Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών"

Transcript

1 Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Δυτικής Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 Σκοποί ενότητας 9 Να κατανοήσουν οι φοιτητές έννοιες όπως η Κατανομή t, ο Έλεγχος Στατιστικών Υποθέσεων καθώς και οι διαδικασίες Στατιστικού Ελέγχου. 4

5 Περιεχόμενα ενότητας 9 Κατανομή t. Έλεγχοι Στατιστικών Υποθέσεων. Διαδικασία Ελέγχου μιας Στατιστικής Υποθέσεως. Ασκήσεις. Έλεγχος της διαφοράς δυο μέσων. Ασκήσεις. 5

6 Κατανομή t Student (1/12) Σε πολλές εφαρμογές που οι δειγματικοί μέσοι χρησιμοποιούνται για την εκτίμηση των αντίστοιχων πληθυσμιακών μέσων, η τιμή της πληθυσμιακής διακυμάνσεως δεν είναι γνωστή. Μπορούμε, όμως, να πάρουμε μια εκτίμηση S2 της σ2 από τα δεδομένα του δείγματος που μας δίνουν την τιμήν του δειγματικού μέσου Χ. Εάν το δείγμα είναι μεγέθους <n>, η εκτίμηση S2 βασίζεται επί (n-1) βαθμών ελευθερίας. H κατανομή που θα μας βοηθήσει στην εκτίμηση του πληθυσμιακού μέσου είναι η t. 6

7 Κατανομή t Student (2/12) Διάγραμμα 1. Κατανομή t Student (2/12) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 7

8 Κατανομή t Student (3/12) Σχήμα 1. (Προηγούμενη Διαφάνεια). Κατανομή t. Η μεταβλητή t δίνεται από την εξίσωση: t = X μ S/ n. Δηλαδή, η t είναι η απόκλιση του δειγματικού μέσου από τον αντίστοιχο πληθυσμιακό μέσο, μετρούμενη σε όρους S/ n. 8

9 Κατανομή t Student (4/12) Διάγραμμα 2. Κατανομή t Student (4/12) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 9

10 Κατανομή t Student (5/12) Σχήμα 1. (Προηγούμενη Διαφάνεια). Κατανομή t. Ο παρανομαστής S/ n είναι μία χρήσιμη ποσότητα που εκτιμά το τυπικό σφάλμα σ/ n του δειγματικού μέσου. Η κατανομή t είναι συμμετρική περί τον μέσο. Για μεγάλα δείγματα, πρακτικά, ταυτίζεται με την κανονική με μ = Ο και σ = 1. 10

11 Κατανομή t Student (6/12) Διάγραμμα 3. Κατανομή t Student (6/12) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 11

12 Κατανομή t Student (7/12) Σχήμα 1. (Προηγούμενη Διαφάνεια). Κατανομή t. Για μικρά δείγματα κάτω των 30 μονάδων η διάκρισης γίνεται προφανής. Ειδικότερα, ενώ υπάρχει μία μόνο τυπική κανονική κατανομή, υπάρχει μία οικογένεια κατανομών t, όπως φαίνεται στο σχήμα. Εκ της μελέτης του σχήματος προκύπτει ότι για δείγμα μικρού μεγέθους η κατανομή t διαφέρει σημαντικά από την κανονική, αλλά καθώς το δείγμα αυξάνει, αυτή προσεγγίζει την κανονική. 12

13 Κατανομή t Student (8/12) Διάγραμμα 4. Κατανομή t Student (8/12)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 13

14 Κατανομή t Student (9/12) Πίνακας 1. (Προηγούμενη Διαφάνεια). Κριτική τιμή t. Η κατανομή t είναι πινακοποιημένη όχι σύμφωνα με το μέγεθος του δείγματος n αλλά βάσει του παρανομαστή της δειγματικής διακυμάνσεως S2, που ονομάζεται βαθμοί ελευθερίας. Για παράδειγμα, για ένα δείγμα μεγέθους η = 5 οι βαθμοί ελευθερίας είναι, β. ε. = n 1 = 5 1 = 4. Από τον Πίνακα βρίσκουμε ότι η κριτική τιμή t που αφήνει πιθανότητα 2,5% στην άνω (δεξιά) ουρά είναι t0,025 = 2,78.και λόγω της συμμετρίας: Ρ [ 2,78 < t < 2,78] = 0,95. 14

15 Κατανομή t Student (10/12) Διάγραμμα 5. Κατανομή t Student (10/12)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 15

16 Κατανομή t Student (11/12) Πίνακας 2. (Προηγούμενη Διαφάνεια). Κριτική τιμή t. Όταν η διακύμανση σ2 είναι γνωστή, τα όρια του διαστήματος εμπιστοσύνης με πιθανότητα 95%, είναι: x 1,96 σ n μ x + 1,96 σ n Όταν αντί της σ2 χρησιμοποιήσουμε την S2, η μόνη αλλαγή που επιβάλλεται είναι η αντικατάσταση του αριθμού 1,96 με έναν άλλο αριθμό που συμβολίζουμε t0,

17 Κατανομή t Student (12/12) Πίνακας 2. (Προηγούμενη Διαφάνεια). Κριτική τιμή t. (συνέχεια). x t 0,025 S n μ x + t 0,025 S n. Όταν έχουμε β.ε =, t0,025= 1,96. Με β.ε = 40, t0,025 αυξάνεται σε 2,021, με 20 β.ε γίνεται 2,086 και συνεχίζει να αυξάνει σταθερά καθώς ο αριθμός των β.ε. μειώνεται. 17

18 Έλεγχος Υποθέσεων (1/2) Ο έλεγχος υποθέσεων αναφέρεται στη διαδικασία αποδοχής ή απόρριψης μιας στατιστικής υπόθεσης. Κατά την εκτέλεση ενός στατιστικού ελέγχου, ορίζονται δυο υποθέσεις: Η μηδενική υπόθεση Ηο και η εναλλακτική Η 1. 18

19 Έλεγχος Υποθέσεων (2/2) Η εκλογή της Ηο και της Η 1 γίνεται σύμφωνα με τον παρακάτω ισχυρισμό: Όταν κάνουμε μια έρευνα και προσπαθούμε να αποδείξουμε κάποιον ισχυρισμό στηριζόμενοι σε κάποιες παρατηρήσεις, τότε την άρνηση αυτού του ισχυρισμού λαμβάνουμε σαν Ηο και τον ίδιο ισχυρισμό σαν Η 1. 19

20 Έλεγχοι Στατιστικών Υποθέσεων (1/8) Η πιο συνηθισμένη στατιστική υπόθεση είναι η λεγόμενη Υπόθεση Μηδέν H 0. Υποθέτουμε ότι η εμφανιζόμενη διαφορά μεταξύ μιας παραμέτρου ενός δείγματος και της αντίστοιχης του πληθυσμού είναι : Στατιστικά ασήμαντη. Οφείλεται στα τυχαία σφάλματα της δειγματοληψίας. 20

21 Έλεγχοι Στατιστικών Υποθέσεων (2/8) Υποθέτουμε ότι η εμφανιζόμενη διαφορά μεταξύ μιας παραμέτρου ενός δείγματος και της αντίστοιχης του πληθυσμού είναι (συνέχεια) : Aν δεν υπήρχαν τα σφάλματα της δειγματοληψίας, οι δύο παράμετροι θα ήταν ίσες και η διαφορά τους θα ήταν μηδέν. Π.x. : Η0 μ = μ0. 21

22 Έλεγχοι Στατιστικών Υποθέσεων (3/8) Η άλλη υπόθεση ονομάζεται Εναλλακτική Υπόθεση και συμβολίζεται με το Η 1. Υποθέτουμε ότι η παράμετρος του πληθυσμού έχει διαφορετική τιμή από την υποθετική τιμή. Η εμφανιζόμενη διαφορά είναι στατιστικά σημαντική και δεν οφείλεται στα τυχαία σφάλματα της δειγματοληψίας. Π.χ. Η1: μ μ0. 22

23 Έλεγχοι Στατιστικών Υποθέσεων (4/8) Η αποδοχή ή η απόρριψη μιας στατιστικής υποθέσεως -και ειδικά της υποθέσεως Η 0 -γίνεται με μια ορισμένη πιθανότητα να διαπράξουμε σφάλμα. Κατά τον έλεγχο μιας στατιστικής υποθέσεως είναι ενδεχόμενο να διαπράξουμε δύο βασικά σφάλματα: Σφάλμα Τύπου Ι. Αν η ελεγχόμενη υπόθεση Η0 είναι σωστή και το κριτήριο ελέγχου την απορρίψει σαν λανθασμένη. 23

24 Έλεγχοι Στατιστικών Υποθέσεων (5/8) Κατά τον έλεγχο μιας στατιστικής υποθέσεως είναι ενδεχόμενο να διαπράξουμε δύο βασικά σφάλματα (συνέχεια): Η πιθανότητα διαπράξεως Σφάλματος Τύπου Ι: Ονομάζεται Επίπεδο Σημαντικότητας και συμβολίζεται διεθνώς με το γράμμα α. Δηλ. η πιθανότητα απορρίψεως μιας σωστής υποθέσεως Η 0. 24

25 Έλεγχοι Στατιστικών Υποθέσεων Σφάλμα Τύπου II. (6/8) Αν η ελεγχόμενη υπόθεση Η 0 είναι λανθασμένη και το κριτήριο ελέγχου την δεχθεί σαν σωστή, τότε διαπράττουμε Σφάλμα Τύπου II. Η πιθανότητα διαπράξεως Σφάλματος Τύπου II συμβολίζεται με το β. Στην πράξη, τα εφαρμοζόμενα κριτήρια ελέγχου πρέπει να ελαχιστοποιούν τις πιθανότητες εμφανίσεως σφαλμάτων και των δύο τύπων. 25

26 Έλεγχοι Στατιστικών Υποθέσεων (7/8) Συνήθως, προσπαθούμε να αποφύγουμε Σφάλμα Τύπου Ι, δηλαδή να απορρίψουμε σωστή υπόθεση Ηo. Για να το επιτύχουμε: Προκαθορίζουμε την πιθανότητα να διαπράξουμε Σφάλμα Τύπου Ι σε ορισμένο Επίπεδο Σημαντικότητας α. Συνήθως είναι το α = 0, 05 (5%) ή α = 0, 01 (1%). 26

27 Έλεγχοι Στατιστικών Υποθέσεων (8/8) Αν π.χ. προκαθορίσουμε α = 0,05 και απορρίψουμε την Η0 με βεβαιότητα 95%: Τότε σε 100 όμοιες περιπτώσεις μόνο σε 5 είναι δυνατόν να κάνουμε λάθος. Δηλαδή να είναι σωστή η υπόθεση και εμείς να την απορρίψουμε. 27

28 Διαδικασία ελέγχου Στατιστικής Υποθέσεως (1/13) Συνήθως σ έναν έλεγχο υπόθεσης σαν Ηo θέτουμε την ισότητα της παραμέτρου με κάποια γνωστή τιμή και σαν εναλλακτική Q. Tην αύξηση της τιμής αν ισχυριζόμαστε ότι αυξάνει η τιμή της παραμέτρου ή. Τη μείωση της τιμής αν ισχυριζόμαστε ότι ελαττώνεται η τιμή της παραμέτρου ελαττώνεται ή. Απλώς την διαφοροποίηση της τιμής αν ισχυριζόμαστε ότι η τιμή της παραμέτρου άλλαξε. 28

29 Διαδικασία ελέγχου Στατιστικής Υποθέσεως (2/13) Έστω ότι θέλουμε να ελέγξουμε την υπόθεση ότι ο μέσος μ ενός πληθυσμού είναι ίσος με μ0. Παίρνουμε τυχαίο δείγμα n μονάδων και υπολογίζουμε το μέσο (x) του δείγματος. Η διαδικασία για τον έλεγχο μιας στατιστικής υποθέσεως ακολουθεί τα εξής στάδια : 29

30 Διαδικασία ελέγχου Στατιστικής Υποθέσεως (3/13) Η διαδικασία για τον έλεγχο μιας στατιστικής υποθέσεως ακολουθεί τα εξής στάδια (συνέχεια): Θέτουμε τις υποθέσεις Η0 και Η1: o Η0 :μ = μ0, Η1:μ μ0. o Καθορίζουμε το επίπεδο σημαντικότητας α = 0, 01 ή α = 0, 05 ή α = 0, 10. o Δίπλευρο κριτήριο ελέγχου. 30

31 Διαδικασία ελέγχου Στατιστικής Υποθέσεως (4/13) Εφαρμόζουμε το κατάλληλο στατιστικό κριτήριο ελέγχου, από το οποίο προκύπτει μια συγκεκριμένη τιμή. Αν το δείγμα είναι πολυπληθές (n 30), τότε χρησιμοποιούμε το εξής κριτήριο: z = x μ 0 σ x, σ x = σ n. Με βάση το επίπεδο σημαντικότητας βρίσκουμε τις κριτικές τιμές της τυποποιημένης μεταβλητής Ζ πάνω στην Τυποποιημένη Κανονική Καμπύλη και καθορίζουμε τις περιοχές αποδοχής και απορρίψεως της υποθέσεως Η 0. 31

32 Διαδικασία ελέγχου Στατιστικής Υποθέσεως (5/13) Διάγραμμα 6. Διαδικασία ελέγχου Στατιστικής Υποθέσεως (5/13) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 32

33 Διαδικασία ελέγχου Στατιστικής Υποθέσεως (6/13) Σχήμα 2. (Προηγούμενη Διαφάνεια). Έλεγχος στατιστικής υπόθεσης. Συγκρίνουμε την τιμή της Ζ που βρέθηκε από το κριτήριο ελέγχου με τις κριτικές τιμές Ζα/2. Αν η τιμή Ζ του κριτηρίου ικανοποιεί τις ανισότητες: Z < Ζα/2 ή Z > Ζα/2 τότε απορρίπτουμε την υπόθεση. 33

34 Διαδικασία ελέγχου Στατιστικής Υποθέσεως (7/13) Σχήμα 2. (Προηγούμενη Διαφάνεια). Έλεγχος στατιστικής υπόθεσης. Αν όμως η τιμή Ζ του κριτηρίου ικανοποιεί τη διπλή ανισότητα: Ζα/2 < Z < Ζα/2. τότε αποδεχόμαστε την υπόθεση Η 0. Βιβλιογραφία: Statistics for business and economics, Anderson Sweeney Williams. 34

35 Διαδικασία ελέγχου Στατιστικής Υποθέσεως (8/13) Διάγραμμα 7. Διαδικασία ελέγχου Στατιστικής Υποθέσεως (8/13) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 35

36 Διαδικασία ελέγχου Στατιστικής Υποθέσεως (9/13) Σχήμα 3. (Προηγούμενη Διαφάνεια). Έλεγχος στατιστικής υπόθεσης- Μονόπλευρο test. Στο δίπλευρο κριτήριο ελέγχου, το επίπεδο σημαντικότητας ανισοκατανέμεται. Μονόπλευρο test: Σε ορισμένες περιπτώσεις ενδιαφερόμαστε αν μια στατιστική παράμετρος (π.χ. ο μέσος) είναι μικρότερη ή μεγαλύτερη από μια συγκεκριμένη τιμή (έστω μ0). 36

37 Διαδικασία ελέγχου Στατιστικής Υποθέσεως (10/13) Σχήμα 3. (Προηγούμενη Διαφάνεια). Έλεγχος στατιστικής υπόθεσης- Μονόπλευρο test (συνέχεια). Στις περιπτώσεις αυτές, οι ελεγχόμενες υποθέσεις είναι: Ηο: μ = μ0. Η1: μ < μ0 ή. Ηο: μ = μ0. Η1: μ > μ0. 37

38 Διαδικασία ελέγχου Στατιστικής Υποθέσεως (11/13) Διάγραμμα 8. Διαδικασία ελέγχου Στατιστικής Υποθέσεως (11/13) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 38

39 Διαδικασία ελέγχου Στατιστικής Υποθέσεως (12/13) Σχήμα 4. (Προηγούμενη Διαφάνεια). Οι δειγματικοί μέσοι. Οι δειγματικοί μέσοι ακολουθούν την κανονική κατανομή. Ο μέσος τους είναι ο μέσος του πληθυσμού - ζητούμενο. 39

40 Διαδικασία ελέγχου Στατιστικής Υποθέσεως (13/13) Η απόσταση των δειγματικών μέσων από το μέσο τους εξαρτάται από τυπική απόκλιση που έχουν δηλαδή S x = S n. Άρα αν ο δειγματικός μέσος που έχουμε διαφέρει σημαντικά από αυτόν που υποθέτουμε ως πραγματικός μέσος του πληθυσμού τότε απορρίπτουμε την υπόθεση. 40

41 Παράδειγμα 1 (1/6) Από έναν πληθυσμό πήραμε ένα δείγμα n = 100, το οποίο έδωσε μέσο όρο 56 και διακύμανση 62. Μπορούμε να υποστηρίζουμε ότι ο μέσος όρος του πληθυσμού απ όπου προήλθε το δείγμα είναι ίσος με 60 με α = 0,05. Λύση: n = 100 > 30. H0 :μ = 60. Η1 :μ

42 Παράδειγμα 1 (2/6) Γνωρίζουμε ότι η μεταβλητή Z = Χ μ Ν(0,1). Η διαφορά του δειγματικού μέσου από τον υποστηριζόμενο πληθυσμιακό μέσο είναι ικανή για να μας πείσει ότι τελικά ο πληθυσμιακός μέσος δεν είναι 60. α=0,05 είναι η πιθανότητα ο δειγματικός μέσος να βρεθεί στην περιοχή αυτή της τυποποιημένης κανονικής κατανομής ή αλλιώς είναι η πιθανότητα να απορρίψουμε την βασική υπόθεση ενώ αυτή είναι σωστή. S 42

43 Παράδειγμα 1 (3/6) Διάγραμμα 9. Παράδειγμα 1 (3/6)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 43

44 Παράδειγμα 1 (4/6) Πίνακας 3 (Προηγούμενη Διαφάνεια). Ζ τιμές. α = 0,05 α 2 = 0,025 0,5 0,025 = 0,475. S X = S = 62 = 7,87 n = 0, 787. Z = Χ μ S X = ,787 = 5,

45 Παράδειγμα 1 (5/6) Διάγραμμα 10. Παράδειγμα 1 (5/6)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 45

46 Παράδειγμα 1 (6/6) Σχήμα 4 (Προηγούμενη διαφάνεια). Οι δειγματικοί μέσοι. Ζ < Ζ α 2 < 1,96. = 5,08. Απορρίπτεται η βασική υπόθεση. μ =

47 Παράδειγμα 2 (1/3) Ένας τύπος καλωδίου έχει όριο αντοχής με μέση τιμή 700 κιλά και τυπική απόκλιση 50 κιλά. Η κατασκευαστική εταιρία του καλωδίου ισχυρίζεται ότι αύξησε το όριο αντοχής που έχει το καλώδιο βελτιώνοντας τη μέθοδο κατασκευής του. Για να το ελέγξουμε, δοκιμάζουμε 80 νέα καλώδια. Εάν το μέσο όριο αντοχής τους βρέθηκε 720 κιλά, είναι σωστός ο ισχυρισμός της εταιρίας σε επίπεδο σημαντικότητας 0,01; 47

48 Παράδειγμα 2 (2/3) Διάγραμμα 11. Παράδειγμα 2 (2/3)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 48

49 Παράδειγμα 2 (3/3) Πίνακας 4 (Προηγούμενη Διαφάνεια). Ζ τιμές. n = 80 > 30. Μονόπλευρο test. H0 :μ = 700, Η1 :μ > 700. S X = S n = = 5, 59, Z = Χ μ S X = ,59 = 3, 58. α=0,01 0,5-0,01 =0,49 Ζα=2,33. Ζ*>Ζα=3,58>2,33. Απορρίπτεται η βασική υπόθεση μ=

50 Παράδειγμα 3 (1/5) Ένας τοπικός ραδιοφωνικός σταθμός αποφάσισε να κάνει έρευνα για την ποιότητα των προϊόντων των καταστημάτων της Κοζάνης. Η άριστη ποιότητα βαθμολογείται με 10 ενώ ποιοτικά θεωρούνται τα καταστήματα με βαθμολογία πάνω από 7. Ένα δείγμα 20 φοιτητών επιλέχθηκε να ρωτηθεί για κάποιο κατάστημα Χ και έδωσαν τις εξής απαντήσεις. 50

51 Παράδειγμα 3 (2/5) 6,7,8,8,10,9,8,7,6,9,10,6,7,7,8,9,8,6,8,7. Ο δειγματικός μέσος είναι 7,7 και η τυπική απόκλιση 1,261. Εάν υποθέσουμε ότι η κατανομή του πληθυσμού ακολουθεί προσεγγιστικά την κανονική κατανομή, μπορούμε να θεωρήσουμε ότι το κατάστημα Χ παρέχει ποιοτικά προϊόντα. α=0,05. 51

52 Παράδειγμα 3 (3/5) Διάγραμμα 12. Παράδειγμα 3 (3/5)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 52

53 Παράδειγμα 3 (4/5) Πίνακας 5 (Προηγούμενη Διαφάνεια). Κριτικές τιμές t. n = 20 < 30 Κατανομή t εφόσον ο πληθυσμός ακολουθεί την κανονική κατανομή. Μονόπλευρο test. H0 :μ 7, Η1 :μ > 7. α = 0,05 t n 1 = t 20 1 = t19, t19,05 = 1,729. t > tα = 2,483 > 1,

54 Παράδειγμα 3 (5/5) S X = S n = 1, = 0, 282. Z = Χ μ S X = 7,7 7 0,282 = 2, 483. Απορρίπτεται η βασική υπόθεση μ=7. Μικρά δείγματα κατανομή t. 54

55 Έλεγχος της διαφοράς δυο μέσων (1/3) Όταν τα δείγματα είναι μεγάλα και ανεξάρτητα. Γνωστές οι διακυμάνσεις σ12 και σ22. Υποθέτουμε ότι επιλέγουμε τυχαία δυο δείγματα με μεγέθη n1, n2 >30 αντίστοιχα, από δυο πληθυσμούς. Αν τα μεγέθη των δειγμάτων είναι αρκετά μεγάλα (n1, n2 > 30), τότε η κατανομή δειγματοληψίας της x 1 x 2 θα είναι κανονική. 55

56 Έλεγχος της διαφοράς δυο μέσων (2/3) Ο έλεγχος στην περίπτωση αυτή γίνεται με : Z = x 1 x 2 μ 1 μ 2 σ 1 2 n 1 + σ 2 2 n 2. 56

57 Έλεγχος της διαφοράς δυο μέσων (3/3) Έστω ότι επιθυμούμε να ελέγξουμε την υπόθεση ότι τα δυο δείγματα προέρχονται από πληθυσμούς με ίσους μέσους. Ο έλεγχος γίνεται με: Η0: μ1 = μ2, Η1: μ1 μ2 είναι ισοδύναμος με. Η0: μ1 μ2 = 0, Η1: μ1 μ2 0. Z = x 1 x 2 σ x1 x 2. σ x1 x 2 = σ σ 2 2. n 1 n 2 57

58 Παράδειγμα 4 (1/8) Από δυο πληθυσμούς επιλέξαμε τυχαία δυο ανεξάρτητα δείγματα μεγέθους n1=40 και n2=40 αντίστοιχα. Αν οι διακυμάνσεις των δυο πληθυσμών είναι σ12=50 και σ22=100 και οι δειγματικοί μέσοι 62 και 74 αντίστοιχα. Να ελεγχθεί αν οι δυο πληθυσμοί έχουν ίσες μέσες τιμές με α=0,05. Η0: μ1 = μ2, Η1:μ1 μ2. σ12 = 50, σ22 = 100 και x 1 = 62, x 2 =

59 Παράδειγμα 4 (2/8) Η τυχαία μεταβλητή, Z = x 1 x 2 σ x1 x 2 Ν(0, 1). ακολουθεί την Η τυπική απόκλιση είναι ίση σ x1 x 2 = σ σ 2 2 = n 1 n =

60 Παράδειγμα 4 (3/8) Διάγραμμα 14. Παράδειγμα 4 (3/8)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 60

61 Παράδειγμα 4 (4/8) Πίνακας 6 (Προηγούμενη Διαφάνεια). Τιμές Z. Η0: μ1 = μ2. Η1: μ1 μ2. σ12 = 50 σ22 = 100. α = 0,05 α/2 = 0,025 0,5 0,025 = 0,475 Za 1,96. 2 = 61

62 Παράδειγμα 4 (5/8) Διάστημα αποδοχής: Ζα/2 < Ζ < Ζα/2 1,96 < Ζ < 1,96. x 1 = 62, x 2 = 74. σ x1 x 2 = σ σ 2 2 = n 1 n = z= (x 1 x 2 ) σ x1 x 2 = ,94 =-6,16. Απορρίπτεται η Η 0. 62

63 Παράδειγμα 4 (6/8) Διάγραμμα 15. Παράδειγμα 4 (6/8)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 63

64 Παράδειγμα 4 (7/8) Πίνακας 7 (Προηγούμενη Διαφάνεια). Τιμές Z. Αν το τεστ ήταν μονόπλευρο δηλαδή: Η0: μ1 μ2 ή μ1 μ2 0. Η1:μ1 < μ2 ή μ1 μ2 < 0. σ12 = 400. σ22 = 900. α = 0,05 0,5 0,05 = 0,45 Ζα = 1,

65 Παράδειγμα 4 (8/8) Πίνακας 7 (Προηγούμενη Διαφάνεια) (συνέχεια). Τιμές Z. Διάστημα αποδοχής -Ζα < Ζ 1,645 < Ζ. x 1 = 62, x 2 = 74 σ x1 x 2 = 3,61. Z = x 1 x 2 σ x1 x 2 = ,94 = 6,16 Απορρίπτεται η Η 0. 65

66 1.Έλεγχος της διαφοράς δυο μέσων Αν οι διακυμάνσεις σ12 και σ22 είναι άγνωστες τότε τις εκτιμούμε από το δείγμα: 2 S x1 x 2 = S S 2 2. n 1 n 2 Ο έλεγχος γίνεται από την παρακάτω συνάρτηση: Z = x 1 x 2 (μ 1 μ 2 ) S x1 x 2. 66

67 Παράδειγμα 5 (1/5) Ελήφθησαν δυο ανεξάρτητα δείγματα n1 = 120 και n2 = 80 με διακυμάνσεις S12 = 100, S22 = 85 και μέσους x 1 = 9, x 2 = 7. Ποια η πιθανότητα η διαφορά των μέσων του πληθυσμού να είναι μεγαλύτερη ή ίση με 3; 67

68 Παράδειγμα 5 (2/5) Θα ελέγξουμε την υπόθεση Η0: μ1 μ2 3. Η1: μ1 < μ2. 2 S x1 x 2 = S S 2 2 = n 1 n = 1, S x1 x 2 = S x1 x 2 = 1,896 = 1,

69 Παράδειγμα 5 (3/5) Ανεξάρτητα δείγματα n1 = 120 και n2 = 80 με διακυμάνσεις S12 = 100, S22 = 85 και μέσους x 1 = 9, x 2 = 7. Ποια η πιθανότητα η διαφορά των μέσων του πληθυσμού να είναι μεγαλύτερη ή ίση με 3; Θα ελέγξουμε την υπόθεση Η0: μ1 μ2 3. Η1: μ1 < μ2. 69

70 Παράδειγμα 5 (4/5) Ποια η πιθανότητα η διαφορά των μέσων του πληθυσμού να είναι μεγαλύτερη ή ίση με 3 (συνέχεια); 2 S x1 x 2 = S x1 x 2 = 1,896 = 1,377. Z = x 1 x 2 (μ 1 μ 2 ) S x1 x 2 = ,377 = 0,

71 Παράδειγμα 5 (5/5) Ποια η πιθανότητα η διαφορά των μέσων του πληθυσμού να είναι μεγαλύτερη ή ίση με 3 (συνέχεια); P(μ 1 μ 2 3)=P(Z 0,73)=1 P(Z 0,73) =. = 1 (0,5 + 0,2673) = 0,2327. Αν επιθυμούμε βεβαιότητα πάνω από 23,27 % τότε θα πρέπει να απορρίψουμε την βασική υπόθεση. Υπενθυμίζουμε ότι συνήθως επιζητούμε βεβαιότητα πάνω από 90 % γεγονός που συνεπάγεται την απόρριψη της Η 0. 71

72 2.Έλεγχος της διαφοράς δυο μέσων (1/3) Όταν τα δείγματα είναι μικρά και ανεξάρτητα. Με την υπόθεση ότι οι πληθυσμοί είναι κανονικοί και οι διακυμάνσεις των πληθυσμών ίσες σ12 = σ22. Εκτιμούμε την κοινή διακύμανση από τον τύπο: S 2 = (n 1 1)S (n 2 1)S 2. n 1 +n 2 2 Επομένως η διακύμανση της διαφοράς των μέσων θα είναι ίση: 2 S x1 x 2 = S2 n 1 + S2 n 2 S x1 x 2 = s 2 ( 1 n n 2 ). 72

73 2.Έλεγχος της διαφοράς δυο μέσων (2/3) Όταν τα δείγματα είναι μικρά και ανεξάρτητα: Με την υπόθεση ότι οι οι πληθυσμοί είναι κανονικοί και οι διακυμάνσεις των πληθυσμών ίσες σ12 = σ2.2 S 2 = (n 1 1)S (n 2 1)S 2. n 1 +n 2 2 S x1 x 2 = s 2 ( 1 n n 2 ). 73

74 3.Έλεγχος της διαφοράς δυο μέσων (3/3) Ο έλεγχος γίνεται με τo στατιστικό μέτρο t. t = x 1 x 2 (μ 1 μ 2 ) S x1 x 2. β. ε. = n 1 + n

75 Παράδειγμα 6 (1/8) Τα δεδομένα δυο ανεξάρτητων δειγμάτων που έχουν επιλεγεί από δυο πληθυσμών που κατανέμονται κανονικά ως προς την μεταβλητή Χ είναι: n1 = 13 και n2 = 9. S12 = 5, 7 S22 = 8, 3. Να ελεγχθεί σε επίπεδο σημαντικότητας α=0,05 η ισότητα των μέσων των δυο πληθυσμών. Η0: μ1 = μ2. Η1: μ1 μ2. 75

76 Παράδειγμα 6 (2/8) x 1 = 50,4, x 2 = 48,2. S 2 = (n 1 1)S 1 2 +(n 2 1)S 2 2 n 1 +n 2 2 = 12 5,7+8 8, = 6,8. 76

77 Παράδειγμα 6 (3/8) n1 = 13 και n2 = 9. S12 = 5, 7, S22 = 8, 3. Να ελεγχθεί σε επίπεδο σημαντικότητας α=0,05 η ισότητα των μέσων των δυο πληθυσμών: Η0: μ1 = μ2 ή μ1 μ2 = 0. Η1: μ1 μ2. 77

78 Παράδειγμα 6 (4/8) Να ελεγχθεί σε επίπεδο σημαντικότητας α=0,05 η ισότητα των μέσων των δυο πληθυσμών (συνέχεια): x 1 = 50,4, x 2 = 48,2. S 2 = 6,8. S x1 x 2 = s 2 ( 1 n n 2 ) = 6,8( ) =1,13. t = x 1 x 2 (μ 1 μ 2 ) S x 1 x2 = 50,4 48,2 1,13 = 1,95. β. ε. = n 1 + n 2 2 = =

79 Παράδειγμα 6 (5/8) Διάγραμμα 16. Παράδειγμα 6 (5/8)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 79

80 Παράδειγμα 6 (6/8) Πίνακας 9 (Προηγούμενη Διαφάνεια). Κριτικές τιμές t. n1 = 13 και n2 = 9. S12 = 5, 7, S22 = 8, 3. Να ελεγχθεί σε επίπεδο σημαντικότητας α=0,05 η ισότητα των μέσων των δυο πληθυσμών. Η0: μ1 = μ2 ή μ1 μ2 = 0. Η1: μ1 μ2. 80

81 Παράδειγμα 6 (7/8) Πίνακας 9 (Προηγούμενη Διαφάνεια). Κριτικές τιμές t. Να ελεγχθεί σε επίπεδο σημαντικότητας α=0,05 η ισότητα των μέσων των δυο πληθυσμών (συνέχεια). α = 0,05 => α/2 = 0,025. t n 1 = t = t20, t20,025=2,086. x 1 = 50,4, x 2 = 48,2. 81

82 Παράδειγμα 6 (8/8) t = x 1 x 2 (μ 1 μ 2 ) S x 1 x2 = 50,4 48,2 1,13 = 1,95. β. ε. = n 1 + n 2 2 = = 20. t < t α/2 1,95 < 2,086. Η Η 0 δεν μπορεί να απορριφθεί. 82

83 Άλλες Περιπτώσεις (1/2) Δεν εξετάζονται οι κάτωθι περιπτώσεις (Εκτός ύλης). Τα δείγματα να προέρχονται από τον ίδιο πληθυσμό. Τα δείγματα να προέρχονται από πληθυσμούς μικρούς όμως κανονικούς και με άνισες διακυμάνσεις. Στην περίπτωση αυτή πάλι χρησιμοποιείται το στατιστικό μέτρο t όμως με βαθμούς ελευθερίας: 83

84 Άλλες Περιπτώσεις (2/2) Τα δείγματα να προέρχονται από πληθυσμούς μικρούς όμως κανονικούς και με άνισες διακυμάνσεις. Στην περίπτωση αυτή πάλι χρησιμοποιείται το στατιστικό μέτρο t όμως με βαθμούς ελευθερίας (συνέχεια): β. ε. = ( 1 / s12 +s22 n1 n2 [ 1 n12 n 1 1 ]+ ) 2 (s22 /s12)2 n22(n2 1). Αν τα δείγματα είναι μικρά και δεν γνωρίζουμε την κατανομή τότε ο έλεγχος μπορεί να γίνει με μη παραμετρικές μεθόδους (Anderson: Statistics for business and economics). 84

85 Τέλος Ενότητας

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 7: Κανονική Κατανομή Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 22 Μαΐου 2017 1/32 Εισαγωγή: Τυπικό παράδειγμα στατιστικού ελέγχου υποθέσεων. Ενας νέος τύπος

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 4: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (4/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 4: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (4/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 4: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (4/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική

Διαβάστε περισσότερα

Οικονομετρία. Απλή Παλινδρόμηση. Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Οικονομετρία. Απλή Παλινδρόμηση. Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Οικονομετρία Απλή Παλινδρόμηση Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης Ν161_(262)_Στατιστική στη Φυσική Αγωγή 06_01_Έλεγχος_Υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Υπόθεση: "μπορεί ο αριθμητικός μέσος του δείγματος να είναι ίδιος με τον αριθμητικό

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθ η γη

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 7: Έλεγχοι σημαντικότητας πολλών ανεξάρτητων δειγμάτων Κωνσταντίνος Ζαφειρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

Στατιστική. 8 ο Μάθημα: Εφαρμογές Στατιστικής Ι: Διαστήματα Εμπιστοσύνης. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Στατιστική. 8 ο Μάθημα: Εφαρμογές Στατιστικής Ι: Διαστήματα Εμπιστοσύνης. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 8 ο Μάθημα: Εφαρμογές Στατιστικής Ι: Διαστήματα Εμπιστοσύνης Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά

Διαβάστε περισσότερα

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ .5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 6: Kατανομή Poisson. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 6: Kατανομή Poisson. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 6: Kατανομή Poisson Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Έλεγχοι υποθέσεων Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 09-10 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Έλεγχοι υποθέσεων Βόλος, 2016-2017

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος Το σύμβολο μ απεικονίζει 92.4% το μέσο όρο του πληθυσμού 121 92.4% το μέσο όρο του δείγματος 8 6.1% το μέσο όρο της κατανομής t 0 0% το μέσο όρο της κανονικής κατανομής 2 1.5% Το σύμβολο X απεικονίζει

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 6 η :Έλεγχοι Υποθέσεων V. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 6 η :Έλεγχοι Υποθέσεων V. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 6 η :Έλεγχοι Υποθέσεων V Διδάσκουσα: Κοντογιάννη Αριστούλα Έλεγχος υποθέσεων για τους μέσους εξαρτημένων δειγμάτων Επίδραση παρέμβασης:

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης

Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 2: Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 3: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (3/4) Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 3: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (3/4) Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 3: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (3/4) Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 13a: Συνεχείς Κατανομές Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα

Εξαρτημένα δείγματα (εξαρτημένες μετρήσεις)

Εξαρτημένα δείγματα (εξαρτημένες μετρήσεις) Ν6_(6)_Στατιστική στη Φυσική Αγωγή 06_0_Έλεγχος_Υποθέσεων0 Ανεξάρτητα δείγματα Εξαρτημένα δείγματα Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ανεξάρτητα δείγματα (ανεξάρτητες μετρήσεις)

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 5: Ισοδυναμία Πιστωτικών Τίτλων Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Α: Απλή Τυχαία Δειγματοληψία Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20, ΜΕΜ64: Εφαρμοσμένη Στατιστική 1 ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=0, X = 7.5, σ = 16, α = 5%. Πως αλλάζει το διάστημα αν

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ ΜΥΛΩΝΑ ΔΙΟΝΥΣΙΑ ΕΠΟΠΤΕΥΩΝ ΚΑΘΗΓΗΤΗΣ: ΔΡ. ΒΑΣΙΛΙΚΗ ΚΑΡΙΩΤΗ ΕΙΣΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Δειγματοληπτικές κατανομές

Δειγματοληπτικές κατανομές Δειγματοληπτικές κατανομές Κατανομές που χρησιμοποιούνται για τον έλεγχο υποθέσεων στα δείγματα Κανονική κατανομή (z-κατανομή) t-κατανομή Χ κατανομή F-κατανομή Ζητάμε να προσδιορίσουμε τις παραμέτρους

Διαβάστε περισσότερα

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2 Έλεγχοι Υποθέσεων 7-2 7 Έλεγχοι Υποθέσεων Χρήση της Στατιστικής Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-3 7 Μαθησιακοί Στόχοι Όταν θα έχετε ολοκληρώσει την μελέτη του κεφαλαίου θα πρέπει να

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17 ΚΕΦΑΛΑΙΟ 17 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Στο κεφάλαιο αυτό θα αναφερθούμε σε ένα άλλο πρόβλημα της Στατιστικής που έχει κυρίως (αλλά όχι μόνο) σχέση με τις παραμέτρους ενός πληθυσμού (τις παραμέτρους της κατανομής

Διαβάστε περισσότερα

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. )

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Πίνακας Περιεχομένων Εργασία η... Θέμα ο :... Θέμα ο :... 4 Θέμα 3 ο :...

Διαβάστε περισσότερα

Ιατρικά Μαθηματικά & Βιοστατιστική

Ιατρικά Μαθηματικά & Βιοστατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιατρικά Μαθηματικά & Βιοστατιστική Στατιστικοί έλεγχοι για συνεχή και κατηγορικά δεδομένα Διδάσκοντες: Ευάγγελος Ευαγγέλου, Kωνσταντίνος Τσιλίδης, Ιωάννης

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Διαστήματα εμπιστοσύνης Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 4: Ψηφιακός χάρτης - Διαχείριση 2o μέρος Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test 1 Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου One-Sample t-test 2 Μια σύντομη αναδρομή Στα τέλη του 19 ου αιώνα μια μεγάλη αλλαγή για την επιστήμη ζυμώνονταν στην ζυθοποιία Guinness. Ο William Gosset

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Κλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας

Κλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας Κλωνάρης Στάθης ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας Η Υπόθεση είναι μία πεποίθηση σχετικά με μία παράμετρο Παράμετρος μπορεί να είναι ο μέσος ενός πληθυσμού, ένα ποσοστό, ένας συντελεστής

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 11: Επιλογή μεταβλητών στην παλινδρόμηση Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Ανάλυση διακύμανσης Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 8: Κανονικότητα Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ. Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών.

Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ. Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών. Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών. Η μέση τιμή ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40] Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα