ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL. , και οι γραμμές συμβολίζονται με 1,2,3, Μπορούμε να αρχίσουμε εισάγοντας ορισμένα στοιχεία ως εξής.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL. , και οι γραμμές συμβολίζονται με 1,2,3, Μπορούμε να αρχίσουμε εισάγοντας ορισμένα στοιχεία ως εξής."

Transcript

1 ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL Το πακέτο Excel είναι ένα πρόγραμμα φύλλου εργασίας (spreadsheet) με το οποίο μπορούμε να κάνουμε υπολογισμούς και διαγράμματα που είναι χρήσιμοι στα οικονομικά. Στο Excel το φύλλο εργασίας χωρίζεται σε γραμμές και στήλες. Οι στήλες έχουν τα ονόματα A, B, C,..., και οι γραμμές συμβολίζονται με 1,2,3, Μπορούμε να αρχίσουμε εισάγοντας ορισμένα στοιχεία ως εξής. Στην συνέχεια μπορούμε να χρησιμοποιήσουμε το εικονίδιο «οδηγός γραφημάτων» για να κατασκευάσουμε ένα διάγραμμα. Ας υποθέσουμε ότι θέλουμε να παραστήσουμε τις δυο σειρές στο ίδιο διάγραμμα. Αρχίζουμε μαρκάροντας και τις δυο σειρές με το mouse και από τον οδηγό γραφημάτων εμφανίζονται οι ακόλουθες επιλογές. 1

2 Είναι δυνατόν όπως φαίνεται να έχουμε μια σειρά από διαγράμματα, όπως πχ γραμμές, ράβδοι, διασπορά κλπ. Επιλέγουμε Γραμμές και στην συνέχεια εμφανίζονται οι διαφορετικοί τύποι αυτού του διαγράμματος. Μπορούμε να επιλέξουμε τον τύπο που φαίνεται παραπάνω ώστε να εμφανίζονται οι σειρές και στο κάθε σημείο να υπάρχει ένα τετραγωνάκι. Με την επιλογή Επόμενο φαίνεται μια προεπισκόπηση του διαγράμματος. 2

3 Με τις επιλογές Επόμενο και Τίτλοι μπορούμε να ορίσουμε τα ονόματα που θέλουμε να έχουμε στους άξονες, έναν τίτλο για το διάγραμμα κοκ. Δίνουμε λοιπόν τα ακόλουθα στοιχεία. 3

4 Με την επιλογή Τέλος το διάγραμμα εμφανίζεται στο φύλλο εργασίας μας. 4

5 Τα μαύρα τετραγωνάκια που εμφανίζονται γύρω από το διάγραμμα μπορούν να χρησιμοποιηθούν για να αλλάξουμε τις διαστάσεις τους, να το μετακινήσουμε σε οποιοδήποτε σημείο του φύλλου εργασίας κλπ. Με την επιλογή Επεξεργασία και Αντιγραφή μπορούμε να αντιγράψουμε το διάγραμμα, στην συνέχεια να πάμε στο Word και να ενσωματώσουμε το διάγραμμα σε ένα υπάρχον κείμενο ή σε ένα νέο αρχείο. Το ίδιο μπορεί να γίνει και σε οποιοδήποτε άλλο πρόγραμμα των Windows. Ένας άλλος χρήσιμος τύπος διαγράμματος είναι η Διασπορά (ΧΥ) η οποία μας επιτρέπει να παραστήσουμε διαγραμματικά την μια σειρά σε σχέση με την άλλη. Μπορούμε να κάνουμε ένα κλικ στο διάγραμμα που ήδη υπάρχει στο φύλλο εργασίας και να πατήσουμε το πλήκτρο Del(ete) για να διαγραφεί. Στην συνέχεια μαρκάρουμε και πάλι τις σειρές, χρησιμοποιούμε τον «Οδηγό Γραφημάτων» και επιλέγουμε «Διασπορά (ΧΥ)» οπότε εμφανίζεται η ακόλουθη οθόνη επιλογών. Μαρκάρουμε την επιλογή που φαίνεται και πατώντας «Επόμενο» βλέπουμε την ακόλουθη προεπισκόπηση. 5

6 Στην συνέχεια μπορούμε να επιλέξουμε «Τέλος» και να έχουμε την τελική μορφή του διαγράμματος στο φύλλο εργασίας μας. 6

7 Μια άλλη χρήσιμη μορφή διαγράμματος μπορεί να είναι οι πίτες δεδομένων. Ας υποθέσουμε ότι θέλουμε να εμφανίζουμε την πρώτη σειρά σε διάγραμμα πίτας. Μαρκάρουμε την σειρά αυτή και από τον «Οδηγό Γραφημάτων» επιλέγουμε «Πίτα» με τον ακόλουθο τύπο διαγράμματος. Στην συνέχεια επιλέγουμε «Επόμενο» δυο φορές, «Ετικέτες δεδομένων» και έχουμε την εξής κατάσταση. Ε 7

8 Με την επιλογή «Τέλος» έχουμε το τελικό διάγραμμα ως εξής. Μπορείτε να εξοικειωθείτε με τους υπόλοιπους τύπους διαγραμμάτων και να επιλέξετε εύκολα εκείνους που θα είναι πιο κατάλληλοι για την εφαρμογή σας. ΥΠΟΛΟΓΙΣΜΟΣ ΒΑΣΙΚΩΝ ΣΤΑΤΙΣΤΙΚΩΝ ΜΕΤΡΩΝ Ας υποθέσουμε ότι θέλουμε να βρούμε βασικά στατιστικά μέτρα όπως πχ ο μέσος και η διακύμανση ή τυπική απόκλιση της πρώτης σειράς, ο συντελεστής συσχέτισης των δυο σειρών κλπ. Καταρχήν πρέπει να επιλέξουμε την θέση στην οποία θα εμφανισθεί ο μέσος αριθμητικός όπως φαίνεται πχ στην επόμενη οθόνη. 8

9 Στην συνέχεια μαρκάρουμε την πρώτη σειρά με το mouse και χρησιμοποιούμε το πλήκτρο «fx» ή «Επικόλληση συνάρτησης» από την γραμμή εργαλείων. Πολλές συναρτήσεις είναι διαθέσιμες στο πακέτο, πράγμα που το κάνει πολύ χρήσιμο σε στατιστικές και άλλες αναλύσεις. Μετά την επιλογή έχουμε την ακόλουθη οθόνη. 9

10 αφού επιλέξουμε τις «Στατιστικές» συναρτήσεις και την συνάρτηση «AVERAGE» για την οποία εμφανίζεται και βοήθεια στο κάτω μέρος της οθόνης. Επιλέγοντας ΟΚ έχουμε την επόμενη οθόνη. 10

11 Στην οθόνη αυτή μας ζητείται να προσδιορίσουμε την σειρά για την οποία θέλουμε να υπολογίσουμε τον μέσο. Καταρχήν απομακρύνουμε τον πίνακα από την μέση κάνοντας ένα κλικ στο εσωτερικό του και τραβώντας το mouse προς την θέση στην οποία θέλουμε να μεταφερθεί ο πίνακας. 11

12 Στην συνέχεια μαρκάρουμε την σειρά που θέλουμε και αφήνουμε το mouse όταν έχουμε επιλέξει τα κελιά που μας ενδιαφέρουν οπότε εμφανίζονται στον πίνακα τα κελιά που επιλέξαμε. 12

13 Αυτά είναι τα κελιά Α1 έως Α5 όπως πρέπει. Το αποτέλεσμα είναι 18,6 όπως φαίνεται στην προεπισκόπηση και αν επιλέξουμε ΟΚ θα δούμε ότι μεταφέρεται στην θέση που θέλουμε με αποτέλεσμα να έχουμε την ακόλουθη οθόνη. 13

14 Ας υποθέσουμε ότι ακριβώς από κάτω θέλουμε να εμφανίσουμε την τιμή της τυπικής απόκλισης. Η συνάρτηση που θέλουμε είναι η STDEV (standard deviation) όπως στην παρακάτω οθόνη. 14

15 Αν ακολουθήσουμε την ίδια διαδικασία όπως και στην περίπτωση του μέσου έχουμε το εξής αποτέλεσμα. 15

16 Για να υπολογίσουμε τον συντελεστή συσχέτισης ακριβώς από κάτω πρέπει να χτησιμοποιήσουμε την συνάρτηση CORREL όπως στην επόμενη οθόνη. 16

17 Αν επιλέξουμε ΟΚ εμφανίζεται ένας πίνακας στον οποίο πρέπει να ορίσουμε ποιες δυο σειρές πρέπει να χρησιμοποιηθούν για τον υπολογισμό. Στην θέση «Array1» μαρκάρουμε την πρώτη σειρά και στην θέση «Array2» μαρκάρουμε την δεύτερη σειρά οπότε έχουμε την εξής κατάσταση. 17

18 Με την επιλογή ΟΚ το αποτέλεσμα είναι όπως φαίνεται παρακάτω. 18

19 ΔΙΑΣΤΗΜΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΤΟΥ ΜΕΣΟΥ Από την στατιστική είναι γνωστό ότι το διάστημα εμπιστοσύνης του μέσου είναι X ± Z1 α / 2 S N όπου X είναι ο μέσος αριθμητικός του δείγματος, S είναι η τυπική απόκλιση, N είναι το μέγεθος του δείγματος και Z 1 α / 2 η κριτική τιμή της τυπικής κανονικής κατανομής σε επίπεδο σημαντικότητας α. Για μικρά δείγματα χρησιμοποιείται η κριτική τιμή της κατανομής Student-t με N 1 βαθμούς ελευθερίας. Το πακέτο S υπολογίζει την τιμή Z1 α / 2 για οποιοδήποτε επίπεδο σημαντικότητας α. Η N συνάρτηση που πρέπει να χρησιμοποιήσουμε είναι η CONFIDENCE της οποίας ο πίνακας εμφανίζεται στην επόμενη οθόνη. Στην επιλογή Alpha ορίζουμε το επίπεδο σημαντικότητας να είναι 0,07. Στην επιλογή Standard_dev ορίζουμε την τυπική απόκλιση. Αυτό μπορεί να γίνει αν απλά κάνουμε ένα κλικ στο κελί Α8 στο οποίο την έχουμε ήδη υπολογίσει. Στην επιλογή Size ορίζουμε το μέγεθος του δείγματος, δηλαδή 5 και έχουμε τα ακόλουθα. 19

20 Το αποτέλεσμα όπως φαίνεται είναι 7,657 πράγμα που σημαίνει ότι το διάστημα εμπιστοσύνης είναι 18,6 ± 7, 657. ΕΛΕΓΧΟΣ ΤΟΥ ΜΕΣΟΥ Ο έλεγχος της υπόθεσης ότι ο μέσος του πληθυσμού ισούται με μια ορισμένη τιμή, πχ H : µ 8 μπορεί να γίνει με την συνάρτηση ZTEST όπως στην επόμενη οθόνη. 0 = 20

21 Οι επιλογές για την συνάρτηση αυτή είναι όπως στην επόμενη οθόνη. 21

22 Στην θέση Array έχουμε μαρκάρει τα κελιά που αποτελούν το δείγμα μας. Στην θέση Χ πρέπει να δώσουμε την τιμή που ελέγχουμε (πχ 8). Την επόμενη θέση αφήνουμε κενή για να δηλώσουμε ότι η τυπική απόκλιση σ του πληθυσμού είναι άγνωστη και επομένως πρέπει να εκτιμηθεί με την τυπική απόκλιση του δείγματος S. Το αποτέλεσμα του ελέγχου είναι σε όρους της πιθανότητας ή τιμής p του ελέγχου που είναι p = Η τιμή αυτή είναι το ελάχιστο επίπεδο σημαντικότητας στο οποίο μπορούμε να απορρίψουμε την μηδενική υπόθεση. Επομένως σε α = 0, 05 μπορούμε να απορρίψουμε και να πούμε ότι ο μέσος δεν είναι 8. Αν ελέγχαμε την τιμή µ = 15 θα είχαμε Επομένως μπορούμε να απορρίψουμε την H 0 : µ = 15 μόνο σε επίπεδα σημαντικότητας μεγαλύτερα του 0,197. Πχ σε επίπεδο 0,05 ή 0,10 δεν μπορούμε να απορρίψουμε την μηδενική υπόθεση. ΕΛΕΓΧΟΣ ΙΣΟΤΗΤΑΣ ΔΥΟ ΜΕΣΩΝ Ένας άλλος έλεγχος που μπορεί να μας ενδιαφέρει είναι αν δυο δείγματα προέρχονται από πληθυσμούς με τον ίδιο μέσο. Η μηδενική υπόθεση που θέλουμε να ελέγξουμε είναι H 0 : µ 1 = µ 2 με δικατάληκτη εναλλακτική. Η πιο γενική και ρεαλιστική υπόθεση που μπορούμε να κάνουμε είναι ότι οι διακυμάνσεις των δυο πληθυσμών είναι άγνωστες και δεν είναι υποχρεωτικά ίσες. Η συνάρτηση που θα χρησιμοποιήσουμε λέγεται TTEST και έχει ως εξής. 22

23 Με την επιλογή ΟΚ έχουμε την ακόλουθη οθόνη. 23

24 Στις θέσεις Array1 και Array2 μαρκάρουμε τα δυο δείγματα, στην θέση Tails δίνουμε 2 όταν έχουμε δικατάληκτη εναλλακτική και στην θέση Type δίνουμε 3 για να δηλώσουμε ότι έχουμε πληθυσμούς με πιθανώς άνισες διακυμάνσεις τις οποίες δεν γνωρίζουμε και επομένως θα πρέπει να εκτιμηθούν. Το αποτέλεσμα του ελέγχου είναι σε όρους της τιμής p όπως και στον έλεγχο του μέσου και το αποτέλεσμα είναι 6 9,64E 06 που σημαίνει 9, Κατά συνέπεια πρέπει να απορρίψουμε την μηδενική υπόθεση της ισότητας των δυο μέσων αν έχουμε κάποιο λογικό επίπεδο σημαντικότητας, πχ 0,01 ή 0,05 κλπ. ΕΛΕΓΧΟΣ ΔΥΟ ΔΙΑΚΥΜΑΝΣΕΩΝ 2 2 Ο έλεγχος ότι οι διακυμάνσεις δυο πληθυσμών είναι ίδιες, δηλαδή H0 : σ 1 = σ 2 γίνεται με την στατιστική F και η συνάρτηση που πρέπει να χρησιμοποιήσουμε είναι η FTEST. Στην συνάρτηση αυτή πρέπει να δώσουμε τα δυο δείγματα και τα αποτελέσματά της φαίνονται στον επόμενο πίνακα. Από την τιμή p η οποία είναι 0,8811 είναι σαφές ότι δεν μπορούμε να απορρίψουμε την υπόθεση ισότητας των διακυμάνσεων σε λογικά επίπεδα εμπιστοσύνης, πχ 0,01 ή 0,05 κλπ. ΚΡΙΤΙΚΕΣ ΤΙΜΕΣ ΚΑΤΑΝΟΜΩΝ Μια χρήσιμη ιδιότητα του πακέτου είναι ότι μπορεί να χρησιμοποιηθεί για τον υπολογισμό των κριτικών τιμών οποιασδήποτε κατανομής και επομένως με αυτό τον τρόπο δεν είναι ανάγκη να καταφεύγουμε σε πίνακες. 24

25 Ας υποθέσουμε ότι Z έχει την τυπική κανονική κατανομή N (0,1), δηλαδή έχει μέσο µ = 0 και διακύμανση σ 2 = 1 και θέλουμε να υπολογίσουμε την πιθανότητα p ( Z < 1,96). Θα χρησιμοποιήσουμε την συνάρτηση NORMDIST και έχουμε την ακόλουθη οθόνη. Το αποτέλεσμα είναι 0,975. Αυτό είναι λογικό γιατί ξέρουμε ήδη από τον έλεγχο του μέσου ότι η κριτική τιμή είναι 1,96 σε επίπεδο εμπιστοσύνης 0,05. Μοιράζοντας αυτό το 0,05 στις δυο ουρές της κατανομής προκύπτει ότι μέχρι την κριτική τιμή 1,96 πρέπει να υπάρχει μάζα 0,975 ή 97,5%. Ένα άλλο παράδειγμα είναι ο υπολογισμός της πιθανότητας P ( X < 17) όταν η X έχει μια κανονική κατανομή με μέσο µ = 20 και τυπική απόκλιση σ = 4. Το αποτέλεσμα και οι απαιτούμενες εισροές στην συνάρτηση φαίνονται στην επόμενη οθόνη. 25

26 Πρέπει να είναι σαφές ότι η συνάρτηση NORMDIST είναι περισσότερο χρήσιμη από τους πίνακες. Οι πίνακες αναφέρονται σε μια τυπική κανονική κατανομή ενώ η συνάρτηση μπορεί να υπολογίσει πιθανότητες για οποιαδήποτε κανονική κατανομή με αυθαίρετες τιμές των µ και σ. Στην συνέχεια ας υπολογίσουμε ότι θέλουμε την κριτική τιμή της κατανομής Studentt με 4 βαθμούς ελευθερίας. Η συνάρτηση που πρέπει να χρησιμοποιήσουμε είναι η TDIST και οι εισροές μαζί με το αποτέλεσμα φαίνονται στην επόμενη οθόνη. 26

27 Στην πραγματικότητα η συνάρτηση επιστρέφει την τιμή 1 P ( Tν < t) όπου T ν είναι τυχαία μεταβλητή με την κατανομή Student-t και ν βαθμούς ελευθερίας. Το αποτέλεσμα είναι 0,12155 και επομένως P( T ν < t) = 1 0,12155 = 0, Στην συνέχεια έστω ότι Y ~ χ 2 ( ν ). Η πιθανότητα P ( Y < 10) όταν ν = 7 μπορεί να υπολογισθεί με την συνάρτηση CHIDIST όπως στην ακόλουθη οθόνη. 27

28 Η πιθανότητα που θέλουμε είναι 1-0,18857=0, Παρόμοια μπορούμε να υπολογίσουμε κριτικές τιμές της F κατανομής με την εντολή FDIST. Η κατανομή έχει δυο παραμέτρους βαθμών ελευθερίας, ν 1 και ν 2. Αν οι βαθμοί ελευθερίας είναι 6 και 11 αντίστοιχα, Q έχει την κατανομή F 6, 11 και θέλουμε την πιθανότητα P ( Q < 4) οι εισροές και το αποτέλεσμα της συνάρτησης φαίνονται στην επόμενη οθόνη. 28

29 Η ζητούμενη πιθανότητα είναι 1-0,02265=0,977. Εναλλακτικά, το πακέτο μας δίνει 2 απευθείας την πιθανότητα P ( Q > 4). Αυτό ισχύει για τις κατανομές t, χ και F. Είναι επίσης δυνατόν να χρησιμοποιήσουμε τις αντίστροφες αυτών των συναρτήσεων. Πχ αντί να θέλουμε την πιθανότητα P ( Z < z) μπορεί να θέλουμε να προσδιορίσουμε σε ποια τιμή του z έχουμε P ( Z < z) = p, όπου p είναι μια δοσμένη τιμή. Πχ στον έλεγχο του μέσου μας ενδιέφερε να προσδιορίσουμε σε ποια τιμή z έχουμε P ( Z < z) = 1 α / 2 όπου α ήταν ένα δεδομένο επίπεδο σημαντικότητας. Αν ορίσουμε Φ ( z ) = P( Z < z), δηλαδή την αθροιστική συνάρτηση κατανομής, είναι σαφές ότι η τιμή z για την οποία P ( Z < z) = p, ικανοποιεί = Φ 1 1 z ( π ) όπου Φ είναι η αντίστροφη αθροιστική συνάρτηση κατανομής. Εφόσον Φ( z π dt η αντίστροφη δεν μπορεί να προσδιορισθεί z ) = (2 ) 1/ 2 2 exp( t / 2) αναλυτικά αφού το ολοκλήρωμα δεν είναι γνωστό σε κλειστή μορφή. Για τον λόγο αυτό χρησιμοποιούνται αριθμητικές μέθοδοι για τον υπολογισμοί της συνάρτησης Φ και της αντίστροφής της. Ας υποθέσουμε ότι θέλουμε την τιμή z για την οποία P ( Z < z) = 0, 815. Η συνάρτηση που θα πρέπει να χρησιμοποιήσουμε είναι η NORMINV της οποίας οι εισροές και τα αποτελέσματα φαίνονται στην επόμενη οθόνη. 29

30 Είναι σαφές ότι μπορούμε να χρησιμοποιήσουμε αυθαίρετο μέσο και τυπική 2 απόκλιση. Αν πχ έχουμε X ~ N( µ, σ ) με µ = 15 και σ = 5, η τιμή x για την οποία έχουμε P ( X < x) = 0, 76 δίνεται με την ακόλουθη εξειδίκευση. 30

31 Η τιμή αυτή θα είναι z = 18, 53. Παρόμοια μπορούμε να υπολογίσουμε τις αντίστροφες συναρτήσεις κατανομής άλλων κατανομών με τις εντολές TINV, CHIINV και FINV. ΥΠΟΛΟΓΙΣΜΟΙ ΣΕ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ Το μεγάλο πλεονέκτημα των υπολογισμών σε spreadsheets είναι ότι από την στιγμή που ορίσουμε κάποιους υπολογισμούς, αν αλλάξουμε κάποια τιμή τότε ολόκληρο το φύλλο εργασίας τροποποιείται λαμβάνοντας υπόψη αυτή την αλλαγή. Για να ορίσουμε ότι σε ένα κελί θα χρησιμοποιηθούν συναρτήσεις υπολογισμού χρησιμοποιούμε το σύμβολο της ισότητας (=). Σαν παράδειγμα ας αρχίσουμε από τις δυο μεταβλητές που έχουμε και ας υπολογίσουμε μια τρίτη, που θα είναι C = A + B. Πηγαίνουμε στο κελί C 1 και δίνουμε το σύμβολο =. Στην συνέχεια κάνουμε κλικ στο κελί A 1 και βλέπουμε να εμφανίζεται το σύμβολό του. Μετά δίνουμε + και μετά κάνουμε κλικ στο κελί B1 ώστε τελικά να έχουμε την εξής εικόνα. 31

32 Πατώντας enter εμφανίζεται στο κελί το αποτέλεσμα του υπολογισμού που είναι 89. Για να επαναλάβουμε αυτή την διαδικασία και για τα υπόλοιπα κελιά ακολουθούμε την εξής απλή διαδικασία. Στο κελί C 1 επιλέγουμε «Αντιγραφή» από την γραμμή εργαλείων. Μαρκάρουμε τα κελιά C 2 έως C 5 με το mouse. Επιλέγουμε «Επικόλληση» από την γραμμή εργαλείων. Στο τέλος αυτής της διαδικασίας έχουμε την επόμενη οθόνη στην οποία φαίνονται τα αποτελέσματα των υπολογισμών. 32

33 Στην συνέχεια ας δούμε πως μπορούμε να αξιοποιήσουμε τις δυνατότητες του πακέτου για να επιλύσουμε ένα μακροοικονομικό υπόδειγμα που έχει τις ακόλουθες εξισώσεις. Ct = , 25Y t I 2 + 0,2Y 1 0, 85 t = t = 1+ 0,40 t 1 G t Y Y t = Ct + It + Gt για t = 2,3,4,..., 20 με Y 40. R t 1 = Στο υπόδειγμα αυτό C t είναι η κατανάλωση του έτους t, Y t είναι το εισόδημα, Rt είναι το επιτόκιο, G t είναι οι δημόσιες δαπάνες. Θα υποθέσουμε ότι R t = 7. Αν αντικαταστήσουμε στον ορισμό του εισοδήματος όλες τις προηγούμενες εξισώσεις έχουμε Y 17,33 0,8 1 1, 133R t = + Yt t Αρχίζουμε με ένα νέο φύλλο εργασίας του Excel και δίνουμε στην στήλη Α τα στοιχεία για το επιτόκιο, δηλαδή μια σειρά που αποτελείται από τον αριθμό 7 για τα κελιά Α1 έως Α20. Μπορούμε απλά να δώσουμε το 7 στο κελί Α1 και μετά να επιλέξουμε την διαδικασία. 33

34 Δίνουμε enter και εμφανίζεται το αποτέλεσμα 41,399. Για να δημιουργήσουμε το εισόδημα των επόμενων περιόδων κάνουμε «Αντιγραφή» στο κελί Β2, επικόλληση στα επόμενα κελιά και έχουμε τα ακόλουθα αποτελέσματα. 34

35 Αν παραστήσουμε γραφικά την σειρά Y t θα έχουμε τα εξής αποτελέσματα. 35

36 Βλέπουμε πχ ότι αρχίζοντας από την αρχική τιμή 40 το εισόδημα αυξάνει προς την κατάσταση μακροχρόνιας ισορροπίας του. Στην συνέχεια θα κάνουμε μια συγκριτική δυναμική ανάλυση. Το ερώτημα που θα μας απασχολήσει είναι η σύγκριση τριών διαφορετικών πολιτικών επιτοκίου. Πολιτική 1. Το επιτόκιο αυξάνει σε 12% από την περίοδο 11 και μετά, δηλαδή έχουμε μια μόνιμη μεταβολή στα επιτόκια. Πολιτική 2. Το επιτόκιο αυξάνει σε 12% από την περίοδο 11 έως και την περίοδο 15 και μετά μειώνεται σε 10%. Πολιτική 3. Το επιτόκιο αυξάνει σε 12% μόνο για την περίοδο 11 και επανέρχεται στο 7% εφεξής, οπότε έχουμε μια παροδική μεταβολή στα επιτόκια. Για να δούμε τα αποτελέσματα της πολιτικής 1, αλλάζουμε τα επιτόκια στα κελιά Α11 ως Α15 σε 12 και βλέπουμε πως τροποποιείται η δεύτερη στήλη. Η γραφική παράσταση του εισοδήματος έχει ως εξής. 36

37 Βλέπουμε ότι το εισόδημα μειώνεται σαν αποτέλεσμα της αύξησης των επιτοκίων και όταν αυτά αρχίζουν να μειώνονται μετά την περίοδο 16 αρχίζει να αυξάνει και να συγκλίνει πάλι προς το επίπεδο μακροχρόνιας ισορροπίας. Για να δούμε τα αποτελέσματα της πολιτικής 2, αλλάζουμε τα κελιά ώστε να έχουμε την ακόλουθη εικόνα. 37

38 Τα αποτελέσματα φαίνονται στην ακόλουθη οθόνη. 38

39 Στην πρερίπτωση αυτή, το εισόδημα μειώνεται συνεχώς σαν αποτέλεσμα της μόνιμης αύξησης των επιτοκίων. Η πολιτική 3 μπορεί να εξετασθεί αν αλλάξουμε μόνον το κελί Α11 οπότε θα έχουμε τα εξής αποτελέσματα. Η παροδική μεταβολή προκαλεί μια μεγάλη μείωση στο εισόδημα το οποίο από την επόμενη περίοδο αρχίζει να αυξάνει και πάλι και να συγκλίνει στα επίπεδα της μακροχρόνιας ισορροπίας. ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Είναι δυνατόν με την βοήθεια του υπολογιστή να κατασκευάσουμε τυχαίους αριθμούς, δηλαδή τυχαία δείγματα από έναν ορισμένο πληθυσμό. Πχ για να κατασκευάσουμε τυχαία δείγματα από την ομοιόμορφη κατανομή στο διάστημα (0,1) με συνάρτηση πυκνότητας πιθανότητας 1, f ( x) = 0, αν x (0,1) διαφορετικά μπορούμε να χρησιμοποιήσουμε την συνάρτηση RAND (). 39

40 Χρησιμοποιώντας Copy και Paste στα επόμενα 100 κελιά έχουμε: 40

41 Αν κατασκευάσουμε ένα ιστόγραμμα αυτής της σειράς (για να το κάνετε πρέπει να έχετε εγκατεστημένα το εργαλείο «Ανάλυση Δεδομένων» στο μενού «Εργαλεία») θα έχουμε την εξής εικόνα. Για να κατασκευάσουμε μια σειρά τυχαίων αριθμών από την κανονική κατανομή με 2 μέσο µ και διακύμανση σ ο γενικός τύπος είναι x = µ + σφ ( 1 u όπου u έχει την τυπική ομοιόμορφη κατανομή, Φ είναι η αθροιστική συνάρτηση 1 κατανομής της τυπικής κανονικής κατανομής και Φ είναι η αντίστροφη συνάρτηση. Η συνάρτηση αυτή είναι διαθέσιμη στην συνάρτηση NORMINV και έχουμε την ακόλουθη οθόνη. ) 41

42 Το ιστόγραμμα της σειράς φαίνεται στην ακόλουθη οθόνη. 42

43 Αυτό το ιστόγραμμα δεν απέχει πολύ από την κανονική καμπύλη και είναι με αυτήν ακριβώς την έννοια που οι τυχαίοι αριθμοί είναι «τυχαίοι»: Παρότι παράγονται με αιτιοκρατικούς τύπους εντούτοις τα ιστογράμματά τους προσεγγίζουν τις συναρτήσεις πυκνότητας των αντίστοιχων τυχαίων μεταβλητών. Επίσης θα περιμέναμε ο μέσος της σειράς στην στήλη Β να είναι κοντά στο μηδέν και η διακύμανση κοντά στην μονάδα. ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Για να κάνουμε γραμμική παλινδρόμηση χρησιμοποιούμε την επιλογή «Ανάλυση Δεδομένων» από το μενού «Εργαλεία». Ας υποθέσουμε ότι έχουμε τα ακόλουθα στοιχεία. 43

44 Η επιλογή «Ανάλυση Δεδομένων» από το μενού «Εργαλεία» μας δίνει την ακόλουθη οθόνη στην οποία θα πρέπει να ορίσουμε τις μεταβλητές Y και X. Θα υποθέσουμε ότι θέλουμε να κάνουμε την παλινδρόμηση με τις πρώτες 5 παρατηρήσεις. 44

45 Επιλέγουμε επίσης τα αποτελέσματα να πάνε σε ένα νέο βιβλίο εργασίας και δίνοντας ΟΚ έχουμε την ακόλουθη οθόνη την οποία παίρνουμε επιλέγοντας «Μορφή», «Αυτόματη μορφοποίηση» και «Έγχρωμη 2» για να εμφανίζονται καλύτερα τα αποτελέσματα. 45

46 Το πακέτο μας δίνει τις εκτιμήσεις των παραμέτρων, τα τυπικά τους σφάλματα και τις 2 στατιστικές t που χρησιμεύουν στον έλεγχο υποθέσεων, το R κλπ. Αν θέλουμε μπορούμε να αποθηκεύσουμε τα αποτελέσματα αυτά ή να ακυρώσουμε το βιβλίο εργασίας και να εμφανισθεί η ακόλουθη οθόνη στην οποία επιλέγουμε «Όχι». 46

47 ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισμένες εξισώσεις όπως πχ η γραμμική ax + b = 0 ή η τετραγωνική 2 ax + bx + c = 0 επιδέχονται αναλυτική λύση ως προς x. Υπάρχουν ωστόσο αρκετές εξισώσεις που δεν είναι δυνατόν να επιλυθούν αναλυτικά. Ας θεωρήσουμε μια τέτοια εξίσωση στην γενική μορφή f ( x) = * Σκοπός μας είναι να προσδιορίσουμε μια ρίζα x τέτοια ώστε f ( x * ) = 0. Τέτοιες εξισώσεις είναι δυνατόν να λυθούν αριθμητικά με την λεγόμενη επανάληψη Newton. Η διαδικασία αυτή ξεκινά με μια αρχική τιμή x 0 που αποτελεί την εκτίμησή μας για την ρίζα. Η εκτίμηση αυτή αναθεωρείται σε x 1 και αυτή με την σειρά της σε x 2 κλπ σύμφωνα με το σχήμα f ( xi ) xi+ 1 = xi, i = 0,1,2,3,... f ( x ) i Τερματίζουμε αυτή την διαδικασία όταν η μεταβολή xi+ 1 xi είναι μικρή, πχ μικρότερη από 0,0001. Όταν αυτό συμβαίνει είναι σαφές ότι θα έχουμε f ( x i ) 0 και * επομένως x i θα αποτελεί μια καλή αριθμητική εκτίμηση της ρίζας x (με την υπόθεση ότι η πρώτη παράγωγος δεν μηδενίζεται). 0 47

48 Ας θεωρήσουμε σαν εφαρμογή την εξίσωση f ( x) = x exp( x) με παράγωγο f ( x) = 1+ exp( x). Η επανάληψη Newton θα είναι x i+ 1 = x i xi exp( xi ) 1+ exp( x ) i με δεδομένη την τιμή x 0. Αν υπολογίσουμε τις τιμές της συνάρτησης στο διάστημα από 3 ως 3 (με 18 ενδιάμεσες τιμές) και κάνουμε ένα διάγραμμα της συνάρτησης θα έχουμε την εξής εικόνα. Το σημείο στο οποίο φαίνεται να υπάρχει ρίζα είναι στο 0,789 (το σημείο αυτό φαίνεται αν με το mouse στοχεύσουμε εκεί που η συνάρτηση προσεγγιστικά τέμνει τον οριζόντιο άξονα). Αυτή θα μπορούσε να είναι μια αρχική τιμή που μπορούμε να χρησιμοποιήσουμε. Θα χρησιμοποιήσουμε παρόλα αυτά την τιμή x 0 = 4 Αρχίζουμε με ένα νέο φύλλο εργασίας και εισάγουμε την τιμή 4 στην θέση Α1. Στην θέση Α2 πληκτρολογούμε την επανάληψη Newton και έχουμε την εξής εικόνα. 48

49 Πατώντας enter έχουμε την εμφάνιση της τιμής 0, Κάνοντας copy (Αντιγραφή) στην τιμή αυτή, μαρκάροντας τα επόμενα 10 κελιά και χρησιμοποιώντας paste (Επικόλληση) έχουμε 49

50 Είναι φανερό ότι από την επανάληψη 5 και μετά οι τιμές δεν μεταβάλλονται πράγμα που σημαίνει ότι έχουμε βρεί την ρίζα και αυτή είναι x * 0, Για να βεβαιωθούμε ότι έχουμε βρει την ρίζα πρέπει να υπολογίσουμε την f ( x * ) και αυτή να είναι κοντά στο μηδέν, πράγμα που κάνουμε στην επόμενη οθόνη. Το αποτέλεσμα είναι πραγματικά μηδέν: 50

51 Σαν άσκηση μπορείτε να ξεκινήσετε την διαδικασία Newton από μια διαφορετική αρχική τιμή και να δείτε αν συγκλίνει στην ρίζα και πόσο γρήγορα συγκλίνει στην 2 ρίζα. Μια άλλη άσκηση είναι να εξετάσετε την συνάρτηση f ( x) = x 3x + 2 με αρχικές τιμές x 0 = 0 και x 0 = 4. Η διαδικασία Newton θα συγκλίνει την πρώτη φορά στην τιμή 1 και την δεύτερη φορά στην τιμή 2 που αποτελούν τις ρίζες της συνάρτησης. ΜΕΓΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ Το πρόβλημα max : f ( x) χαρακτηρίζεται από τις αναγκαίες και ικανές συνθήκες f ( x * ) = 0 και f ( x * ) < 0 Η εξίσωση f ( x * ) = 0 είναι δυνατόν να μην λύνεται αναλυτικά οπότε θα πρέπει να καταφύγουμε στην χρήση αριθμητικών μεθόδων. Για να βρούμε αριθμητικά το μέγιστο μπορούμε να εφαρμόσουμε την επανάληψη Newton για την λύση της εξίσωσης f ( x * ) = 0, η οποία θα είναι f ( xi ) xi+ 1 = xi, i = 0,1,2,... με δεδομένο x0 f ( x ) i Σαν παράδειγμα ας θεωρήσουμε την συνάρτηση f ( x) = x exp( x) με παραγώγους f ( x) = 1 exp( x) και f ( x) = exp( x). Η αναλυτική λύση είναι x * = 0. Η επανάληψη Newton στην περίπτωση αυτή θα είναι 51

52 52 ) exp( 1 ) exp( ) exp( 1 ) ( ) ( 1 i i i i i i i i i x x x x x x f x f x x + = = = + Το διάγραμμα της συνάρτησης φαίνεται στην επόμενη οθόνη. Για να προγραμματίσουμε την επανάληψη Newton χρησιμοποιούμε την εντολή

53 Με αντιγραφή και επικόλληση οι επόμενες επαναλήψεις της μεθόδου είναι όπως στην ακόλουθη οθόνη. 53

54 Από την 11 η επανάληψη η διαδικασία συγκλίνει στην τιμή 0 που αποτελεί και την αναλυτική τιμή στην οποία η συνάρτηση μεγιστοποιείται. Σαν άσκηση μπορείτε να επιβεβαιώσετε ότι αν αρχίσετε από την τιμή x 0 = 100 θα χρειασθείτε 106 επαναλήψεις για να συγκλίνετε στην τιμή 0. Μια άλλη ιδιότητα της επανάληψης Newton είναι ότι συγκλίνει σε μια επανάληψη αν η συνάρτηση f (x) είναι τετραγωνική. Αν έχουμε το πρόβλημα ελαχιστοποίησης της συνάρτησης f (x) μπορούμε να μεγιστοποιήσουμε την g( x) = f ( x) και να έχουμε την ίδια επανάληψη Newton. Απλώς θα πρέπει να βεβαιωθούμε ότι ισχύουν οι συνθήκες δεύτερης τάξης ή να κάνουμε ένα διάγραμμα της συνάρτησης για να βεβαιωθούμε ότι έχουμε βρει το μοναδικό ελάχιστο ή μέγιστο. ΑΠΛΗ ΜΕΘΟΔΟΣ ΤΩΝ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Αν και είναι δυνατόν να χρησιμοποιήσουμε το Excel για την διεξαγωγή απλής ή πολλαπλής γραμμικής παλινδρόμησης υπάρχουν πιο εξειδικευμένα προγράμματα για τέτοιες εργασίες όπως το SPSS ή το Eviews. Στην συνέχεια θα δούμε πως μπορούμε να χρησιμοποιήσουμε απλές συναρτήσεις του Excel για να εφαρμόσουμε την μέθοδο ελαχίστων τετραγώνων όταν το εργαλείο «Ανάλυση Δεδομένων» δεν είναι εγκατεστημένο. Όπως είναι γνωστό από την στατιστική αν έχουμε το γραμμικό υπόδειγμα Y = α + βx + u, i = 1,.., n i i i οι εκτιμήσεις ελαχίστων τετραγώνων των παραμέτρων δίνονται από τις σχέσεις όπου n xi y ˆβ i i= 1 =, n αˆ = Y βˆ X x x i i= 1 2 i = X X και y = Y Y i Θα εφαρμόσουμε απευθείας αυτούς τους τύπους. Ας υποθέσουμε ότι έχουμε τα στοιχεία στην ακόλουθη οθόνη. i i 54

55 Στην συνέχεια κατασκευάζουμε τους μέσους των μεταβλητών χρησιμοποιώντας Insert, Function, Average. 55

56 Έχουμε επομένως την ακόλουθη οθόνη. 2 Στην συνέχεια κατασκευάζουμε τις μεταβλητές x i και x y i i με την διαδικασία που φαίνεται στις επόμενες οθόνες. Για να κατασκευάσουμε την απόκλιση x i πρέπει να χρησιμοποιήσουμε την εντολή A2 A$ 7. Το σύμβολο $ σημαίνει ότι το κελί που ακολουθεί πρέπει να αφαιρεθεί στην μορφή αυτή και να μην αυξηθεί ο δείκτης όπως συμβαίνει συνήθως με τον συμβολισμό A 2 όταν αυτός επικολλάται σε πεδίο κελιών. Εφαρμόζοντας την διαδικασία Copy, Paste στα επόμενα κελιά και κάνοντας το ίδιο για την μεταβλητή y έχουμε την ακόλουθη οθόνη. 56

57 Έχουμε επίσης υπολογίσει τα αθροίσματα των x και y με την χρήση του πλήκτρου Σ από την Γραμμή Εργαλείων για να βεβαιωθούμε ότι οι αποκλίσεις από τους μέσους είναι μηδέν όπως θα έπρεπε. Στην συνέχεια υπολογίζουμε τις μεταβλητές xx = x * x και xy = x * y στις επόμενες δυο στήλες. 57

58 Έχουμε την ακόλουθη οθόνη για τον υπολογισμό του βˆ Για τον υπολογισμό του αˆ έχουμε την επόμενη οθόνη. 58

59 Το αποτέλεσμα είναι η εκτίμηση 4,1 για την σταθερά και 5,5 για την κλίση. Στην συνέχεια δημιουργούμε τα κατάλοιπα U = Y αˆ βˆ X i, τα τετράγωνά τους UU = U ^2 και το άθροισμα των τετραγώνων. 59

60 60

61 Το άθροισμα τετραγώνων των καταλοίπων είναι 34,7. Το άθροισμα των καταλοίπων 15 είναι 7,1 10, δηλαδή πρακτικά μηδέν όπως ισχύει πάντοτε όταν εφαρμόζουμε την μέθοδο ελαχίστων τετραγώνων. Για να εκτιμήσουμε την διακύμανση των καταλοίπων έχουμε την οθόνη μπορούμε να χρησιμοποιήσουμε την συνάρτηση VAR: 61

62 Το αποτέλεσμα είναι 8,675. Για να παραστήσουμε γραφικά τα στοιχεία μαζί με την ευθεία παλινδρόμησης πρέπει πρώτα να κατασκευάσουμε μια σειρά που αποδίδει την ευθεία αυτή σε κάθε παρατήρηση X με την εντολή στην ακόλουθη οθόνη. i 62

63 Για να κατασκευάσουμε το διάγραμμα τώρα χρησιμοποιούμε τον Οδηγό Γραφημάτων ή Chart Wizard και ακολουθούμε τα βήματα στις επόμενες οθόνες. 63

64 Στον επόμενο οδηγό επιλέγουμε «Σειρά» και έχουμε 64

65 Καταργούμε τις επόμενες σειρές και έχουμε το εξής διάγραμμα με την επιλογή «Τέλος» ή Finish. 65

66 Στο διάγραμμα αυτό φαίνονται τα αρχικά στοιχεία μας μαζί με την γραμμή της παλινδρόμησης και είναι εύκολο να δούμε κατά πόσον η προσαρμογή του υποδείγματος στα στοιχεία είναι καλή. Για να δούμε πιο καλά την προσαρμογή μπορούμε να χρησιμοποιήσουμε τον συντελεστή συσχέτισης μεταξύ των Y και Yfit το τετράγωνο του οποίου είναι ο συντελεστής προσδιορισμού 2 R. Θα έχουμε r = 0, και r 2 = 0,

67 Αξίζει να σημειώσουμε ότι το φύλλο εργασίας είναι πια διαμορφωμένο όπως θα διαμορφώνατε έναν πίνακα τιμών για να εκτιμήσετε τις παραμέτρους όπως σε μια τυπική άσκηση παλινδρόμησης. 67

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Oικονομικές και Mαθηματικές Eφαρμογές

Oικονομικές και Mαθηματικές Eφαρμογές Το πακέτο ΕXCEL: Oικονομικές και Mαθηματικές Eφαρμογές Eπιμέλεια των σημειώσεων και διδασκαλία: Ευαγγελία Χαλιώτη* Θέματα ανάλυσης: - Συναρτήσεις / Γραφικές απεικονίσεις - Πράξεις πινάκων - Συστήματα εξισώσεων

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 15 2η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση, χρησιμοποιώντας ως δεδομένα τα στοιχεία που προέκυψαν από την 1η

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ . ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ (RANK REGRESSION).1 Μονότονη Παλινδρόμηση (Monotonic Regression) Από τη γραφική παράσταση των δεδομένων του προηγουμένου προβλήματος παρατηρούμε ότι τα ζευγάρια (Χ i, i )

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel

Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel 11.1. Πολλαπλά φύλλα εργασίας Στο προηγούμενο κεφάλαιο δημιουργήσαμε ένα φύλλο εργασίας με τον προϋπολογισμό δαπανών του προσωπικού που θα συμμετάσχει

Διαβάστε περισσότερα

Χρησιμοποιούμενες Συναρτήσεις του Microsoft Excel

Χρησιμοποιούμενες Συναρτήσεις του Microsoft Excel Χρησιμοποιούμενες Συναρτήσεις του Microsoft Excel A.1 Μέση Τιμή - Συνάρτηση AVERAGE Δίνει τον μέσο όρο (αριθμητικό μέσο) των ορισμάτων. AVERAGE(umber1; umber;...) Number1, umber,... είναι 1 έως 30 ορίσματα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-07 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Στοιχεία Στατιστικής 1 ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Στοιχεία Στατιστικής 1 ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Στοιχεία Στατιστικής 1 ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Περιγραφική Στατιστική Συσχέτιση και Γραμμική Παλινδρόμηση Το T-Test και Έλεγχοι Υποθέσεων Ανάλυση Διακύμανσης Συσχέτιση Δύο Συνόλων Δεδομένων Συσχέτιση με τη

Διαβάστε περισσότερα

Kεφάλαιο 11 Λίστες και Ανάλυση Δεδομένων Kεφάλαιο 12 Εργαλεία ανάλυσης πιθανοτήτων Kεφάλαιο 13 Ανάλυση δεδομένων...

Kεφάλαιο 11 Λίστες και Ανάλυση Δεδομένων Kεφάλαιο 12 Εργαλεία ανάλυσης πιθανοτήτων Kεφάλαιο 13 Ανάλυση δεδομένων... Μέρος 2 Kεφάλαιο 11 Λίστες και Ανάλυση Δεδομένων... 211 Kεφάλαιο 12 Εργαλεία ανάλυσης πιθανοτήτων... 241 Kεφάλαιο 13 Ανάλυση δεδομένων... 257 Kεφάλαιο 14 Συναρτήσεις Μέρος Β... 285 Kεφάλαιο 15 Ευρετήριο

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ 2ο ΜΑΘΗΜΑ Ι ΑΣΚΟΝΤΕΣ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ ΖΗΚΟΣ ΓΕΩΡΓΙΟΣ ΜΑΥΡΑΝΤΖΑΣ ΣΤΕΛΙΟΣ ΤΖΙΑΛΛΑ ΑΓΓΕΛΙΚΗ Email:

Διαβάστε περισσότερα

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o ΙΩΑΝΝΗΣ Κ. ΔΗΜΗΤΡΙΟΥ Εφαρμογές Ποσοτικές Ανάλυσης με το Excel 141 ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Ανάλυση Δεδομένων Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Οδηγός του Excel. για το βιβλίο. Στατιστικές Μέθοδοι Δ. Α. Ιωαννίδη

Οδηγός του Excel. για το βιβλίο. Στατιστικές Μέθοδοι Δ. Α. Ιωαννίδη 1 Οδηγός του Excel για το βιβλίο Στατιστικές Μέθοδοι Δ. Α. Ιωαννίδη 1 2 Πρόλογος Το Excel είναι το πλέον διαδεδομένο πρόγραμμα που χρησιμοποιείται στη Λογιστική και Χρηματοοικονομική καθώς και στη διαχείριση

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 2 ο. ΗχρήσητουπακέτουEviews (Using Eviews econometric package)

ΜΑΘΗΜΑ 2 ο. ΗχρήσητουπακέτουEviews (Using Eviews econometric package) ΜΑΘΗΜΑ 2 ο ΗχρήσητουπακέτουEviews (Using Eviews econometric package) Για να καλέσετε το πρόγραμμα πρέπει να εργαστείτε ως εξής: 1. Κάντε δύο κλικ στο εικονίδιο του Eviews 2. Από την εντολή File πάω στο

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες για

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ (Σημειώσεις Excel) ΕΚΠΑΙΔΕΥΤΕΣ: ΒΑΡΕΛΑΣ ΙΩΑΝΝΗΣ, ΠΟΖΟΥΚΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ MICROSOFT EXCEL (ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ) ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2007-08 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Εργαστήριο 4 ΔΗΜΙΟΥΡΓΙΑ ΓΡΑΦΗΜΑΤΩΝ ΜΕ ΤΟ EXCEL ΑΚ ΤΡΑΥΛΟΣ

Εργαστήριο 4 ΔΗΜΙΟΥΡΓΙΑ ΓΡΑΦΗΜΑΤΩΝ ΜΕ ΤΟ EXCEL ΑΚ ΤΡΑΥΛΟΣ Εργαστήριο 4 ΔΗΜΙΟΥΡΓΙΑ ΓΡΑΦΗΜΑΤΩΝ ΜΕ ΤΟ EXCEL ΑΚ ΤΡΑΥΛΟΣ Βήμα 1 ο : Από τα αποτελέσματα μιας στατιστικής ανάλυσης έχουμε τα παρακάτω περιγραφικά στατιστικά. Για τον σκοπό της εργασίας με την εντολή copy

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Γραφήματα. Excel 2003

Γραφήματα. Excel 2003 Γραφήματα Excel 2003 Ορολογία Τίτλος γραφήματος Σειρά δεδομένων Υπόμνημα Κατηγορίες Ετικέτες Δείκτες Περιοχή γραφήματος Περιοχή σχεδίασης γραφήματος Γραμμές πλέγματος Οδηγός γραφημάτων Για τη δημιουργία

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΜΕ ΕXCEL

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΜΕ ΕXCEL ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΜΕ ΕXCEL 1. Εισαγωγή δεδομένων σε φύλλο εργασίας του Microsoft Excel Για να τοποθετήσουμε τις μετρήσεις μας σε ένα φύλλο Excel, κάνουμε κλικ στο κελί στο οποίο θέλουμε να τοποθετήσουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από

Διαβάστε περισσότερα

Στατιστική, Άσκηση 2. (Κανονική κατανομή)

Στατιστική, Άσκηση 2. (Κανονική κατανομή) Στατιστική, Άσκηση 2 (Κανονική κατανομή) Στον πίνακα που ακολουθεί δίνονται οι μέσες παροχές όπως προέκυψαν από μετρήσεις πεδίου σε μια διατομή ενός ποταμού. Ζητείται: 1. Να αποδειχθεί ότι το δείγμα προσαρμόζεται

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 Γνωριμία με το Excel...9

Περιεχόμενα. Κεφάλαιο 1 Γνωριμία με το Excel...9 Περιεχόμενα Κεφάλαιο 1 Γνωριμία με το Excel...9 Τα στοιχεία του παραθύρου του Excel... 10 Κελιά και διευθύνσεις... 13 Σε ποιο κελί θα τοποθετηθούν τα δεδομένα;... 14 Καταχώριση δεδομένων... 15 Τι καταλαβαίνει

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14 1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 9 Συνεχή δυναμικά συστήματα Μέρος 1 ο Λουκάς Ζαχείλας Ορισμός Διαφορικής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες: Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 Γνωριμία με το Excel... 9

Περιεχόμενα. Κεφάλαιο 1 Γνωριμία με το Excel... 9 Περιεχόμενα Κεφάλαιο 1 Γνωριμία με το Excel... 9 Τα στοιχεία του παραθύρου του Excel... 10 Κελιά και διευθύνσεις... 13 Σε ποιο κελί θα τοποθετηθούν τα δεδομένα;... 14 Καταχώριση δεδομένων... 15 Τι καταλαβαίνει

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Τα δεδομένα της στήλης Grade (Αρχείο Excel, Φύλλο Ask1) αναφέρονται στη βαθμολογία 63 φοιτητών που έλαβαν μέρος σε

Διαβάστε περισσότερα

Y Y ... y nx1. nx1

Y Y ... y nx1. nx1 6 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΠΙΚΑΚΩΝ Η χρησιμοποίηση και ο συμβολισμός πινάκων απλοποιεί σημαντικά τα αποτελέσματα της γραμμικής παλινδρόμησης, ιδίως στην περίπτωση της πολλαπλής παλινδρόμησης Γενικά,

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία

Διαβάστε περισσότερα

5.1 Ο ΕΛΕΓΧΟΣ SMIRNOV

5.1 Ο ΕΛΕΓΧΟΣ SMIRNOV 5. Ο ΕΛΕΓΧΟΣ SMIRNOV Έστω δύο ανεξάρτητα τυχαία δείγματα, 2,..., n και, 2,..., m n και m παρατηρήσεων πάνω στις τυχαίες μεταβλητές και, αντίστοιχα. Έστω, επίσης, ότι F (), (, ) και F (y), y (, ) είναι

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ .5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙ. OpenOffice 3.x Calc

ΚΕΦΑΛΑΙΟ ΙΙ. OpenOffice 3.x Calc ΚΕΦΑΛΑΙΟ ΙΙ OpenOffice 3.x Calc Στόχοι: Με τη βοήθεια του οδηγού αυτού ο εκπαιδευόμενος θα μπορεί να: χρησιμοποιεί τα βασικά εργαλεία του Calc κατασκευάζει πίνακες δημιουργεί φόρμουλες υπολογισμού κατασκευάζει

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $) Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή

Διαβάστε περισσότερα

Λίγα λόγια από το συγγραφέα Microsoft Excel Η δομή ενός φύλλου εργασίας... 21

Λίγα λόγια από το συγγραφέα Microsoft Excel Η δομή ενός φύλλου εργασίας... 21 Περιεχόμενα Λίγα λόγια από το συγγραφέα... 7 91 Microsoft Excel 2007... 9 92 Η δομή ενός φύλλου εργασίας... 21 93 Δημιουργία νέου βιβλίου εργασίας και καταχώριση δεδομένων... 32 94 Συμβουλές για την καταχώριση

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Συνολοκλήρωση και VAR υποδείγματα

Συνολοκλήρωση και VAR υποδείγματα ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΘΕΜΑ 5ο (ΜΟΝΑΔΕΣ 0) www.oleclassroom.gr Ένας οικονομικός αναλυτής θέλει να διερευνήσει τη σχέση μεταξύ της τιμής ενός αγαθού με τις σημειούμενες πωλήσεις του σε διαφορετικά καταστήματα μιας αστικής περιοχής.

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Οικονομετρία=Προχωρημένη στατιστική+ Οικονομική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Οικονομετρία=Προχωρημένη στατιστική+ Οικονομική ΟΙΚΟΝΟΜΕΤΡΙΑ Οικονομετρία=Προχωρημένη στατιστική+ Οικονομική Η οικονομετρία κάνει ποσοτική ανάλυση και προβλέψεις σε οικονομικά γεγονότα (κυρίως μακροοικονομικά) Δειγματική Μέση τιμή Δειγματική μέση τιμή

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

f x και τέσσερα ζευγάρια σημείων

f x και τέσσερα ζευγάρια σημείων ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 014 015, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 1 11 014 Ημερομηνία παράδοσης εργασίας: 18 11 014 Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21 Περιεχόμενα Πρόλογος... 15 Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης... 19 1 Αντικείμενο της οικονομετρίας... 21 1.1 Τι είναι η οικονομετρία... 21 1.2 Σκοποί της οικονομετρίας... 24 1.3 Οικονομετρική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές-μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές-μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2013-14 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές-μαθηματικά

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Χρήσιμες Οδηγίες Με την βοήθεια του λογισμικού E-views να απαντήσετε στα ερωτήματα των επόμενων σελίδων, (οι απαντήσεις πρέπει να περαστούν

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 8 η (EXCEL) ΣΥΝΑΡΤΗΣΕΙΣ-ΣΧΗΜΑΤΑ-ΕΙΚΟΝΕΣ- ΓΡΑΦΗΜΑΤΑ

Εργαστηριακή άσκηση 8 η (EXCEL) ΣΥΝΑΡΤΗΣΕΙΣ-ΣΧΗΜΑΤΑ-ΕΙΚΟΝΕΣ- ΓΡΑΦΗΜΑΤΑ Εργαστηριακή άσκηση 8 η (EXCEL) ΣΥΝΑΡΤΗΣΕΙΣ-ΣΧΗΜΑΤΑ-ΕΙΚΟΝΕΣ- ΓΡΑΦΗΜΑΤΑ 1 Συνάρτηση SUMIF() Περιγραφή Χρησιμοποιείτε τη συνάρτηση SUMIF για να αθροίσετε τις τιμές σε μια περιοχή οι οποίες πληρούν τα κριτήρια

Διαβάστε περισσότερα

!n k. Ιστογράμματα. n k. x = N = x k

!n k. Ιστογράμματα. n k. x = N = x k Ιστογράμματα Τα ιστογράμματα αποτελούν ένα εύχρηστο οπτικό τρόπο για να εξάγουμε την κατανομή που ακολουθούν μια σειρά μετρήσεων ενός μεγέθους αλλά και παράλληλα δίνουν τη δυνατότητα για εύκολη στατιστική

Διαβάστε περισσότερα