reaction forces (t = infinitely): (kn, G:perm., Q:variable.,V: Sum) <------char. value-----> <--ULS(PT)----> G min Q max Q min V max V A (left) B (right) Reactions by components, char. values LC left right grp. act. [kn] [kn] G1 G1 Sto->IF Sto->IF G1 Sto->IF G1M Ere G1M Ere G1M Ere G2 Use->IF Q Use->IF Q Use->IF

6 Seite: 6 max. bending moment in erection state(char. value): MF = knm at x = m Checks are not complied with: Crack MinAs+AsDuc bottom AsMin = 6.70 cm2 Util= 1.67 Increase-deflection(serv) df = 6.49 cm Util= 1.08 Prc.: Compression t0(sto) σc = N/mm2 Util= 1.07 σc < -0.70*fck(t)= N/mm2 Measures: sufficient stirrup in the pressure zone(7.2 (2)) or increasing the initial strength (tensioning later, concrete class, cement selection, specify in particular technological measures fcm(t0) predef.) Warning: Prc.: Compression t0(sto) σc = N/mm2 σc < 0.45*fck(t)= N/mm2 _disproport. creep by increased creep considered(fk= 1.36) Required shear reinforcement: Column A: asw= 4.96 cm2/m Column B: asw= 4.96 cm2/m Bursting reinforcementleft Laying length= 0.93 m ab x= 0.00 m As = 5.30 cm2 Bursting reinforcementright Laying length= 0.93 m from x= m As = 5.30 cm2 Check of anchorage left : Resisting tens force in anchorage range Util= 0.98 right : Resisting tens force in anchorage range Util= 0.98 Overview crit. sections Selected basic grid: Ns = 10 Checkvalue Extrem Utilisatio n x[m] Flexural capacity bottom η = Flexural capacity top Resisting tens force bot η = 7.35 η = Resisting tens force top η = Prc.: Compression t0(sto) σc = N/mm Prc.: Compression rare Lc σc = N/mm Tens. str. prestr. steel σ p,sk = 1069 N/mm Stress in reinforcement σ s = N/mm Crack MinAs+AsDuc bottom AsMin = 6.70 cm !!! Crack MinAs+AsDuc top AsMin = entf Crack width bottom wk = 0.08 mm Crack width top wk = 0.15 mm Deflection top ft = cm Deflection bottom f b = 7.75 cm Increase-deflection(serv) df = 6.49 cm !!! Prc.: Shear reinf (web) asw = 4.96 cm2/m Concrete strut capacity η = Linear creep limit, informative: Prc.: Compression t0(sto) σc = N/mm Prc.: Compression q-pe Lc σc = N/mm Tensile stress state I, informative: Prc.: Tens. str (Is) σ c = 9.68 N/mm2 Zu.II Prc.: Tens. str (Sc) σ c = 3.24 N/mm2 Zu.II Check not required **** Check not fulfilled

7 Seite: 7 Overview crit. sections Selected basic grid: Ns = 10 Checkvalue Extrem Utilisatio n x[m] Prc.: Precast component Is : Installed state AsDuk:Ductility reinforcement Add.: in-situ supplement Sc : State of construction Internal forces [kn,knm] <-----extern loads PT---- -> <----prestress unstressed state--> x Min Max Min Max Storage,tB Use,tE Pre [m] My My Qz Qz Nv Mv Nv Mv Grd <- rare Lc-> <- freq. Lc-> <q.- perm. Lc> x Min Max Min Max Min Max [m] My My My My My My

8 Seite: 8 x[m] <Flex. capacity-> <-----resisting tensile force > Offset al = Cot(Θ) * z/2 η un η to ηbo σ I/σR al ηto σ I/σR a l [m] # # # # # # # # # # # # # *! # *! # *! # *! # *! # *! # *! *! *! *! *! *! # *! # *! # *! # *! # *! # *! *! *! *! # *! # *! # *! # *! # *! # *! # *! # # # # # # # # # # # # Check not required **** Check not fulfilled #:Main tens.stress σi *:Edge tens. str. #!: σi σr *!: σr > fctk0.05 > fctk0.05 Concrete stress precast [N/mm2] x[m] σc,1 σc,2 σc σc σt σt Sto. Sto/Ere Rc Qc Is Sc

9 Seite: 9 Concrete stress precast [N/mm2] x[m] σc,1 σc,2 σc σc σt σt Sto. Sto/Ere Rc Qc Is Sc Check not required **** Check not fulfilled σc,1 : Disproportional creeping check with early strength (supp.) σc,2 : Compressive stress check with early strength (bear./erect.) σc,sk: Compression check rare load combination σc,qk: Disproportional creep check quasi-perm. load case σt,ez: Tensile stresses,installed state,rare load combination (informative) σt,bz: Tensile stresses,stage of construction, Rare load combination (informative) Tensile stresses steel x[m] σp,sk σs,sk [N/mm2] ---- Check not required **** Check not fulfilled Limit tens check rare load combination Crack check width <As(Min,Duc)[cm2]> <Crack width[mm]-> <Dec.: σdc[n/mm2]> x[m] botto m top res. botto m top res. botto m top res

10 Seite: 10 Crack check width <As(Min,Duc)[cm2]> <Crack width[mm]-> <Dec.: σdc[n/mm2]> x[m] botto m top res. botto m top res. botto m top res Check not required **** Check not fulfilled Min: Min reinforce width crack Duk: Ductility reinforce acc. to Decompression: bttm.: not required top : not required Crack width: bttm.: wmax= 0.20 mm Frequent load combination top : wmax= 0.20 mm Frequent load combination Deflection Deflection check: permiss.: per ftot = L/ 250 per fincr= L/ 500 Cantilever lef t 0.1 cm 0.1 cm Span 12.0 cm 6.0 cm Cantilever right 0.1 cm 0.1 cm quasi- permanent combination and eff. char. prestress Deflection due to shrinkage considered Tension stiffening: Member rigidity, rare combination Storage Use x[m] f(tb) f(te) f(tb) f(te) df [cm] x h Ii yui [m] [cm] [m4] [cm]

11 Seite: 11 Creep period Storage t=tb, εcs(t0,t)= o/oo x φ k φ NEd MEd,Qk Sx1 ε1 ε 2s X02 Sx2 MEd,Sk ε2s [m] t,t0 [kn] [knm] [cm3] o/oo o/oo [cm] [cm3] [knm] [o/oo] x Mcr σs σsr ζ ρm1 ρm2 ρm ρs1 ρs2 ρs [m] [knm][mpa][mpa] [1/km] [1/km] [1/km] [1/km] [1/km] [1/km] Creep period Storage t=te, εcs(t0,t)= o/oo x φ k φ NEd MEd,Qk Sx1 ε1 ε 2s X02 Sx2 MEd,Sk ε2s [m] t,t0 [kn] [knm] [cm3] o/oo o/oo [cm] [cm3] [knm] [o/oo] x Mcr σs σsr ζ ρm1 ρm2 ρm ρs1 ρs2 ρs [m] [knm][mpa][mpa] [1/km] [1/km] [1/km] [1/km] [1/km] [1/km]

12 Seite: 12 Creep period Use precast t=tb, εcs(t0,t)= o/oo x φ k φ NEd MEd,Qk Sx1 ε1 ε 2s X02 Sx2 MEd,Sk ε2s [m] t,t0 [kn] [knm] [cm3] o/oo o/oo [cm] [cm3] [knm] [o/oo] x Mcr σs σsr ζ ρm1 ρm2 ρm ρs1 ρs2 ρs [m] [knm][mpa][mpa] [1/km] [1/km] [1/km] [1/km] [1/km] [1/km] Creep period Use precast t=te, εcs(t0,t)= o/oo x φ k φ NEd MEd,Qk Sx1 ε1 ε 2s X02 Sx2 MEd,Sk ε2s [m] t,t0 [kn] [knm] [cm3] o/oo o/oo [cm] [cm3] [knm] [o/oo] x Mcr σs σsr ζ ρm1 ρm2 ρm ρs1 ρs2 ρs [m] [knm][mpa][mpa] [1/km] [1/km] [1/km] [1/km] [1/km] [1/km]

13 Seite: 13 Shear reinforc [cm2/m], η compr. strut VEd VEd,red Cot z web η x[m] [kn] [kn] Θ [cm] asw Vrdmax * * * Check not required **** Check not fulfilled *: Take over from last construction phase

14 Seite: 14 Sect. max. bending mom. x = m f.beam beg INTERNAL FORCES FROM EXTERNAL LOADING: maximum moment : [knm] LAc: dominant variable action (leading action) ULS(PT) rare freq. q.-perm. Creep period Combination Storage Storag./Erect Utilisation LAc Minimum moment : Creep period [knm] ULS(PT) rare freq. q.-perm Combination Storage Storag./Erect Utilisation LAc maximum shear force:[kn] ULS(PT) Creep period Storage Storag./Erect Utilisation LAc - Internal forces per load, characteristic value L. LC <----- Myk ----> <----- Qzk ----> Grp. Ac. G Q G Q 0 G1 Sto->IF G1 Sto->IF G1 3 G1 Sto->IF M Ere G1 M Ere G1 M Ere G2 Use->IF Q Use->IF Q Use->IF PT : permanent + transient design situation (fundam. combination) Rc : rare combination Fc : frequent combination Qc : quasi-permanent combination Components from maximum moment t=utilisation, design values PT Rc Fc Qc G G Q

15 Seite: 15 Components from minimum moment t=utilisation, design values PT Rc Fc Qc G G Q Components from maximum shear force t=utilisation, design values PT Rc Fc Qc G G Q EFFECTIVE TENDONS( prestressed concrete condition for t = t0 (sto)) Δσ(Tt0)= -39 N/mm2 due to heat treatment Layer No. Area Distanc e Prestress tens.force shortt No. Ap f.bo max min max min Relax. [cm2] [cm] [N/mm2] [N/mm2] [kn] [kn][n/mm2] UNTENSIONED REINFORCEMENT: Layer Number Diameter Area Distance No. [mm] [cm2] f.bo [cm] CROSS SECTION VALUES No. W H (layers from top to bottom) [cm] [cm] Beam cross-section Brutto effect. Area in m Moment of inertia in m Centroid from bottom in m Relaxation Lay. Storag. Δσpr,1 Use Δσpr,2 No. [N/mm2] [N/mm2]

16 Seite: 16 Relaxation Storag. Use Lay. Δσpr,1 Δσpr,2 No. [N/mm2] [N/mm2] PRESTR. STEEL, LOSSES DUE TO CREEPING, SHRINKING AND RELAXATION: (unstressed state, aver. value at end of creep section) Storag. Use Lay. σp,csr1 σp,csr2 No. [N/mm2] [N/mm2] STRESS IN REINFORC. d.t. CREEPING, SHRINKING and RELAXATION: (unstressed state, aver. value at end of creep section) Storag. Use Lay. σs,csr1 σs,csr2 No. [N/mm2] [N/mm2] INTERNAL FORCES FROM PRESTRESS (tb=beg.,te=end creep period) <----Npm0,t-----> <-----Mpm0,t-----> Creep tb te tb te period [kn] [kn] [knm] [knm] Storag Use BENDING with NORMAL FORCE ULS L. Creep period eff. layer tb:beg. te:end Cross Tens. Lever MRd MEd η sect. zone arm(cm) (knm) (knm) (>1.0) 1 tb Storage 2 te Storage P top MEd < 0 P bttm n/a # tb Storag./Erect. P top MEd < 0 n/a #1 4 te Storag./Erect. P bttm te Utilisation P top MEd < 0 n/a 6 te Utilisation P bttm #1: fck(t)= 0.73 * fck

17 Seite: 17 Interim results : L. <--- ε---> comp.- <steel ten.> <-tension--> <-compress.force-> Co St zone Ap As PrSt Bst Bn PrSt Rei (o/oo) (cm) (cm2) (cm2) (kn) (kn) (kn) (kn) (kn) Zl. σr σi z σx τ [N/mm2] [N/mm2] [cm][n/mm2][n/mm2] 1 F F F F F F ZONE B SHEAR RESISTANCE Design value shear force L. Creep period Com- VEd0 MEd dv dv tb:beg. te:end bin. [kn] [knm] [kn] fro 1 tb Storage PT MMax Vccd 2 te Storage PT MMax Vccd 3 tb Storag./Erect. PT QMax Vccd 4 te Storag./Erect. PT QMax Vccd 5 tb Utilisation 6 te Utilisation PT MMax PT MMax Vccd Vccd Effective cross-section L. eff. bw d zii Ac Asl σ cp VRdc CS+TZ [cm] [cm] [cm] [cm2] [cm2][n/mm2] [kn] 1 P u P u P u P u P u P u Shear design ν1= L. VEd VEd,red α cw Cot.- asw com - al VRdmax [kn] [kn] [kn] Θ [cm2/m] ment [cm] [kn] Min # Min Min # Min Min Min #1: fck(t)= 0.73 * fck

18 Seite: 18 CRACK CONTROL bttm.: perm. cracking: top : perm. cracking: wk < 0.20 mm, Frequent load combination wk < 0.20 mm, Frequent load combination Tab1 creep period eff. lay. rsup max. max ε sm- wk L. tb:beg/te:end Cross Ten. rinf σ s sr ε cm sect. zone [N/mm2] [mm] o/oo [mm] 1 tb Storage P top 1.00 no tens. in TZ 2 te Storage P bttm no tens. in TZ 3 tb Storag./Erect. P top 1.00no cracks 4 te Storag./Erect. P bttm no tens. in TZ 5 te Utilisation P top 1.00 no tens. in TZ 6 te Utilisation P bttm Intern. forces and elongation (cond. II) Nges Mges max σ X0I φeff ε c X0II L. [kn] [knm] [N/mm2] [cm] [o/oo] [cm] heff Aceff ξ 1 Ap As eff ρ ρ,tot k1 k2 k3 c k4 L. [cm] [cm2] [cm2] [cm2] o/o o/o [cm] <Crack int. f.> <---Cond.I----> <------Cond.II------> Nges Mges max σ X0I φeff ε c X0II L. [kn] [knm] [N/mm2] [cm] [o/oo] [cm] Minimum reinforcement for crack control: Creep period eff. layer rare.lc L. tb:beg/te:end Cross Ten. rsup σ ct req.as ex.as sect. zone rinf [N/mm2] [cm2] [cm2] 1 tb Storage P top < 4.1 not req. 2 te Storage P bttm < 4.1 not req. 3 tb Storag./Erect. P top < 4.1 not req. 4 te Storag./Erect. P bttm < 4.1 not req. 5 tb Utilisation P top < 4.1 not req. 6 te Utilisation P bttm <= 0 cm2 < web > < flange > L. D x0iz v.ap ξ 1 k kc Act As k kc Act As [ mm] [cm] [cm2] [cm2] [cm2] [cm2] [cm2] no flange-- Ductility reinforcement in pre-compr. tensile zone: bt = 19.0 cm fctm = 4.07 N/mm2 d = cm req. As = 6.70 cm2 exis.as = 4.02 cm2

19 Seite: 19 STRESS CHECKS for GZG: Concrete stresses due to prestress, creep, shrinkage a. relax. Stress P recast L. (condition I) top bottom due to N/mm2 N/mm2 1 Pst rel. anch ksr storage ksr use Concrete stresses due to loads, by compoments Stress Precast L. (condition I) top bottom due to M[kNm] N/mm2 N/mm2 1 G G Q(Qc) 4 Q(Rc) Tab. Compr stresses of concrete (Rc= rare Lc, Qc= q.-permanent Lc) Creep sector eff. MEd :Precast L. tb:beg/te:end Cross Max=+ Rc Qc sect. Min=- N/mm2 N/mm2 1 tb Storage F te Storage F tb Storag./Erect. F te Storag./Erect. F tb Utilisation F te Utilisation F Tab. Steel- a. tension str. concr Sk,Pm Sk Sk Creep sector eff. MEd : max. max. Fbt. L. tb:beg/te:end Cross Max=+ σp σs σt sect. Min=-[N/mm2][N/mm2][N/mm2] 1 tb Storage F te Storage F tb Storag./Erect. 4 te Storag./Erect. F F tb Utilisation F te Utilisation F <---rare Lc.--><---Cond.I----><------Cond.II------> (P= Pk) Nges Mges max σ X0I φeff ε c X0II L. [kn] [knm] [N/mm2] [cm] [o/oo] [cm]

20 Seite: 20 <-q.-perm.lc.-><---cond.i----><------cond.ii------> (P= Pk) Nges Mges max σ X0I φeff ε c X0II L. [kn] [knm] [N/mm2] [cm] [o/oo] [cm] <---rare Lc.--><---Cond.I----><------Cond.II------> (P= Pm) Nges Mges max σ X0I φeff ε c X0II L. [kn] [knm] [N/mm2] [cm] [o/oo] [cm]

21 Seite: 21 Selected section x = 1.04 m f.le.bear. INTERNAL FORCES FROM EXTERNAL LOADING: maximum moment : [knm] LAc: dominant variable action (leading action) ULS(PT) rare freq. q.-perm. Creep period Combination Storage Storag./Erect Utilisation LAc Minimum moment : Creep period [knm] ULS(PT) rare freq. q.-perm Combination Storage Storag./Erect Utilisation LAc maximum shear force:[kn] ULS(PT) Creep period Storage Storag./Erect Utilisation LAc 10 Internal forces per load, characteristic value L. LC <----- Myk ----> <----- Qzk ----> Grp. Ac. G Q G Q 0 G1 Sto->IF G1 Sto->IF G1 3 G1 Sto->IF M Ere G1 M Ere G1 M Ere G2 Use->IF Q Use->IF Q Use->IF PT : permanent + transient design situation (fundam. combination) Rc : rare combination Fc : frequent combination Qc : quasi-permanent combination Components from maximum moment t=utilisation, design values PT Rc Fc Qc G G Q

22 Seite: 22 Components from minimum moment t=utilisation, design values PT Rc Fc Qc G G Q Components from maximum shear force t=utilisation, design values PT Rc Fc Qc G G Q EFFECTIVE TENDONS( prestressed concrete condition for t = t0 (sto)) Δσ(Tt0)= -39 N/mm2 due to heat treatment Layer No. Area Distanc e Prestress tens.force shortt No. Ap f.bo max min max min Relax. [cm2] [cm] [N/mm2] [N/mm2] [kn] [kn][n/mm2] UNTENSIONED REINFORCEMENT: Layer Number Diameter Area Distance No. [mm] [cm2] f.bo [cm] CROSS SECTION VALUES No. W H (layers from top to bottom) [cm] [cm] Beam cross-section Brutto effect. Area in m Moment of inertia in m Centroid from bottom in m Relaxation Lay. Storag. Δσpr,1 Use Δσpr,2 No. [N/mm2] [N/mm2]

23 Seite: 23 Relaxation Storag. Use Lay. Δσpr,1 Δσpr,2 No. [N/mm2] [N/mm2] PRESTR. STEEL, LOSSES DUE TO CREEPING, SHRINKING AND RELAXATION: (unstressed state, aver. value at end of creep section) Storag. Use Lay. σp,csr1 σp,csr2 No. [N/mm2] [N/mm2] STRESS IN REINFORC. d.t. CREEPING, SHRINKING and RELAXATION: (unstressed state, aver. value at end of creep section) Storag. Use Lay. σs,csr1 σs,csr2 No. [N/mm2] [N/mm2] INTERNAL FORCES FROM PRESTRESS (tb=beg.,te=end creep period) <----Npm0,t-----> <-----Mpm0,t-----> <-- φfac --> Creep tb te tb te -> σc (qpmlc) period [kn] [kn] [knm] [knm] Prc Cpc Storag Use BENDING with NORMAL FORCE ULS L. Creep period eff. layer tb:beg. te:end Cross Tens. Lever MRd MEd η sect. zone arm(cm) (knm) (knm) (>1.0) 1 tb Storage 2 te Storage P top P bttm MEd < 0 n/a # tb Storag./Erect. P top #1 4 te Storag./Erect. P bttm MEd < 0 n/a 5 tb Utilisation P top MEd < 0 n/a 6 te Utilisation P bttm #1: fck(t)= 0.73 * fck

24 Seite: 24 Interim results : L. <--- ε---> comp.- <steel ten.> <-tension--> <-compress.force-> Co St zone Ap As PrSt Bst Bn PrSt Rei (o/oo) (cm) (cm2) (cm2) (kn) (kn) (kn) (kn) (kn) Zl. σr σi z σx τ [N/mm2] [N/mm2] [cm][n/mm2][n/mm2] 1 F F F F 4.25 ZONE B F F SHEAR RESISTANCE Design value shear force L. Creep period Com- VEd0 MEd dv dv tb:beg. te:end bin. [kn] [knm] [kn] fro 1 tb Storage PT QMax Vccd 2 te Storage PT QMax Vccd 3 tb Storag./Erect. PT QMax te Storag./Erect. PT QMax tb Utilisation 6 te Utilisation PT QMax Vccd PT QMax Vccd Effective cross-section L. eff. bw d zii Ac Asl σ cp VRdc CS+TZ [cm] [cm] [cm] [cm2] [cm2][n/mm2] [kn] 1 P u P u P o P o P u P u Shear design ν1= L. VEd VEd,red α cw Cot.- asw com - al VRdmax [kn] [kn] [kn] Θ [cm2/m] ment [cm] [kn] Min # Min Min # Min Var Var #1: fck(t)= 0.73 * fck

25 Seite: 25 CRACK CONTROL bttm.: perm. cracking: top : perm. cracking: wk < 0.20 mm, Frequent load combination wk < 0.20 mm, Frequent load combination Tab1 creep period eff. lay. rsup max. max ε sm- wk L. tb:beg/te:end Cross Ten. rinf σ s sr ε cm sect. zone [N/mm2] [mm] o/oo [mm] 1 tb Storage P top 1.00no cracks 2 te Storage P bttm no tens. in TZ 3 tb Storag./Erect. P top te Storag./Erect. P bttm no tens. in TZ 5 tb Utilisation P top 1.00 no tens. in TZ 6 te Utilisation P bttm no tens. in TZ Intern. forces and elongation (cond. II) Nges Mges max σ X0I φeff ε c X0II L. [kn] [knm] [N/mm2] [cm] [o/oo] [cm] heff Aceff ξ 1 Ap As eff ρ ρ,tot k1 k2 k3 c k4 L. [cm] [cm2] [cm2] [cm2] o/o o/o [cm] <Crack int. f.> <---Cond.I----> <------Cond.II------> Nges Mges max σ X0I φeff ε c X0II L. [kn] [knm] [N/mm2] [cm] [o/oo] [cm] Minimum reinforcement for crack control: Creep period eff. layer rare.lc L. tb:beg/te:end Cross Ten. rsup σ ct req.as ex.as sect. zone rinf [N/mm2] [cm2] [cm2] 1 tb Storage P top < 4.1 not req. 2 te Storage P bttm < 4.1 not req. 3 tb Storag./Erect. P top <= 0 cm2 4 te Storag./Erect. P bttm < 4.1 not req. 5 tb Utilisation P top < 4.1 not req. 6 te Utilisation P bttm < 4.1 not req. < web > < flange > L. D x0iz v.ap ξ 1 k kc Act As k kc Act As [ mm] [cm] [cm2] [cm2] [cm2] [cm2] [cm2] #J Ductility reinforcement in pre-compr. tensile zone: bt = 19.0 cm fctm = 4.07 N/mm2 d = 97.4 cm req. As = 3.92 cm2 exis.as = 4.02 cm2

26 Seite: 26 STRESS CHECKS for GZG: Concrete stresses due to prestress, creep, shrinkage a. relax. Stress P recast L. (condition I) top bottom due to N/mm2 N/mm2 1 Pst rel. anch ksr storage ksr use Concrete stresses due to loads, by compoments Stress Precast L. (condition I) top bottom due to M[kNm] N/mm2 N/mm2 1 G G Q(Qc) 4 Q(Rc) Tab. Compr stresses of concrete (Rc= rare Lc, Qc= q.-permanent Lc) Creep sector eff. MEd :Precast L. tb:beg/te:end Cross Max=+ Rc Qc sect. Min=- N/mm2 N/mm2 1 tb Storage F #1 2 te Storage F tb Storag./Erect. F * 4 te Storag./Erect. F tb Utilisation F te Utilisation F #1: because σc > 0.45* fck(t) increased ceep modulus Tab. Steel- a. tension str. concr Sk,Pm Sk Sk Creep sector eff. MEd : max. max. Fbt. L. tb:beg/te:end Cross Max=+ σp σs σt sect. Min=-[N/mm2][N/mm2][N/mm2] 1 tb Storage F te Storage 3 tb Storag./Erect. F F te Storag./Erect. F tb Utilisation F te Utilisation F <---rare Lc.--><---Cond.I----><------Cond.II------> (P= Pk) Nges Mges max σ X0I φeff ε c X0II L. [kn] [knm] [N/mm2] [cm] [o/oo] [cm]

27 Seite: 27 <-q.-perm.lc.-><---cond.i----><------cond.ii------> (P= Pk) Nges Mges max σ X0I φeff ε c X0II L. [kn] [knm] [N/mm2] [cm] [o/oo] [cm] <---rare Lc.--><---Cond.I----><------Cond.II------> (P= Pm) Nges Mges max σ X0I φeff ε c X0II L. [kn] [knm] [N/mm2] [cm] [o/oo] [cm] Lateral buckling (STIGLAT) Safety for service state η = 1.69 < 2.00 Design overturning moment: KNm existing moment : knm without prestress Combination of characteristic values Interim values acc. to 'Beton- und Stahlbetonbau' 1985, H. 9,10,11 Eb = N/mm2 Gb = N/mm2 It, Iy aver- It =2.1e-003 m4 Iy =3.9e-003 m4 aged n. Rafla Ix hc =1.1e-001 m4 = m Ak β1 = = MN2m4 (It 60% as C.II) β2 = k1 = k2 = k3 = Mk = knm Wxo = m3 at x = m σb = 52.9 N/mm2 σt = 33.2 N/mm2 λv = 83.1 (σt acc. eq.62 calculated!) CHECK LATERAL BUCKLING IN ERECTING STATE (acc. to Stiglat) Height of left attachment point about l.e. beam Hml: cm Height of right attachment point about l.e. beam Hmr: cm Erection with spreader Lat. buckling safety η = 4.29 > 2.50 Design overturning moment: knm existing moment : knm without prestress Interim values acc. to 'Beton- und Stahlbetonbau' 1985, H. 9,10,11 β4 = δ = γ = f = m Ak = MN2m4 p = j(α) = α = qk1 = 47.8 kn/m Wxo = m3 Mk = knm at x = m σb = 18.1 N/mm2 σt = 15.8 N/mm2 λv = ANCHORAGE BY BOND ( over the left bearing) lpt2= 0.96 m lr= 3.37 m Distance first bending crack fctd(t)= 0.81 N/mm2 t= release anchorage fbpt= 2.58 N/mm2 ηp2= 1.20 fbpd= 2.28 N/mm2

28 Seite: 28 x Zp Zs Td η= [m] [kn] [kn] [kn] (Zp+Zs)/T La dist.bo XA σ p to lbpd xk ΣZp Σ Zs Tsd add.as No. [cm] [m][n/mm2] Gl. [m] [m] [kn] [kn] [kn] [cm2] a 1.93Anchorage range uncracked(pt) a 1.92Anchorage range uncracked(pt) a 1.91Anchorage range uncracked(pt) a 1.90Anchorage range uncracked(pt) a 1.89Anchorage range uncracked(pt) a 1.87Anchorage range uncracked(pt) a 2.01Anchorage range uncracked(pt) a 2.00Anchorage range uncracked(pt) ANCHORAGE BY BOND ( over theright bearing) lpt2= 0.96 m lr= 3.37 m Distance first bending crack fctd(t)= 0.81 N/mm2 t= release anchorage fbpt= 2.58 N/mm2 ηp2= 1.20 fbpd= 2.28 N/mm2 x Zp Zs Td η= [m] [kn] [kn] [kn] (Zp+Zs)/T La dist.bo XA σ p to lbpd xk ΣZp Σ Zs Tsd add.as No. [cm] [m][n/mm2] Gl. [m] [m] [kn] [kn] [kn] [cm2] a 1.93Anchorage range uncracked(pt) a 1.92Anchorage range uncracked(pt) a 1.91Anchorage range uncracked(pt) a 1.90Anchorage range uncracked(pt) a 1.89Anchorage range uncracked(pt) a 1.87Anchorage range uncracked(pt) a 2.01Anchorage range uncracked(pt) a 2.00Anchorage range uncracked(pt) BURSTING REINFORCEMENT at beginning of beam γp,unfav=1.20 < Transfer zone > <-- Section about last effective layer --> No. from to dist. Increase shear factor req.as (fr. out. edge) BOBe. conc. prestr force (inter- [m] [m] [cm] [MN] [MN] [MN] pol.) [cm2] red. dispersion length indented wire w.o. strand 3/4*e= 0.93 m The bursting reinforcement must be arranged in zone of reduced dispersion length.

29 Seite: 29 BURSTING REINFORCEMENT at end of beam γp,unfav=1.20 < Transfer zone > <-- Section about last effective layer --> No. from to dist. Increase shear factor req.as (fr. out. edge) BOBe. conc. prestr force (inter- [m] [m] [cm] [MN] [MN] [MN] pol.) [cm2] red. dispersion length indented wire w.o. strand 3/4*e= 0.93 m The bursting reinforcement must be arranged in zone of reduced dispersion length.

Nemetschek Frilo GmbH

Nemetschek Frilo GmbH 09.11.2017 Seite: 1 Spannbettbinder B8 01/2018 (Frilo prerelease) 3.75 3.75 95 75 170 1515 1515 8 15 2985 15 8 3030 60 60 71.8 23.2 95 146.8 23.2 170 60 71.8 23.2 95 19 19 19 0.61 10.84.3 Eigengewicht

Διαβάστε περισσότερα

5.0 DESIGN CALCULATIONS

5.0 DESIGN CALCULATIONS 5.0 DESIGN CALCULATIONS Load Data Reference Drawing No. 2-87-010-80926 Foundation loading for steel chimney 1-00-281-53214 Boiler foundation plan sketch : Figure 1 Quantity Unit Dia of Stack, d 6.00 m

Διαβάστε περισσότερα

Struct4u b.v. Calculation number : Revision : 0 Page 1 of 8 Project number : Date - time : :25 Project description : Part :

Struct4u b.v. Calculation number : Revision : 0 Page 1 of 8 Project number : Date - time : :25 Project description : Part : Calculation number : Revision : 0 Page 1 of 8 GENERAL File: document1.xcol Applied standards: Consequence class Structural Class : NEN-EN 1992-1-1 + C2:2011/NB:2011 (nl) : NEN-EN 1992-1-2 + C1:2011/NB:2011

Διαβάστε περισσότερα

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD: APPENDIX 1: Gravity Load Calculations SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD: A t = 16.2 * 13 = 208 ft^2 R 1 = 1.2 -.001* A t = 1.2 -.001*208 =.992 F = 0 for a flat

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results

Διαβάστε περισσότερα

COMPOSITE SLABS DESIGN CONTENTS

COMPOSITE SLABS DESIGN CONTENTS CONTENTS 1. INTRODUCTION... 3 2. GENERAL PARAMETERS... 5 3. PROFILED STEEL SHEETING CROSS-SECTIONS... 6 4. COMPOSITE SLAB STEEL REINFORCEMENT... 9 5. LOADS... 10 6. ANALYSIS... 11 7. DESIGN... 13 8. REPORT

Διαβάστε περισσότερα

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

MasterSeries MasterPort Lite Sample Output

MasterSeries MasterPort Lite Sample Output MasterSeries MasterPort Lite Sample Output The following output is from the MasterPort Lite Design program. Contents 2 Frame Geometry and Loading 3 Tabular Results Output 4 Bending Moment and Diagrams

Διαβάστε περισσότερα

Analyse af skrå bjælke som UPE200

Analyse af skrå bjælke som UPE200 Analyse af skrå bjælke som UPE Project: Opgave i stål. Skrå bjælke som UPE Description: Snitkræfter, forskydningscentrum, samling Customer: LC FEDesign. StruSoft Designed: LC Date: 9 Page: / 4 Documentation

Διαβάστε περισσότερα

D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL

D28 1-1/4 PIPE x 42-1/2 HIGH RAIL WITHOUT BOTTOM RAIL Ultra-tec Cable Railing Systems G-D28 D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL Building Code: Material: 2006 International Building Code 2007 California Building Code AISC Steel Construction

Διαβάστε περισσότερα

Το σχέδιο της μέσης τομής πλοίου

Το σχέδιο της μέσης τομής πλοίου ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Το σχέδιο της μέσης τομής πλοίου Α. Θεοδουλίδης Σχέδιο Μέσης Τομής Αποτελεί ένα από τα βασικώτερα κατασκευαστικά σχέδια του πλοίου.

Διαβάστε περισσότερα

Design of Self supporting Steel Chimney for

Design of Self supporting Steel Chimney for Prepared by : Date : Job No. : Sheet : Cont'd : Verified by : Project : Subject : Calculation Sheet CALCULATION Revision Notes : Design of Self supporting Steel Chimney for Data Wind Loads as per India

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES Customer: PDI, 4200 Oakleys Court, Richmond, VA 23223 Date: 5/31/2017 A. PALMA e n g i n e e r i n g Tag: Seismic Restraint Suspended Bus System Supports Building Code: 2012 IBC/2013 CBC&ASCE7-10 STRUCTURAL

Διαβάστε περισσότερα

CONSULTING Engineering Calculation Sheet

CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00

Διαβάστε περισσότερα

Grey Cast Irons. Technical Data

Grey Cast Irons. Technical Data Grey Cast Irons Standard Material designation Grey Cast Irons BS EN 1561 EN-GJL-200 EN-GJL-250 EN-GJL-300 EN-GJL-350-1997 (EN-JL1030) (EN-JL1040) (EN-JL1050) (EN-JL1060) Characteristic SI unit Tensile

Διαβάστε περισσότερα

STATIC ANALYSIS / STRUCTURAL DESIGN GLASSCON SHADOGLASS LOUVERS SYSTEM

STATIC ANALYSIS / STRUCTURAL DESIGN GLASSCON SHADOGLASS LOUVERS SYSTEM STATIC ANALYSIS / STRUCTURAL DESIGN GLASSCON SHADOGLASS LOUVERS SYSTEM 1/28 CONTENTS 1. Technical Description - Assumptions... 3 1.1 Technical Description... 3 1.2 Design Standards and Norms... 3 1.3 Loads

Διαβάστε περισσότερα

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Scope -This specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. Features

Διαβάστε περισσότερα

ΔΗΛΩΣΗ ΕΠΙΔΟΣΕΩΝ Αρ. HSL-3_B-1109-CPR-0002

ΔΗΛΩΣΗ ΕΠΙΔΟΣΕΩΝ Αρ. HSL-3_B-1109-CPR-0002 EL ΔΗΛΩΣΗ ΕΠΙΔΟΣΕΩΝ Αρ. HSL-3_B-1109-CPR-0002 1. Μοναδικός κωδικός ταυτοποίησης του τύπου του προϊόντος: Hilti HSL-3 2. Προβλεπόμενη(-ες) χρήση(-εις): Προϊόν Μεταλλικά αγκύρια για χρήση σε σκυρόδεμα Προβλεπόμενη(-ες)

Διαβάστε περισσότερα

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8% 91 500 201 0/11 Aluminum raming Linear Motion and Assembly Technologies 1 Section : Engineering Data and Speciications Technical Data or Proiles Metric U.S. Equivalent Material designation according to

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

Τ Ε Χ Ν Ι Κ Η Ε Κ Θ Ε Σ Η

Τ Ε Χ Ν Ι Κ Η Ε Κ Θ Ε Σ Η Τ Ε Χ Ν Ι Κ Η Ε Κ Θ Ε Σ Η ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ 1. Γενικά Η παρούσα τεχνική έκθεση αφορά στη στατική μελέτη για τη κατασκευή πρότυπου συστήματος στήριξης φωτοβολταϊκών πλαισίων. 2. Ισχύοντες κανονισμοί Ευρωκώδικας

Διαβάστε περισσότερα

Figure 1 - Plan of the Location of the Piles and in Situ Tests

Figure 1 - Plan of the Location of the Piles and in Situ Tests Figure 1 - Plan of the Location of the Piles and in Situ Tests 1 2 3 A B C D DMT4 DMT5 PMT1 CPT4 A 2.2 1.75 S5+ SPT CPT7 CROSS SECTION A-A C2 E7 E5 S4+ SPT E3 E1 E DMT7 T1 CPT9 DMT9 CPT5 C1 ground level

Διαβάστε περισσότερα

CONTENTS. Examples of Ultimate Limit states. 1. SECT.-001, ULTIMATE LIMIT STATE, Tension Structural design Structural Fire design

CONTENTS. Examples of Ultimate Limit states. 1. SECT.-001, ULTIMATE LIMIT STATE, Tension Structural design Structural Fire design Examples of Ultimate Limit states CONTENTS 1. SECT.-001, ULTIMATE LIMIT STATE, Tension 1.1. Structural design 1.2. Structural Fire design 2. SECT.-002, ULTIMATE LIMIT STATE, Compression perpendicular to

Διαβάστε περισσότερα

Thin Film Chip Resistors

Thin Film Chip Resistors FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating

Διαβάστε περισσότερα

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject

Διαβάστε περισσότερα

(Mechanical Properties)

(Mechanical Properties) 109101 Engineering Materials (Mechanical Properties-I) 1 (Mechanical Properties) Sheet Metal Drawing / (- Deformation) () 3 Force -Elastic deformation -Plastic deformation -Fracture Fracture 4 Mode of

Διαβάστε περισσότερα

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS FEATURE Operating Temperature: -55 ~ +155 C 3 Watts power rating in 1 Watt size, 1225 package High purity alumina substrate for high power dissipation Long side terminations with higher power rating PART

Διαβάστε περισσότερα

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information MI Girder 90/120 Materia Specifications 1 15 / 16 " (50) Materia Gavanizing Ordering Information Description S235 JRG2 DIN 10025, (ASTM A283 (D) 34 ksi) Hot-dip gavanized 3 mis (75 μm) DIN EN ISO 1461,

Διαβάστε περισσότερα

MasterSeries MasterPort Plus Sample Output

MasterSeries MasterPort Plus Sample Output MasterSeries MasterPort Plus Sample Output The following output is from the MasterPort Plus Design program. Contents 2 Frame Geometry and Loading 4 Tabular Results Output support reactions and nodal deflections

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

COMPOSITE INSULATOR. ANSI Standard Type COMPOSITE LONGE ROD SUSPENSION INSULATOR. PDI 16mm Diameter Rod Deadend Insulators

COMPOSITE INSULATOR. ANSI Standard Type COMPOSITE LONGE ROD SUSPENSION INSULATOR. PDI 16mm Diameter Rod Deadend Insulators COMPOSITE LONGE ROD SUSPENSION INSULATOR PDI 16mm Diameter Rod Deadend Insulators Mechanical Characteristics Item of Length Diameter Net Wt. Torsion SML RTL Proof Cat. Sheds (kg) (N-m) (kn) (kn) (kn) 1

Διαβάστε περισσότερα

Weight [lb] = (Do-t)*π*L*t*40.84/ (60-1)*3.1416*100*1*40.84/144 = (20000*1*1)/(29+0.6*1) = Pipe and Shell ver 4.

Weight [lb] = (Do-t)*π*L*t*40.84/ (60-1)*3.1416*100*1*40.84/144 = (20000*1*1)/(29+0.6*1) = Pipe and Shell ver 4. 1 Pipe and Shell ver 4.08 Page 1 of 2 2 Host Shell Description 3 Options: 4 Interior ip? - Calculate interior pressure 5 No Exterior ep? - Calculate exterior pressure 6 Rolled Plate pr? - Pipe or rolled

Διαβάστε περισσότερα

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK CSK series Current Sensing Chip Resistor Features» 3 Watts power rating in 1 Watt size, 1225 Package» Low TCR of ±100 PPM/ C» Resistance values from 1m to 1 ohm» High purity alumina substrate for high

Διαβάστε περισσότερα

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4) FEATURE High Self Resonant Frequency Superior temperature stability Monolithic structure for high reliability Applications: RF circuit in telecommunication PART NUMBERING SYSTEM HIS 160808 - R12 (1) (2)

Διαβάστε περισσότερα

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1 20/01/2014 1 of 8 TOW SSD v3 Location Project a =IF(Design_Storm>0,VL b =IF(Design_Storm>0,VL c =IF(Design_Storm>0,VL Designed By Checked By Date Date Comment Min Tc 15 LOCATION From To MH or CBMH STA.

Διαβάστε περισσότερα

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor Technical Report General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor Tasos Lazaridis Electrical Engineer CAD/CAE Engineer tasoslazaridis13@gmail.com Three-Phase Induction Machine

Διαβάστε περισσότερα

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments MS SERIES MS DESK TOP ENCLOSURE FEATURE Available in 176 sizes. Screws are not appeared on the surface. Usable as rack mount case with optinal mounting bracket. There are no ventilation hole for cover

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10) Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

katoh@kuraka.co.jp okaken@kuraka.co.jp mineot@fukuoka-u.ac.jp 4 35 3 Normalized stress σ/g 25 2 15 1 5 Breaking test Theory 1 2 Shear tests Failure tests Compressive tests 1 2 3 4 5 6 Fig.1. Relation between

Διαβάστε περισσότερα

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

Rod End > Spherical Bearings Product Overview

Rod End > Spherical Bearings Product Overview Rod End > Spherical Bearings Product Overview Table of Contents FMW3E_.4 / NSA8143 FMW3F_.4 / NSA8149 REM REF Page IV-3-4 IV-5-6 IV-7-8 IV-9-10 FMW3E_.4 / NSA8143 Rod End > Spherical Bearings Schematic

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

QUICKTRONIC PROFESSIONAL QTP5

QUICKTRONIC PROFESSIONAL QTP5 osram.com QUICKTRONIC PROFESSIONA QTP5 ECG for T5/ 16mm, T8/ 26mm, DUUX fluorescent lamps QTP5 i.e. UMIUX T5 HO ES 01 Product Features: Up to 100.000 hours lifetime 1 amp start with optimized filament

Διαβάστε περισσότερα

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of Product: Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520 official distributor of Current Sensing Chip Resistor (SMDL Series) 1. Features -3 Watts

Διαβάστε περισσότερα

Self-Lubricating Rod End > Spherical Bearings Product Overview

Self-Lubricating Rod End > Spherical Bearings Product Overview Self-Lubricating Product Overview Table of Contents FMW3E_.4 / NSA8143 FMW3F_.4 / NSA8149 REM REF EN6056 Page IV-3-4 IV-5-6 IV-7-8 IV-9-10 IV-11-12 FMW3E_.4 / NSA8143 NSA8143-04 X R F P FMW3E 4 4 X R K

Διαβάστε περισσότερα

Injection Molded Plastic Self-lubricating Bearings

Injection Molded Plastic Self-lubricating Bearings Injection Molded Plastic Self-lubricating Bearings Injection Molded Plastic Self-lubricating Bearings CSB-EPB : Injection molded thermoplastic P-P CSB-EPB Plastic Compound Bearings RoHS Structure CSB-EPB

Διαβάστε περισσότερα

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE MSN SERIES MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE W H FEATURE Available in 176 sizes. Stand / carrying handle can be adjusted in 30 degree. Maximum load is kg. There are no ventilation hole

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

TEST REPORT Nο. R Έκθεση Ελέγχου α/α

TEST REPORT Nο. R Έκθεση Ελέγχου α/α - Ergates Industrial Estate, PO Box 16104, Nicosia 2086, Cyprus Tel: +357 22624090 Fax: +357 22624092 TEST REPORT Nο. R01.4222 Page 1 of 9 Σελίδα 1 από 9 Test Description περιγραφή δοκιμής/ελέγχου Client

Διαβάστε περισσότερα

Consolidated Drained

Consolidated Drained Consolidated Drained q, 8 6 Max. Shear c' =.185 φ' =.8 tan φ' =.69 Deviator, 8 6 6 8 1 1 p', 5 1 15 5 Axial, Symbol Sample ID Depth Test Number Height, in Diameter, in Moisture Content (from Cuttings),

Διαβάστε περισσότερα

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Introduction to Theory of. Elasticity. Kengo Nakajima Summer Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor

Διαβάστε περισσότερα

Accu-Guard II. SMD Thin-Film Fuse ELECTRICAL SPECIFICATIONS

Accu-Guard II. SMD Thin-Film Fuse ELECTRICAL SPECIFICATIONS Accu-Guard II is a version of Accu-Guard fuses for a wider range of current and voltage ratings. Con struct ed on alumina substrates, Accu-Guard II fuses display superior electrical, mechanical and en

Διαβάστε περισσότερα

Project: Brimsmore, Ye... Job no: C08127 Designed By kristian Checked By Network W.12.5. Network Design Table for OUTFALL B.SWS

Project: Brimsmore, Ye... Job no: C08127 Designed By kristian Checked By Network W.12.5. Network Design Table for OUTFALL B.SWS Page 9 Network Design Table for OUTFALL B.SWS Length Fall Slope (1:X) Area (ha) T.E. (mins) DWF k (mm) HYD SECT DIA (mm) 21.004 38.358 0.192 199.8 0.389 0.00 0.0 0.600 o 900 21.005 24.228 0.121 200.2 0.051

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient

Διαβάστε περισσότερα

Multilayer Chip Inductor

Multilayer Chip Inductor Features -Monolithic structure for high reliability -High self-resonant frequency -Excellent solderability and high heat resistance Construction Applications -RF circuit in telecommunication and other

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* PART NUMBER SYSTEM

Διαβάστε περισσότερα

RECIPROCATING COMPRESSOR CALCULATION SHEET

RECIPROCATING COMPRESSOR CALCULATION SHEET Gas properties, flowrate and conditions 1 Gas name Air RECIPRCATING CMPRESSR CALCULATIN SHEET WITH INTERCLER ( Sheet : 1. f 4.) Item or symbol Quantity Unit Item or symbol Quantity Unit 2 Suction pressure,

Διαβάστε περισσότερα

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

Proses = 0 / 0 Proses = 0 / 36 16 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2 A BALANCE Proses = 120 / 31 391 t/h T Gun = 29 T Gun = 31 [38oC] A-101-JCA 443 / 2.46 10" TG = 31 05 November 2012 Rate 102.075% Proses = 0 / 33 349 t/h T Gun = 29 T Gun = 37 [38oC] A-101-JCB 261 / 1.42

Διαβάστε περισσότερα

Current Sensing Thick Film Chip Resistor-SMDB Series Size: 0402/0603/0805/1206/1210/2010/2512. official distributor of

Current Sensing Thick Film Chip Resistor-SMDB Series Size: 0402/0603/0805/1206/1210/2010/2512. official distributor of Product: Current Sensing Thick Film Chip Resistor-SMDB Series Size: 0402/0603/0805/1206/1210/2010/2512 official distributor of Current Sensing Thick Film Chip Resistor-SMDB Series 1. Scope -This specification

Διαβάστε περισσότερα

Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz

Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz HEP HEPT HEP: Wall-mounted axial fans, with IP65 motor HEPT: Long-cased axial fans, with IP65 motor Wall-mounted axial (HEP) and long-cased (HEPT) fans, with fibreglass-reinforced plastic impeller. Fan:

Διαβάστε περισσότερα

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF NAVAL ARCHITECTURE AND ARINE ENGINEERING SHIPBUILDING TECHNOLOGY LABORATORY EXPERIENTAL AND NUERICAL STUDY OF A STEEL-TO-COPOSITE ADHESIVE JOINT UNDER

Διαβάστε περισσότερα

THICK FILM LEAD FREE CHIP RESISTORS

THICK FILM LEAD FREE CHIP RESISTORS Features Suitable for lead free soldering. Compatible with flow and reflow soldering Applications Consumer Electronics Automotive industry Computer Measurement instrument Electronic watch and camera Configuration

Διαβάστε περισσότερα

ASME PTB Example E E4.3.5 BPVC VIII

ASME PTB Example E E4.3.5 BPVC VIII Table of contents Table of contents... 1 Comparison Overview *... 2 4.3 Internal Design Pressure... 3 Example E4.3.1 - Cylindrical Shell... 3 E4.3.1 - LV Calculation *... 4 4.3.2 Example E4.3.2 - Conical

Διαβάστε περισσότερα

Heat exchanger. Type WT. For the reheating of airflows in rectangular ducting PD WT 1. 03/2017 DE/en

Heat exchanger. Type WT. For the reheating of airflows in rectangular ducting PD WT 1. 03/2017 DE/en X X testregistrierung Heat exchanger Type For the reheating of airflows in rectangular ducting Rectangular hot water heat exchanger for the reheating of airflows, suitable for VAV terminal units Type TVR,

Διαβάστε περισσότερα

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type Qualified FEATURE Excellent Mechanical Strength and Electrical Stability Ideal for Pick and Place Machinery Stable High Frequency Characteristics Miniature, High Board Density Equivalent Specification

Διαβάστε περισσότερα

Current Sense Metal Strip Resistors (CSMS Series)

Current Sense Metal Strip Resistors (CSMS Series) Features: Range: 1mΩ to 100mΩ Low TCR as low as 75PPM High power rating Custom Values available RoHS Compliant and Halogen Free Operating Temperature: -55 C to +170 C Part Number Structure CSMS 0805 -

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater. Low Impedance, For Switching Power Supplies Low impedance and high reliability withstanding 5000 hours load life at +05 C (3000 / 2000 hours for smaller case sizes as specified below). Capacitance ranges

Διαβάστε περισσότερα

RSDW08 & RDDW08 series

RSDW08 & RDDW08 series /,, MODEL SELECTION TABLE INPUT ORDER NO. INPUT VOLTAGE (RANGE) NO LOAD INPUT CURRENT FULL LOAD VOLTAGE CURRENT EFFICIENCY (Typ.) CAPACITOR LOAD (MAX.) RSDW08F-03 344mA 3.3V 2000mA 80% 2000μF RSDW08F-05

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors

Aluminum Electrolytic Capacitors Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47

Διαβάστε περισσότερα

Thick Film Chip Resistors

Thick Film Chip Resistors FEATURES STANDARD SIZING 0402 (1/16W), 0603 (1/10W), 0805 (1/8W), 1206 (1/4W), 2010 (1/2W) AND 2512 (1W) HIGH VOLTAGE (100VDC ~ 3,000VDC) HIGH RESISTANCE VALUES (UP TO 100MW) THICK FILM ON ALUMINA SUSTRATE,

Διαβάστε περισσότερα

Cross sectional area, square inches or square millimeters

Cross sectional area, square inches or square millimeters Symbols A E Cross sectional area, square inches or square millimeters of Elasticity, 29,000 kips per square inch or 200 000 Newtons per square millimeter (N/mm 2 ) I Moment of inertia (X & Y axis), inches

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors (Large Can Type)

Aluminum Electrolytic Capacitors (Large Can Type) Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction

Διαβάστε περισσότερα

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM AT-3263 Surface Mount Package SOT-363 (SC-7) I I Y Pin Connections B 1 C 1 E 1 E 2 C 2 B 2 Page 1 21.4., 7:6 PM Absolute Maximum Ratings [1] Absolute Thermal Resistance [2] : Symbol Parameter Units Maximum

Διαβάστε περισσότερα

4.4 Superposition of Linear Plane Progressive Waves

4.4 Superposition of Linear Plane Progressive Waves .0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ Νικόλαος Αντωνίου Πολιτικός Μηχανικός Τµήµα Πολιτικών Μηχανικών, Α.Π.Θ.,

Διαβάστε περισσότερα

Thin Film Chip Resistors

Thin Film Chip Resistors FETURES PRECISE TOLERNCE ND TEMPERTURE COEFFICIENT EI STNDRD CSE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERLE (Pb FREE TERMINTION FINISH) RoHS Compliant includes all homogeneous

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

moment ENGINEERING + DESIGN Warwick Ave, Suite C5 Fairfax, VA Phone: Web: February 20, 2015

moment ENGINEERING + DESIGN Warwick Ave, Suite C5 Fairfax, VA Phone: Web:  February 20, 2015 CR220CT5A11:I3 February 20, 2015 Everest Solar Systems, LLC 3809 Ocean Ranch Blvd, Suite 111 Oceanside, CA 92056 Attn: Andy Neshat RE: CrossRail PV Panel Mounting System Evaluation To whom it may concern:

Διαβάστε περισσότερα

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC ~ A File Name:IDLV65SPEC 07050 SPECIFICATION MODEL OUTPUT OTHERS NOTE DC VOLTAGE RATED CURRENT RATED POWER DIMMING RANGE VOLTAGE TOLERANCE PWM FREQUENCY (Typ.) SETUP TIME Note. AUXILIARY DC OUTPUT Note.

Διαβάστε περισσότερα

NPI Unshielded Power Inductors

NPI Unshielded Power Inductors FEATURES NON-SHIELDED MAGNETIC CIRCUIT DESIGN SMALL SIZE WITH CURRENT RATINGS TO 16.5 AMPS SURFACE MOUNTABLE CONSTRUCTION TAKES UP LESS PCB REAL ESTATE AND SAVES MORE POWER TAPED AND REELED FOR AUTOMATIC

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Rod End > Ball Bearings Product Overview

Rod End > Ball Bearings Product Overview Rod End > Ball Bearings Product Overview Table of Contents EN4035 EN4036 FC...M / FCN...M ASNA2579E NSA8159 REP / RAP REP...F Page Il-3-4 Il-5-6 Il-7-8 Il-9-10 Il-11-12 Il-13-14 Il-15-16 EN4035 Rod End

Διαβάστε περισσότερα

Thin Film Chip Resistors

Thin Film Chip Resistors FETURES PRECISE TOLERNCE ND TEMPERTURE COEFFICIENT EI STNDRD CSE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERLE (Pb FREE TERMINTION FINISH) Type EI Size Power Rating at 70

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΛΥΣΕΩΝ ΚΑΝΟΝΙΣΤΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ

Διαβάστε περισσότερα

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance .635mm Pitch Board to Board Docking Connector Lead-Free Compliance MINIDOCK SERIES MINIDOCK SERIES Features Specifications Application.635mm Pitch Connector protected by Diecasted Zinc Alloy Metal Shell

Διαβάστε περισσότερα

Metal Oxide Leaded Film Resistor

Metal Oxide Leaded Film Resistor Features -Excellent Long-Time stability -High surge / overload capability -Wide resistance range : 0.1Ω~22MΩ -Controlled temperature coefficient -Resistance standard tolerance: ±5% (consult factory for

Διαβάστε περισσότερα

Ceramic PTC Thermistor Overload Protection

Ceramic PTC Thermistor Overload Protection FEATURES compliant CPTD type are bare disc type CPTL type are leaded Low, medium and high voltage ratings Low resistance; Small size No need to reset supply after overload No noise generated Stable over

Διαβάστε περισσότερα

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet RECIPRCATING CMPRESSR CALCULATIN SHEET ISTHERMAL CMPRESSIN Gas properties, flowrate and conditions 1 Gas name Air Item or symbol Quantity Unit Item or symbol Quantity Unit Formula 2 Suction pressure, ps

Διαβάστε περισσότερα

RECIPROCATING COMPRESSOR CALCULATION SHEET

RECIPROCATING COMPRESSOR CALCULATION SHEET RECIPRCATING CMPRESSR CALCULATIN SHEET WITH INTERCLER Gas properties, flowrate and conditions 1 Gas name Air Item or symbol Quantity Unit Item or symbol Quantity Unit 2 Suction pressure, ps 1.013 bar A

Διαβάστε περισσότερα

Rod End > Ball Bearings Product Overview

Rod End > Ball Bearings Product Overview Product Overview Table of Contents EN4035 EN4036 FC...M / FCN...M ASNA2579E NSA8159 REP / RAP REP...F Page Il-3-4 Il-5-6 Il-7-8 Il-9-10 Il-11-12 Il-13-14 Il-15-16 EN4035 EN4035 L 06 P K A T Surface Treatment

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα