is like multiplying by the conversion factor of. Dividing by 2π gives you the
|
|
- Παραμονιμος Βουγιουκλάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives ou the 80 0 fraction of the circle ou want. Multipling b π gives ou the measurement in terms of radians.. Multipling b 80 0 is like multipling b the conversion factor of. Dividing b π gives ou the π π fraction of the circle ou want. Multipling b 0 gives ou the measurement in terms of degrees.. A radian is the length of the radius of the circle. The circumference of a circle is πr, or π radius lengths. Therefore, the circle is π radius lengths or π radians. CK- Trigonometr Concepts
2 Chapter Graphs of Trigonometric Functions Answer Ke. Conversion between Degrees and Radians Answers. π. π. π 8. π 8. π. π 7. π Radians make sense as the length of the arc created b the radius. The also fit well with the formula for area and circumference of a circle. CK- Trigonometr Concepts
3 Chapter Graphs of Trigonometric Functions Answer Ke. Si Trigonometric Functions and Radians Answers Radians do not necessaril have to be written in terms of π. It is possible to have eactl radians. CK- Trigonometr Concepts
4 Chapter Graphs of Trigonometric Functions Answer Ke. Rotations in Radians Answers times. At :0:7. CK- Trigonometr Concepts
5 Chapter Graphs of Trigonometric Functions Answer Ke. Length of an Arc Answers. 8π meters. π meters. π meters. 0 radians. 8π inches. π inches 7. π inches revolutions inches 0. 8π radians. 0π inches. π inches. π inches. π 9 inches. π 7 inches CK- Trigonometr Concepts
6 Chapter Graphs of Trigonometric Functions Answer Ke. Area of a Sector Answers.. in. 7.7 in..98 in.. in in.. radians radians 8..7 radians 9..8 inches 0.. inches. 7. inches. 8.7 inches. in..7 in..9 in CK- Trigonometr Concepts
7 Chapter Graphs of Trigonometric Functions Answer Ke.7 Length of a Chord Answers.. m.. km..0 in.. ft.. cm..9 in 7. 7.in radians in 0.. radians. 9.0 in.. radians. The length of the red segment will be {(radius) ( chord ) } b the Pthagorean Theorem.. The length of the red segment will be (radius) cos ( θ ). Find the area of the sector using the radius and the central angle. Then find the area of the triangle using the length of the chord and the length of the red segment. Subtract to find the area of the segment. CK- Trigonometr Concepts 7
8 Chapter Graphs of Trigonometric Functions Answer Ke.8 Angular Velocit Answers. Beth went π ft and Steve went 8π ft.. π radians per second. Beth: 7π ft/sec; Steve: π ft/sec. feet from the center.. seconds. Beth: 7π ft/sec; Steve: π ft/sec 7. feet from the center 8..7 feet from the center 9. π 0 radians/minute 0. π 0 radians/minute. π feet per minute 0. π feet per minute 0. 9 inches. π radians/minute. 0. ft or.8 inches CK- Trigonometr Concepts 8
9 Chapter Graphs of Trigonometric Functions Answer Ke.9 Sine and Cosecant Graphs Answers. -π/ π/ π π/ π/ π/ π π/ π/ π/ π π/ - - CK- Trigonometr Concepts 9
10 Chapter Graphs of Trigonometric Functions Answer Ke. -π/ π/ π π/ π/ - π/ π π/ π/ - π/ π π/ - - CK- Trigonometr Concepts 0
11 Chapter Graphs of Trigonometric Functions Answer Ke 7. -π/ - π/ π π/ π/ - π/ π π/ π/ - π/ π π/ - - CK- Trigonometr Concepts
12 Chapter Graphs of Trigonometric Functions Answer Ke π/ - π/ π π/ π/ - π/ π π/ π/ - π/ π π/ - - CK- Trigonometr Concepts
13 Chapter Graphs of Trigonometric Functions Answer Ke. -π/ - π/ π π/ π/ - π/ π π/ π/ - π/ π π/ - - CK- Trigonometr Concepts
14 Chapter Graphs of Trigonometric Functions Answer Ke. -π/ - π/ π π/ π/ - - π/ π π/ π/ - - π/ π π/ CK- Trigonometr Concepts
15 Chapter Graphs of Trigonometric Functions Answer Ke.0 Cosine and Secant Graphs Answers. -π/ - π/ π π/ π/ - π/ π π/ π/ - π/ π π/ - - CK- Trigonometr Concepts
16 Chapter Graphs of Trigonometric Functions Answer Ke. -π/ - π/ π π/ π/ - π/ π π/ π/ - π/ π π/ - - CK- Trigonometr Concepts
17 Chapter Graphs of Trigonometric Functions Answer Ke 7. -π/ - π/ π π/ π/ - π/ π π/ π/ - π/ π π/ - - CK- Trigonometr Concepts 7
18 Chapter Graphs of Trigonometric Functions Answer Ke π/ - π/ π π/ π/ π/ π π/ ππ/ π7π/. -π/ π/ π π/ ππ/ π7π/ CK- Trigonometr Concepts 8
19 Chapter Graphs of Trigonometric Functions Answer Ke. -π/ π/ π π/ ππ/ π7π/. -π/ π/ π π/ππ/π7π/. -π/ -π -π/ - π/ π π/ π π/ π 7π/ π 9π/ π π/ π π/ 7π π/ CK- Trigonometr Concepts 9
20 Chapter Graphs of Trigonometric Functions Answer Ke. -π/ -π -π/ - π/ π π/ π π/ π 7π/ π 9π/ π π/ π π/ 7π π/ π/ -π -π/- π/ π π/ π π/ π 7π/ π 9π/ π π/ π π/ 7π π/ π/ -π -π/- π/ π π/ π π/ π 7π/ π 9π/ π π/ π π/ 7π π/ CK- Trigonometr Concepts 0
21 Chapter Graphs of Trigonometric Functions Answer Ke. Tangent and Cotangent Graphs Answers. -π/ π/ π π/ π/ π/ π π/ π/ π/ π π/ CK- Trigonometr Concepts
22 Chapter Graphs of Trigonometric Functions Answer Ke. -π/ π/ π π/ π/ - π/ π π/ π/ π/ π π/ CK- Trigonometr Concepts
23 Chapter Graphs of Trigonometric Functions Answer Ke 7. -π/ π/ π π/ π/ π/ π π/ π/ - π/ π π/ - - CK- Trigonometr Concepts
24 Chapter Graphs of Trigonometric Functions Answer Ke π/ - π/ π π/ π/ - π/ π π/ π/ -π -π/ π/ π π/ π π/ π 7π/ π 9π/ π π/ CK- Trigonometr Concepts
25 Chapter Graphs of Trigonometric Functions Answer Ke π/ -π -π/ - π/ π π/ π π/ π 7π/ π 9π/ π π/ π/ -π -π/ - π/ π π/ π π/ π 7π/ π 9π/ π π/ CK- Trigonometr Concepts
26 Chapter Graphs of Trigonometric Functions Answer Ke π/ -π -π/ - π/ π π/ π π/ π 7π/ π 9π/ π π/ π/ -π -π/ - π/ π π/ π π/ π 7π/ π 9π/ π π/ CK- Trigonometr Concepts
27 Chapter Graphs of Trigonometric Functions Answer Ke π/ -π -π/ - π/ π π/ π π/ π 7π/ π 9π/ π π/ π/ -π -π/ - π/ π π/ π π/ π 7π/ π 9π/ π π/ CK- Trigonometr Concepts 7
28 Chapter Graphs of Trigonometric Functions Answer Ke. Vertical Translations Answers CK- Trigonometr Concepts 8
29 Chapter Graphs of Trigonometric Functions Answer Ke. 8 -π/ -π -π/ π/ π π/ π/ -π -π/ π/ π π/ CK- Trigonometr Concepts 9
30 Chapter Graphs of Trigonometric Functions Answer Ke. 8 -π/ -π -π/ π/ π π/ π/ -π -π/ π/ π π/ CK- Trigonometr Concepts 0
31 Chapter Graphs of Trigonometric Functions Answer Ke π/ -π -π/ π/ π π/ π/ -π -π/ π/ π π/ CK- Trigonometr Concepts
32 Chapter Graphs of Trigonometric Functions Answer Ke π/ -π -π/ π/ π π/ π/ -π -π/ π/ π π/ Minimum: ; Maimum: 7. Minimum: -; Maimum: 0. Minimum: ; Maimum:-. Minimum: ; Maimum: -. Minimum: ; Maimum:. Possible answer: = sin + 7. Possible answer: = cos 8. Possible answer: = sin + CK- Trigonometr Concepts
33 Chapter Graphs of Trigonometric Functions Answer Ke. Horizontal Translations or Phase Shifts Answers. -π/ -π -π/ π/ π π/ -. -π/ -π -π/ π/ π π/ - CK- Trigonometr Concepts
34 Chapter Graphs of Trigonometric Functions Answer Ke. -π/ -π -π/ π/ π π/ -. -π/ -π -π/ π/ π π/ - CK- Trigonometr Concepts
35 Chapter Graphs of Trigonometric Functions Answer Ke. -π/ -π -π/ π/ π π/ -. -π/ -π -π/ π/ π π/ - CK- Trigonometr Concepts
36 Chapter Graphs of Trigonometric Functions Answer Ke 7. -π/ -π -π/ π/ π π/ π/ -π -π/ π/ π π/ CK- Trigonometr Concepts
37 Chapter Graphs of Trigonometric Functions Answer Ke 9. -π/ -π -π/ π/ π π/ π/ -π -π/ - π/ π π/ - - CK- Trigonometr Concepts 7
38 Chapter Graphs of Trigonometric Functions Answer Ke. -π/ -π -π/ π/ π π/ π/ -π -π/ π/ π π/ CK- Trigonometr Concepts 8
39 Chapter Graphs of Trigonometric Functions Answer Ke. -π/ -π -π/ π/ π π/ π/ -π -π/ - π/ π π/ CK- Trigonometr Concepts 9
40 Chapter Graphs of Trigonometric Functions Answer Ke. 7 -π/ -π -π/ - π/ π π/ π/ -π -π/ - π/ π π/ CK- Trigonometr Concepts 0
41 Chapter Graphs of Trigonometric Functions Answer Ke. Amplitude Answers π/ -π -π/ - π/ π π/ CK- Trigonometr Concepts
42 Chapter Graphs of Trigonometric Functions Answer Ke π/ -π -π/ - π/ π π/ π/ -π -π/ - π/ π π/ CK- Trigonometr Concepts
43 Chapter Graphs of Trigonometric Functions Answer Ke π/ -π -π/ - π/ π π/ π/ -π -π/ - π/ π π/ Minimum: ; Maimum:. Minimum:-; Maimum:. Minimum: -; Maimum:. Minimum: ; Maimum: 7. Minimum: 0; Maimum: CK- Trigonometr Concepts
44 Chapter Graphs of Trigonometric Functions Answer Ke. As k increase, the slope of each portion of the graph increases. If k is negative, the graph is reflected across the -ais. 7. As k increases, the space between the top graphs and bottom graphs increases. For eample, below is = sec () and = sec(). 7 -π/ -π -π/ - π/ π π/ CK- Trigonometr Concepts
45 Chapter Graphs of Trigonometric Functions Answer Ke. Period and Frequenc Answers. Frequenc: ; Period: π. Frequenc: ; Period: π. Frequenc: ; Period: π. Frequenc: ; Period: 8π. Frequenc: ; Period: π. - - π/ π π/ CK- Trigonometr Concepts
46 Chapter Graphs of Trigonometric Functions Answer Ke π/ π π/ π/ π π/ CK- Trigonometr Concepts
47 Chapter Graphs of Trigonometric Functions Answer Ke π/ π π/ π/ π π/ CK- Trigonometr Concepts 7
48 Chapter Graphs of Trigonometric Functions Answer Ke. - - π/ π π/. - - π/ π π/ CK- Trigonometr Concepts 8
49 Chapter Graphs of Trigonometric Functions Answer Ke. - - π/ π π/. = cos(). = tan(). = sin ( ) 7. = cos() CK- Trigonometr Concepts 9
50 Chapter Graphs of Trigonometric Functions Answer Ke. Amplitude and Period Answers. Amplitude: ; Frequenc: ; Period: π. Amplitude: ; Frequenc: ; Period: 8π. Amplitude: ; Frequenc: ; Period: π. Amplitude: ; Frequenc: ; Period: π. Amplitude: ; Frequenc: ; Period: π. Amplitude: ; Frequenc: ; Period: π 7. = cos() 8. = sin() 9. = cos() 0. = sin ( ). - - π/ π π/ CK- Trigonometr Concepts 0
51 Chapter Graphs of Trigonometric Functions Answer Ke. - - π/ π π/. - - π/ π π/ CK- Trigonometr Concepts
52 Chapter Graphs of Trigonometric Functions Answer Ke. - - π/ π π/ π/ π π/ CK- Trigonometr Concepts
53 Chapter Graphs of Trigonometric Functions Answer Ke π/ π π/ π/ π π/ CK- Trigonometr Concepts
54 Chapter Graphs of Trigonometric Functions Answer Ke π/ π π/ CK- Trigonometr Concepts
55 Chapter Graphs of Trigonometric Functions Answer Ke.7 Trigonometric Identities and Equations Answers. Amplitude: ; Frequenc: ; Period: π; Horizontal shift to the right; Vertical shift up. Amplitude: ; Frequenc: ; Period: π; Horizontal shift π to the right; Vertical shift up. Amplitude: ; Frequenc: ; Period: π ; Horizontal shift π to the left; Vertical shift up. Amplitude: ; Frequenc: ; Period: π; Horizontal shift to the left; Vertical shift up. Amplitude: ; Frequenc: ; Period:π; Horizontal shift to the right; Vertical shift up. -π/ -π -π/ - π/ π π/ - - CK- Trigonometr Concepts
56 Chapter Graphs of Trigonometric Functions Answer Ke 7. -π/ -π -π/ - π/ π π/ π/ -π -π/ - π/ π π/ - - CK- Trigonometr Concepts
57 Chapter Graphs of Trigonometric Functions Answer Ke 9. -π/ -π -π/ - π/ π π/ π/ -π -π/ - π/ π π/ - -. Possible equation: = + sin ( ( π)). Possible equation: = cos ( ( π )). Possible equation: = cos ( ( π )). Possible equation: = sin ( ( π )). Possible equation: = csc(( π)) + CK- Trigonometr Concepts 7
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Διαβάστε περισσότεραMATH 150 Pre-Calculus
MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραTrigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραChapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
Διαβάστε περισσότεραRectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
Διαβάστε περισσότεραCHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
Διαβάστε περισσότεραIf we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Διαβάστε περισσότεραIf we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Διαβάστε περισσότεραPractice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Διαβάστε περισσότεραSection 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Διαβάστε περισσότεραPARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Διαβάστε περισσότεραPrinciples of Mathematics 12 Answer Key, Contents 185
Principles of Mathematics Answer Ke, Contents 85 Module : Section Trigonometr Trigonometric Functions Lesson The Trigonometric Values for θ, 0 θ 60 86 Lesson Solving Trigonometric Equations for 0 θ 60
Διαβάστε περισσότεραReview Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Διαβάστε περισσότεραComplete Solutions Manual for Calculus of a Single Variable, Volume 1. Calculus ELEVENTH EDITION
Complete Solutions Manual for Calculus of a Single Variable, Volume Calculus ELEVENTH EDITION Cengage Learning. All rights reserved. No distribution allowed without epress authorization. Ron Larson The
Διαβάστε περισσότεραChapter 7 Analytic Trigonometry
Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding
Διαβάστε περισσότεραSimilarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
Διαβάστε περισσότεραPg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Διαβάστε περισσότερα2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.
5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric
Διαβάστε περισσότεραChapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB =
Chapter 5 Chapter 5 Exercise 5. minor arc = 50 60.4 0.8cm. major arc = 5 60 4.7 60.cm. minor arc = 60 90 60 6.7 8.cm 4. major arc = 60 0 60 8 = 6 = cm 5. minor arc = 50 5 60 0 = cm 6. major arc = 80 8
Διαβάστε περισσότεραSection 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Διαβάστε περισσότεραTRIGONOMETRIC FUNCTIONS
Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of
Διαβάστε περισσότεραMock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Διαβάστε περισσότεραSection 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Διαβάστε περισσότερα2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.
5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric
Διαβάστε περισσότεραω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
Διαβάστε περισσότεραSolutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Διαβάστε περισσότεραProblem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Διαβάστε περισσότεραCBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets
System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότερα9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραDerivations of Useful Trigonometric Identities
Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραChapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Διαβάστε περισσότεραSolution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραMath 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Διαβάστε περισσότεραANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Διαβάστε περισσότερα11.4 Graphing in Polar Coordinates Polar Symmetries
.4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry y axis symmetry origin symmetry r, θ = r, θ r, θ = r, θ r, θ = r, + θ .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry
Διαβάστε περισσότεραSampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
Διαβάστε περισσότεραTrigonometry Functions (5B) Young Won Lim 7/24/14
Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραCHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Διαβάστε περισσότεραReview of Essential Skills- Part 1. Practice 1.4, page 38. Practise, Apply, Solve 1.7, page 57. Practise, Apply, Solve 1.
Review of Essential Skills- Part Operations with Rational Numbers, page. (e) 8 Exponent Laws, page 6. (a) 0 + 5 0, (d) (), (e) +, 8 + (h) 5, 9. (h) x 5. (d) v 5 Expanding, Simplifying, and Factoring Algebraic
Διαβάστε περισσότεραIntegrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραwave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Διαβάστε περισσότεραAREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop
SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότερα3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2
SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin
Διαβάστε περισσότερα26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότεραSrednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Διαβάστε περισσότεραCHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Διαβάστε περισσότεραContents. 1 Introduction. 2 Shape of the Earth. 3 NAD 27 vs NAD 83
Special Report Notice of Disclaimer...................... iii List of Figures.................................... x List of Tables.................................... Preface...................................
Διαβάστε περισσότερα6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Διαβάστε περισσότερα1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Διαβάστε περισσότεραFormula for Success a Mathematics Resource
A C A D E M I C S K I L L S C E N T R E ( A S C ) Formula for Success a Mathematics Resource P e t e r b o r o u g h O s h a w a Contents Section 1: Formulas and Quick Reference Guide 1. Formulas From
Διαβάστε περισσότεραForced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Διαβάστε περισσότεραLecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Διαβάστε περισσότεραb. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραMathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
Διαβάστε περισσότεραSection 7.7 Product-to-Sum and Sum-to-Product Formulas
Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:
Διαβάστε περισσότεραReview Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
Διαβάστε περισσότεραParametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Διαβάστε περισσότερα10.4 Trigonometric Identities
770 Foundations of Trigonometry 0. Trigonometric Identities In Section 0.3, we saw the utility of the Pythagorean Identities in Theorem 0.8 along with the Quotient and Reciprocal Identities in Theorem
Διαβάστε περισσότεραΜονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete
Διαβάστε περισσότερα*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)
C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότερα1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Διαβάστε περισσότεραTrigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Διαβάστε περισσότεραSecond Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Διαβάστε περισσότεραCapacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
Διαβάστε περισσότεραExercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Διαβάστε περισσότεραSpherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Διαβάστε περισσότεραTRIGONOMETRY:+2.1++Degrees+&+Radians+ Definitions:* 1*degree*/* ** * 1*radian* * * *
TRIGONOMETRY:+2.1++Degrees+&+Radians+ Definitions: 1degree/ 1radian s s FORMULA: θ = radians;wheres=arclength,r=radius r θ r IMPLICATIONOFFORMULA:Ifs=rthen θ =1radian EXAMPLE1:Whatistheradianmeasureofacentralanglesubtendedbyanarcof32cminacircleofradius8cm.?
Διαβάστε περισσότερα4.4 Superposition of Linear Plane Progressive Waves
.0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive
Διαβάστε περισσότερα(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0
TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some
Διαβάστε περισσότεραReminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
Διαβάστε περισσότεραF-TF Sum and Difference angle
F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when
Διαβάστε περισσότεραECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Διαβάστε περισσότεραDESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Διαβάστε περισσότεραCore Mathematics C12
Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Wednesday 25 May 2016 Morning Time: 2 hours
Διαβάστε περισσότεραFourier Analysis of Waves
Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman
Διαβάστε περισσότεραSpace-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Διαβάστε περισσότεραthe total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Διαβάστε περισσότεραCORDIC Background (2A)
CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Διαβάστε περισσότεραMath 200 Problem Set VI. x 2 1 c 2 2 u
Math 00 Problem Set VI 1 Find all second partial derivatives of f, y = + y. Find all second order derivatives of gs, t = fs + t, s t. The wave equation u 1 c u = 0 arises in many models involving wave-like
Διαβάστε περισσότεραQ1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers
2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x
Διαβάστε περισσότεραUDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:
UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότερα