# wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:"

## Transcript

1 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition, roup velocity and Superposition of linear plane proressive waves. Oblique Plane Waves: z k = k k k z ( k, ) k z θ (Lookin up the y-ais from below the surface) Consider wave propaation at an anle θ to the -ais k {}}{ η =A cos( k cos θ + kz sin θ ωt) = A cos (k + k z z ωt) φ = A cosh k (y + h) sin (k cos θ + kz sin θ ωt) ω cosh kh ω =k tanh kh; k = k cos θ, k z = k sin θ, k = k + kz

2 . Standin Waves: + Same A, k, ω, no phase shift η =A cos (k ωt) + A cos ( k ωt) = A cos k cos ωt φ = A cosh k (y + h) cos k sin ωt ω cosh kh 90 o at all times y t = 0, T, T, T 3T t =,, antinode node T 3T 5T t =,, η φ nπ = sin k = 0 at = 0, k = nλ Therefore, φ = 0. To obtain a standin wave, it is necessary to have perfect reflection at the =0 wall at = 0. Define the reflection coefficient as R A R A I ( ). y A I = A R R = A R A I =

3 3. Oblique Standin Waves. η I =A cos (k cos θ + kz sin θ ωt) η R =A cos (k cos (π θ) + kz sin (π θ) ωt) z η R θ θ θ R θ I θ θ R = π θ I η I Note: same A, R =. k k z z ωt {}}{{}}{ η T = η I + η R = A cos (k cos θ) cos (kz sin θ ωt) }{{}}{{} standin wave in propaatin wave in z and Check: λ = π k cos θ ; V P z = ω k sin θ ; λ z = π k sin θ φ η sin (k cos θ) = 0 on = 0

4 4. Partial Reflection. ηi + ηr R: Comple reflection coefficient η I =A I cos (k ωt) = A I Re { e i(k ωt)} η R =A R cos (k + ωt + δ) = A I Re { R e i(k+ωt)} R = R e iδ, R = A R A I η T =η I + η R = A I Re { e ( i(k ωt) + Re ik)} η T [ =A I + R + R cos (k + δ) ] η T A I λ + R At node, antinode node At antinode, η T = η T min = A I ( R ) at cos (k + δ) = or k + δ = (n + ) π η T = η T ma = A I ( + R ) at cos (k + δ) = or k + δ = nπ kl = π so L = λ R = η T ma η T min η T ma + η T min = R (k)

5 5. Wave Group: waves, same amplitude A and direction, but ω and k very close to each other. V P η =R ( Ae i(k ω t) ) η =R ( Ae i(k ω t) ) V P ω, =ω, (k, ) and V P V P η T = η + η = R { Ae i(k ω t) [ + e i(δk δωt)]} with δk = k k and δω = ω ω A V λ π = δk V V P P T = π ω π = λ λ k T = π δω η T ma = A when δk δωt = nπ η T min = 0 when δk δωt = (n + ) π = V t, δkv t (δω) t = 0 then V = δω δk

6 In the limit, δk, δω 0, V = dω dk k k k, and since ω = k tanh kh ( ω ) ( V = + kh ) }{{} k sinh kh }{{} n (a) deep water kh >> n = V = (b) shallow water kh << n = V = (no dispersion) (c) intermediate depth < n < V Appear V Disappear VP

7 Wave Enery - Enery associated with wave motion. For a sinle plane proressive wave: Potential enery PE (per unit surface area of wave) 0 PE without wave = ρydy = ρh h η PE with wave = ρydy = ρ (η h ) h PEwave = ρη = ρa cos (k ωt) PEwave = 4 ρa averae over one period or one wavelenth Wave enery: E = PE + KE = ρa [ cos (k ωt) + ] Kinetic enery KE (per unit surface area of wave) KEwave = η h dy ρ (u + v ) = = 4 ρa }{{} for deep water KE A KE const in,t to leadin order KEwave = 4 ρa for any h averae over one period or one wavelenth Averae wave enery E (over period or wavelenth): E = ρa [ P E + KE ] = ρa = E s, which is the Specific Enery: total averae wave enery per unit surface area. Linear waves: PE = KE = E s (equipartition). E E s PE= Es cos ( k ωt) PE = Es cos (k = E PE Nonlinear waves: KE > PE. ½ KE KE= E = E s cos = + cos

8 Enery Propaation - Group velocity S E = E s per area V Consider a fied control volume V to the riht of screen S. Conservation of enery: dw dt }{{} rate of work done on S = de dt }{{} rate of chane of enery in V = J- }{{} enery flu left to riht where e.. A = 3m, T = 0 sec J- = 400KW /m η ( ) dφ J- = pu dy with p = ρ dt + y and u = dφ d h J- = ( ( ω ) ρa) [ ( )] + kh = E (nv sinh kh p ) = EV }{{}}{{} k }{{} E n }{{} V

9 Conservation of enery equation F F ( ), F F( ) E = E = h = h(). E t = 0, V E = constant in for any h(). ( ) J- J- t = E J- = J- + J- +. V = constant (i.e. constant depth, δk << k) i.e. wave packet moves at V. E t + J- = 0, but J- = V E E t + ( V E ) = 0 ( ) t + V E = 0, so E = E ( V t) or A = A ( V t)

10 Steady ship waves, wave resistance D A Vp = E = ρa ( )( A ) F = V E = ρ L E = 0 ahead of ship = 0 C.V. Wave resistance dra on ship D. Rate of work done = rate of enery increase D + J- = d ( ) EL = E dt deep water = {}}{ (E E / ) = E = D force / lenth 4 ρa enery / area Question: Amplitude A =? (depends on, eometry). Let l effective lenth. L L Superimpose a bow wave (η b ) and a stern wave (η s ): η b = a cos (k) and η s = a cos (k ( + l)) η T = η b + η s A = η T ma = a sin ( kl) D = 4 ρa = ρa sin ( kl), V p = = so k = / deep water k D = ρa sin ( l )

11 D ρa where ship lenth F = Steady ship waves (deep water) = ship speed = k = ; so k = and λ = π L =ship lenth, l L D W =ρa sin ( ( ) ( ) ) l = ρa sin = ρa sin FL FL D W ρa 0 Small, lots of wave cancellation D w ~ small π F = F π = F = "hull speed" = hull 0.56 π L hull L

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### Homework 8 Model Solution Section

MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

### ( ) Sine wave travelling to the right side

SOUND WAVES (1) Sound wave: Varia2on of density of air Change in density at posi2on x and 2me t: Δρ(x,t) = Δρ m sin kx ωt (2) Sound wave: Varia2on of pressure Bulk modulus B is defined as: B = V dp dv

Διαβάστε περισσότερα

### Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

### Forced Pendulum Numerical approach

Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

### Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### Section 8.3 Trigonometric Equations

99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

### PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com June 2005 1. A car of mass 1200 kg moves along a straight horizontal road. The resistance to motion of the car from non-gravitational forces is of constant magnitude 600 N. The

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### For a wave characterized by the electric field

Problem 7.9 For a wave characterized by the electric field E(z,t) = ˆxa x cos(ωt kz)+ŷa y cos(ωt kz+δ) identify the polarization state, determine the polarization angles (γ, χ), and sketch the locus of

Διαβάστε περισσότερα

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### Second Order RLC Filters

ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

### 3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

### Lecture 21: Scattering and FGR

ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

### Graded Refractive-Index

Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

### CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

### Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

### Strain gauge and rosettes

Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### Derivation of Optical-Bloch Equations

Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

### Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

### Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

### CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

### Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

### Υδραυλική Εργαστήριο 4. Χρίστος Α. Καραβίτης Διαχείριση Υδατικών Πόρων Τμήμα ΑΦΠ & ΓΜ, Γ.Π.Α.

Υδραυλική Εργαστήριο 4 Χρίστος Α. Καραβίτης Διαχείριση Υδατικών Πόρων Τμήμα ΑΦΠ & ΓΜ, Γ.Π.Α. Πρόγραμμα Άνοιξη 2014 ΗΜ/ΝΙΑ ΔΕΥΤΕΡΑ ΤΕΤΑΡΤΗ ΠΑΡΑΣΚΕΥΗ ΜΕΛΕΤΗ ΑΣΚΗΣΕΙΣ ΚΑΘΕ ΠΑΡΑΣΚΕΥΗ Part I: ΥΔΡΟΛΟΓΙΚΟΣ ΚΥΚΛΟΣ-ΥΔΡΟΛΟΓΙΚΕΣ

Διαβάστε περισσότερα

### Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### Calculating the propagation delay of coaxial cable

Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

### The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

### Περιεχόμενα. Σειρά II 2

Περιεχόμενα 1. Δυναμικό Ροής και Ροϊκή Συνάρτηση 2. Κυματική Θεωρία Stokes 1 ης τάξης (Airy) 3. Κυματική Θεωρία Stokes 2 ης τάξης 4. Κυματική Θεωρία Stokes 5 ης τάξης 5. Κυματική Θεωρία Συνάρτησης ροής

Διαβάστε περισσότερα

### Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

### Ψηφιακή Επεξεργασία Φωνής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

### Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

### Section 8.2 Graphs of Polar Equations

Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

### Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

### TMA4115 Matematikk 3

TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

### w o = R 1 p. (1) R = p =. = 1

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

### Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

### linear motions: surge, sway, and heave rotations: roll, pitch, and yaw

heave yaw when the ship is treated as a rigid body, it has six degrees of freedom: three linear motions and three rotations as indicated in the figure at the left: body-fixed axes pitch, v roll, u sway

Διαβάστε περισσότερα

ω α β χ φ() γ Γ θ θ Ξ Μ ν ν ρ σ σ σ σ σ σ τ ω ω ω µ υ ρ α Coefficient of friction Coefficient of friction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 0.90 0.80 0.70 0.60 0.50 0.40 0.30

Διαβάστε περισσότερα

### 1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

### ( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

### Finite Field Problems: Solutions

Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

### Απόκριση σε Αρμονικές και Περιοδικές Διεγέρσεις. Απόστολος Σ. Παπαγεωργίου

Απόκριση σε Αρμονικές και Περιοδικές Διεγέρσεις VISCOUSLY DAMPED SDOF SYSTEM: RESPONSE TO HARMONIC EXCITATION Μονοβάθμιο Σύστημα με Ιξώδη Απόσβεση: Απόκριση σε Αρμονική Διέγερση HARMONIC VIBRATION OF UNDAMPED

Διαβάστε περισσότερα

### AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

### On a four-dimensional hyperbolic manifold with finite volume

BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

### PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική

PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική Υπολογισµός Γωνιών (1.2, 1.5) (2.0, 1.5) θ 3 θ 4 θ 2 θ 1 (1.3, 1.2) (1.7, 1.0) (0, 0) " 1 = tan #1 2.0 #1.7 1.5 #1.0 \$ 310 " 2 = tan #1

Διαβάστε περισσότερα

### Durbin-Levinson recursive method

Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

### 10 MERCHIA. 10. Starting from standing position (where the SIGN START ) without marshal (self start) 5 minutes after TC4 KALO LIVADI OUT

Date: 22 October 2016 Time: 09:00 hrs Subject: BULLETIN No 5 Document No: 1.6 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

### Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### ω = radians per sec, t = 3 sec

Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

### Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

### g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

### A 1 A 2 A 3 B 1 B 2 B 3

16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

### The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

### (1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

### Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

### Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

### Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

### ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

### Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

### Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

### DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

### ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ y t x Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 1 ΔΙΑΛΕΞΗ 2 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΟΙ ΣΗΜΑΤΩΝ Analog: Continuous Time & Continuous Amplitude Sampled: Discrete Time & Continuous

Διαβάστε περισσότερα

### ΦΥΕ34 Λύσεις 5 ης Εργασίας

ΦΥΕ3 Λύσεις 5 ης Εργασίας ) Έστω αρµονικό κύµα της (εκθετικής) µορφής: F( x, t) i( kx ωt+ ϕ ) = Ae. Παραγωγίζοντας βρίσκουµε: = iωf( x, t) t = ikf( x, t) x Παραγωγίζοντας αυτές τις δύο σχέσεις µία ακόµη

Διαβάστε περισσότερα

### 2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

### Properties of Nikon i-line Glass Series

786.7098.750 86.77 86.6 Wavelength [µm] Refractive Index Partial Dispersion Fluorescence [Class] * - 2.252.5786 F - C 0.0056 Solarization [%] 2.5 λ [nm] τ (0 mm) - 2.05809.6052 F' - C' 0.005505 *: JOGIS

Διαβάστε περισσότερα

### Parallel transport and geodesics

Parallel transport and geodesics February 4, 3 Parallel transport Before defining a general notion of curvature for an arbitrary space, we need to know how to compare vectors at different positions on

Διαβάστε περισσότερα

### DETERMINATION OF FRICTION COEFFICIENT

EXPERIMENT 5 DETERMINATION OF FRICTION COEFFICIENT Purpose: Determine μ k, the kinetic coefficient of friction and μ s, the static friction coefficient by sliding block down that acts as an inclined plane.

Διαβάστε περισσότερα

### Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

### 2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

9çB\$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL

Διαβάστε περισσότερα

### Lecture 2. Soundness and completeness of propositional logic

Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

### Periodic orbits. Orbit covers the whole of B. However it turns out to be more convienient to think interms of the tangential momentum.

Section 1. Classical Dynamics Section 1.10 Chaos in Billards. Consider a particle moving freely in a region of the plane bounded by a closed curve B. Assume that the particle moves without friction and

Διαβάστε περισσότερα

### ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΝΑΥΤΙΚΗΣ ΚΑΙ ΘΑΛΑΣΣΙΑΣ ΥΔΡΟΔΥΝΑΜΙΚΗΣ ΘΕΩΡΙΑ ΚΥΜΑΤΙΣΜΩΝ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΝΑΥΤΙΚΗΣ ΚΑΙ ΘΑΛΑΣΣΙΑΣ ΥΔΡΟΔΥΝΑΜΙΚΗΣ ΘΕΩΡΙΑ ΚΥΜΑΤΙΣΜΩΝ . Εισαγωγή Ενα από τα βασικά θέματα της ναυτικής υδροδυναμικής είναι τα θαλάσσια κύματα. Τα θαλάσσια κύματα που ενδιαφέρουν την ναυτική

Διαβάστε περισσότερα

### ( ) 2 and compare to M.

Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

### A Note on Intuitionistic Fuzzy. Equivalence Relation

International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

### Πραγματικοί κυματισμοί

Πραγματικοί κυματισμοί Οι κυματισμοί που δημιουργεί η επίδραση του ανέμου στην επιφάνεια της θάλασσας, δεν είναι «μονοχρωματικοί». Η επιφάνεια της θάλασσας μπορεί να προσεγγιστεί με σύνθεση περισσοτέρων

Διαβάστε περισσότερα

### Introduction to Time Series Analysis. Lecture 16.

Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral

Διαβάστε περισσότερα

### Scratch Διδακτική του Προγραμματισμού. Παλαιγεωργίου Γιώργος

Scratch Διδακτική του Προγραμματισμού Παλαιγεωργίου Γιώργος Μάρτιος 2009 MIT Scratch Το Scratch είναι ένα πλούσιο σε οπτικοαουστικά μέσα προγραμματιστικό περιβάλλον στο οποίο οι αρχάριοι προγραμματιστές

Διαβάστε περισσότερα

### Ιστορία νεότερων Μαθηματικών

Ιστορία νεότερων Μαθηματικών Ενότητα 3: Παπασταυρίδης Σταύρος Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Περιγραφή Ενότητας Ιταλοί Αβακιστές. Αλγεβρικός Συμβολισμός. Άλγεβρα στην Γαλλία, Γερμανία, Αγγλία.

Διαβάστε περισσότερα

### Αγορά Ακινήτων και η ελληνική Κρίση

Αγορά Ακινήτων και η ελληνική Κρίση Γκίκας Α. Χαρδούβελης Οικονομικός Σύμβουλος, Eurobank Group Καθηγητής, Τμήμα Χρηματοοικονομικής και Τραπεζικής Διοικητικής, Πανεπιστήμιο Πειραιά PRODEXPO 213 14ο Συνέδριο

Διαβάστε περισσότερα

### ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

### Phasor Diagram of an RC Circuit V R

ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V

Διαβάστε περισσότερα

### Κύµατα παρουσία βαρύτητας

Κύµατα παουσία βαύτητας 8. Grait as in th ocan Sarantis Sofianos Dpt. of hsics, Unirsit of thns Was in th ocan Srfac grait as Short and long limit in grait as Wa charactristics Intrnal as Charactristic

Διαβάστε περισσότερα

### Advanced Subsidiary Unit 1: Understanding and Written Response

Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

### Variational Wavefunction for the Helium Atom

Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

### Partial Trace and Partial Transpose

Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

### ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ. Young 12.1-12.7 Ζήσος Κεφ.8

ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ Young 1.1-1.7 Ζήσος Κεφ.8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ ΠΕΔΙΟ ΕΝΤΑΣΗ ΠΕΔΙΟΥ ΔΥΝΑΜΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ ΔΥΝΑΜΙΚΟ ΠΩΣ ΔΙΑΜΟΡΦΩΝΟΝΤΑΙ ΟΙ ΣΧΕΣΕΙΣ ΟΤΑΝ ΕΧΟΥΜΕ ΚΑΤΑΝΟΜΕΣ ΜΑΖΑΣ- ΓΗ ΚΙΝΗΣΗ ΔΟΡΥΦΟΡΩΝ ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ

Διαβάστε περισσότερα

### 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα