18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Ανάλυση Δεδομένων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2013. 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Ανάλυση Δεδομένων"

Transcript

1 18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Ανάλυση Δεδομένων

2 Παρακαλούμε, διαβάστε προσεκτικά τα παρακάτω: 1. Μπορείτε να χρησιμοποιήσετε τον χάρακα και το κομπιουτεράκι σας. 2. Ο διαθέσιμος χρόνος για να απαντήσετε το μοναδικό πρόβλημα της Ανάλυσης Δεδομένων είναι 4 ώρες. 3. Χρησιμοποιείστε μόνο μολύβια και στυλό χρώματος μαύρου ή μπλε. 4. Συμπληρώστε τα πλαίσια στο άνω μέρος κάθε κόλλας με τον κωδικό που σας δό- θηκε, τον «αριθμό του προβλήματος» και τον συνολικό αριθμό των σελίδων που χρησιμοποιήσατε για την επίλυση του συγκεκριμένου προβλήματος. 5. Στο τέλος της εξέτασης βάλτε όλες τις σελίδες μέσα στον φάκελο που σας δόθηκε. 6. Γράψτε με λογικά βήματα τις ενδιάμεσες εξισώσεις και υπολογισμούς μέχρι την τελική λύση. 18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας η φάση Ανάλυση Δεδομένων 2

3 Πίνακας Σταθερών (όλες οι μονάδες είναι στο σύστημα SI) Σταθερά Σύμβολο Τιμή Σταθερά της βαρύτητας G 6, N m 2 kg - 2 Σταθερά του Πλανκ h 6, J s Ταχύτητα του φωτός c 3, m s - 1 Μάζα του Ήλιου M! 1, kg Ακτίνα του Ήλιου R! 6, m Λαμπρότητα του Ήλιου L! 3, w Φαινόμενο μέγεθος Ήλιου m! - 26,8 Περίοδος περιστροφής Ήλιου ~27 ημέρες Ηλιακή σταθερά b! 1, w m - 2 Μάζα του Δία 1, kg Μάζα της Γης M 5, kg Ακτίνα της Γης R 6, m Μέση πυκνότητα της Γης ρ kg m - 3 Επιτάχυνση της βαρύτητας στην επιφάνεια της θάλασσας g 9,81 m s - 2 Τροπικό έτος 365,24 ημέρες Συνοδικό έτος 365,26 ημέρες Συνοδική ημέρα s Κλίση του ισημερινού ως προς την εκλειπτική Ε 23 ο,5 Parsec pc 3, m Έτος φωτός ly 9, m Αστρονομική Μονάδα AU 1, m Απόσταση Γης Σελήνης 3, m Απόσταση Ήλιου από το κέ- ντρο του Γαλαξία R pc Σταθερά του Hubble H 75 km s - 1 Mpc - 1 Μάζα του ηλεκτρονίου m e 9, kg Μάζα του πρωτονίου m p 1, kg 18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας η φάση Ανάλυση Δεδομένων 3

4 Πρόβλημα: «Διαγράμματα Χρώματος Μεγέθους αστρικών σμηνών» Στην άσκηση αυτή θα χρησιμοποιήσετε φωτομετρικά δεδομένα από δύο αστρικά σμήνη για να υπολογίσετε κάποιες από τις ιδιότητες των σμηνών αυτών. Τα δεδομένα αποτελούνται από φωτο- γραφίες σε δύο φίλτρα, το οπτικό (V) και το μπλε (B). Η διαφορά φωτεινότητας ενός άστρου στο μπλε και το οπτικό (B- V) είναι ένα καλό μέτρο της θερμοκρασίας της φωτόσφαιρας του άστρου (Εικόνα 1). Η διαφορά αυτή ονομάζεται Δείκτης Χρώματος. Εικόνα 1: Τα φάσματα δύο αστεριών με διαφορετικές θερμοκρασίες. Η κατακόρυφες γραμμές δείχνουν το μή- κος κύματος των φίλτρων Β και V. (http://www.jb.man.ac.uk/distance/life/sample/stars/) Έτσι, ένα διάγραμμα Hertzsprung- Russel μπορεί να εκφραστεί σε σχέση με τη Λαμπρότητα και τη θερμοκρασία ή ισοδύναμα σε σχέση με το Απόλυτο Μέγεθος και τον Δείκτη Χρώματος (Εικόνα 2). Εικόνα 2: Διάγραμμα Hertzprung- Russel μιας συλλογής αστεριών. Ο οριζόντιος άξονας μετράει θερμοκρασία ή, ισοδύναμα, δείκτη χρώματος. Ο κάθετος άξονας μετράει λαμπρότητα ή απόλυτο οπτικό μέγεθος. Στην εικόνα φαίνονται αστέρια της Κύριας Ακολουθίας, γίγαντες (HB), (GB) και λευκοί νάνοι (WD) (by Marc van der Sluys). 18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας η φάση Ανάλυση Δεδομένων 4

5 Ένα τέτοιο διάγραμμα, που χρησιμοποιεί φαινόμενα αντί για απόλυτα μεγέθη, είναι το παρατη- ρησιακό ανάλογο του διαγράμματος Hertzsprung- Russel και ονομάζεται Διάγραμμα Χρώματος - Με- γέθους (Color Magnitude Diagram, CMD). Τέτοια διαγράμματα χρησιμοποιούνται στην μελέτη αστρι- κών σμηνών (Εικόνα 3). Εικόνα 3: Παράδειγμα CMD. Εδώ για το σμήνος Μ13. [http://www.physics.uc.edu/~hanson/astro/lecturenotes/w03/lec12/page11.html] Η άσκηση αυτή της Ανάλυσης Δεδομένων αφορά αποκλειστικά αστρικά σμήνη. Ξεκινάει με κά- ποιες απλές ερωτήσεις προσανατολισμού, προχωράει με την αναπαράσταση των δεδομένων σε ένα διάγραμμα CMD και ολοκληρώνεται με ερωτήσεις ερμηνείας των δεδομένων και υπολογισμών. Τα φωτομετρικά δεδομένα έχουν υποστεί την αρχική επεξεργασία και δίνονται σαν σχετικά μεγέθη (δηλ. δεν έχουν κάποια φυσική σημασία, παρά είναι δοσμένα σε σχέση με ένα - αυθαίρετο- αστέρι αναφο- ράς). Ό,τι σας ζητείται εδώ, είναι δουλειά που κάνουν μαθητές και ερευνητές αστρονομίας που θα δούλευαν σε παρόμοιο πρόβλημα. [Οι φωτομετρικές παρατηρήσεις παραχωρήθηκαν ευγενικά από τον Δρ Ulrich Kolb.] Εργασία 1 η : Κοιτάξτε ξανά την Εικόνα 2. (α) Γιατί η κλίμακα του κάθετου άξονα είναι αντεστραμμένη, όταν αυτός εκφράζεται σε Απόλυτο Μέγεθος, σε σχέση με όταν χρησιμοποιούμε την Λαμπρότητα (δηλ. γιατί οι τιμές χαμηλώνουν προς τα πάνω;) Το μέγεθος ορίζεται ως: m = 2,5log L+C Το - σ αυτόν τον ορισμό δίνει την αντίστροφη σχέση ανάμεσα στην Λαμπρότητα και το Μέγεθος (λαμπρότερα αστέρια έχουν μικρότερο μέγεθος). [2 μονάδες] (β) Για ποιόν λόγο είναι δυνατή η αντικατάσταση της Λαμπρότητας (ή απόλυτου μεγέθους) στον κά- θετο άξονα με το φαινόμενο μέγεθος, όταν πρόκειται για την αναπαράσταση ενός σμήνους; Τα αστέρια ενός σμήνους βρίσκονται όλα ουσιαστικά στην ίδια απόσταση από εμάς. Συνεπώς, η φω- τεινότητα (ή φαινόμενο μέγεθος) του καθενός έχει την ίδια σχέση με την λαμπρότητα του. Ή μπορεί να γίνει αναφορά στη σχέση: M = m+5 5log d, όπου το d είναι σε parsec (pc). Mε το σχόλιο: Μιας και η απόσταση είναι η ίδια, η διαφορά μεταξύ M και m είναι η ίδια για όλα τα αστέρια. [2 μονάδες] (γ) Για ποιόν λόγο είναι δυνατή η αντικατάσταση της θερμοκρασίας στον οριζόντιο άξονα με τον δεί- κτη χρώματος, όταν πρόκειται για την αναπαράσταση ενός σμήνους; 18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας η φάση Ανάλυση Δεδομένων 5

6 Τα φαινόμενα μεγέθη Β και V μετρούν την ένταση του φάσματος μελανού σώματος σε διαφορετικές συχνότητες. Η διαφορά δύο μεγεθών είναι ανάλογη του λόγου των εντάσεων στις δύο αυτές συχνό- τητες. Μιας και τα αστέρια του σμήνους είναι στην ίδια απόσταση, ο λόγος αυτός είναι ίσος με τον λόγο των λαμπροτήτων στις δύο συχνότητες. Το συνεχές φάσμα ενός αστεριού προσδιορίζεται από την φωτοσφαρική του θερμοκρασία. Άρα, διαφορετικές θερμοκρασίες, οδηγούν σε διαφορετικό λόγο λαμπροτήτων στα δύο χρώματα και κατά συνέπεια διαφορετικών δεικτών χρώματος. [4 μονάδες] Συνολικά για την ερώτηση 1: [8 μονάδες] Εργασία 2 η : Στον παρακάτω πίνακα δίνονται τα σχετικά μεγέθη 31 αστεριών για το σμήνος «Δίας». Αυτά δεν αποτελούν παρά ένα μικρό αριθμό των αστέρων του σμήνους. Τα μεγέθη υπολογίστηκαν σε σχέση μ' ένα αστέρι αναφοράς R. Κατά συνέπεια, τα σχετικά μεγέθη του R είναι 0. Σαν αστέρι αναφοράς έχει επιλεχθεί ένα μη μεταβλητό αστέρι, τα φαινόμενα μεγέθη του οποίου έχουμε πάρει από αστρονομι- κό κατάλογο: m V = 9,38 και m B = 9,43. (α) Μετατρέψτε τα σχετικά μεγέθη των αστέρων σε φαινόμενα (m B, m V ). Συμπληρώστε τις στήλες m B και m V του πίνακα Ι. (β) Υπολογίστε το Β-V για κάθε αστέρι. Συμπληρώστε την τελευταία στήλη του πίνακα Ι. (γ) Κατασκευάστε το CMD του σμήνους «Δίας». Δηλαδή τοποθετήστε όλα τα αστέρια σε ένα διά- γραμμα m V προς Β-V (στον οριζόντιο άξονα βάλτε το Β- V και στον κατακόρυφο το m V όπως στην Εικόνα 3). α) m B = B rel + B R και m V = V rel + V R Σωστή εφαρμογή των παραπάνω τύπων [2 μονάδες], και [2 μονάδες] για κάθε στήλη αποτελεσμά- των. Συνολικά: [8 μονάδες] γ) M m_v B-V [Συνολικά: 8 μονάδες] για το διάγραμμα: [1+1] για κάθε άξονα με κατάλληλο εύρος τιμών, [1] για τον κατακόρυφο άξονα με αντεστραμμένη φορά. Οι υπόλοιπες 5 μονάδες, αναλόγως των σημείων που τοποθετήθηκαν: [5] για όλα τα σημεία - μια καλοσχηματισμένη Κ.Α. [4] για >25 σημεία (όλα τα σημεία, αλλά δεν σχηματίζουν καλά την Κ.Α.) [3] για σημεία [2] για σημεία [1] για < 10 σημεία Ν.Β. Δίας είναι το σμήνος Μ ος Πανελλήνιος Διαγωνισμός Αστρονομίας η φάση Ανάλυση Δεδομένων 6

7 B rel V rel m B m V B-V R 0 0 9,43 9,38 0,05 1 0,13 0, ,17 1, ,68 1, ,08-0, ,56 3, ,76 2, ,34 3, ,68 3, ,63 3, ,38 1, ,43 2, ,98 3, ,56 2, ,96 2, ,25 3, ,80 0, ,28 1, ,89 1, ,50 4, ,68 0, ,98 1, ,17-1, ,48 2, ,62 2, ,09 2, ,49 2, ,98 0, ,46 1, ,16 2, ,81 2, ,90 0, Πίνακας Ι. Συνολικά για την ερώτηση 2: [16 μονάδες] Εργασία 3 η : Η ίδια ανάλυση που κάνατε στην Εργασία 2, πραγματοποιήθηκε από κάποιον ερευνητή για περί- που 220 αστέρια του σμήνους «Ήρα». Το CMD του σμήνους «Ήρα» δίνεται στην Εικόνα 4. Ήρα m_v Εικόνα 4: Το CMD του σμήνους «Ήρα» B-V 18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας η φάση Ανάλυση Δεδομένων 7

8 Συγκρίνετε τα σχήματα των δύο αστρικών σμηνών (αυτό που έχετε παράγει στην Εργασία 2 και αυτό που σας δόθηκε έτοιμο της Εικόνας 4) με αυτό της Εικόνας 3. Μπορείτε να αναγνωρίσετε την Κυρία Ακολουθία (Κ.Α.) και τον κλάδο των γιγάντων; Μπορείτε να εκτιμήσετε που βρίσκεται το ση- μείο καμπής της Κ.Α.; Σημειώστε πάνω στα σχήματα όποια από τα: Κ.Α., τον κλάδο των γιγάντων και το σημείο καμπής στα δύο διαγράμματα, έχετε εντοπίσει. Δίας: Κ.Α. καλοσχηματισμένη [2 μονάδα] Ήρα: Κ.Α., σημείο καμπής, κλάδος γιγάντων [4 μονάδες] Συνολικά για την Εργασία 3: [6 μονάδες] Εργασία 4 η : Σ αυτή την Εργασία θα υπολογίσετε την απόσταση του σμήνους «Δίας». Το πραγματικό χρώμα (Δείκτης Χρώματος) ενός αστεριού προσδιορίζεται απ τον φασματικό του τύπο. Παρόλα αυτά, η πο- ρεία του φωτός μέσα από τη μεσοαστρική ύλη τείνει να «κοκκινίζει» κάθε αστέρι (περισσότερο μπλε απορροφάται απ ό,τι άλλα χρώματα). Η απορρόφηση αυτή εξαρτάται από την ποσότητα μεσοαστρι- κής ύλης που μεσολαβεί μεταξύ του σμήνους και της Γης, οπότε είναι η ίδια για όλα τα αστέρια του κάθε σμήνους. Η διαφορά ανάμεσα στον παρατηρούμενο δείκτη χρώματος και τον πραγματικό βρί- σκεται εμπειρικά και είναι ίση με το 1/3 του δείκτη απορρόφησης. Ο δείκτης απορρόφησης για το σμήνος Δίας είναι Δ = 0,78. Η απόσταση από ένα αστέρι του σμήνους (και κατά συνέπεια από το σμήνος) δίνεται από τη σχέ- ση: M = m +5 5log d Δ όπου τα Μ και m είναι το απόλυτο και φαινόμενο μέγεθος του αστεριού και το d μετριέται σε parsec (pc). Θα εφαρμόσετε αυτήν την σχέση για τα μεγέθη στο οπτικό (Μ V, m V ). Στο επόμενο βήμα θα διαλέξετε το κατάλληλο αστέρι για να εφαρμόσετε αυτόν τον τύπο. Εξ ορι- σμού, ένα αστέρι φασματικού Α0 είναι αυτό που έχει πραγματικό Δείκτη Χρώματος 0 (δηλαδή τα Β και τα V μεγέθη του είναι ίσα). Κατά συνέπεια ένα αστέρι με πραγματικό φασματικό τύπο Α0 θα φαί- νεται στο διάγραμμα σας με δείκτη χρώματος Δ/3. Το απόλυτο μέγεθος στο οπτικό ενός αστεριού Α0 της Κ.Α. είναι Μ V = 0,7. (α) Προσδιορίστε την θέση ενός αστεριού της Κ.Α. τύπου Α0 στο διάγραμμα και βρείτε σε τι φαινόμε- νο μέγεθος m V αντιστοιχεί. Ένα αστέρι φασματικού τύπου Α0 της Κ.Α. θα έχει (Β- V) Α0 = 0,26. Αυτό αντιστοιχεί σε m V ~11,5 ± 0,5 [2 μονάδες] για τιμή μεταξύ 11,25 και 11,75 [2 μονάδες] και σφάλμα μεταξύ 0,25 και 0,75. Συνολικά: 4 μονάδες για το (α). (β) Χρησιμοποιείστε την εκτίμηση σας στο (α) για να υπολογίσετε την απόσταση του σμήνους σε pc. log d =1 5( 11,5 0,7 +5 0,78)= 3,004 d 1010 pc [2 μονάδες] για πράξεις, [1 μονάδα] για αποτέλεσμα, συνεπές με την τιμή στο (α). Συνολικά 3 μονάδες για το (β) (γ) Στο (α) έχετε, κατά πάσα πιθανότητα, εντοπίσει ένα εύρος τιμών του m V που αντιστοιχούν σε φα- σματικό τύπο Α0. Χρησιμοποιείστε την μέγιστη και την ελάχιστη τιμή για να υπολογίσετε τις αντίστοι- χες αποστάσεις (ελάχιστη και μέγιστη σύμφωνα με το σφάλμα) για το σμήνος. Δώστε την απάντηση σας ως εξής: «η καλύτερη εκτίμηση είναι... pc και οι αντίστοιχες τιμές ελάχιστης και μέγιστης από- στασης είναι... (π.χ. Ας υποθέσουμε ότι η καλύτερη εκτίμηση της απόστασης που βρήκατε στο (β) ερώτημα είναι d = 102 pc, τότε οι τιμές ελάχιστης και μέγιστης απόστασης θα είναι 87pc και 109pc). d min = 801 pc και d max = 1270 pc Άρα: Η καλύτερη εκτίμηση είναι 1010 pc και οι αντίστοιχες τιμές ελάχιστης και μέγιστης απόστασης είναι 801 pc και 1270 pc. (Catalogued distance 816pc) 18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας η φάση Ανάλυση Δεδομένων 8

9 [2 μονάδες] για υπολογισμούς, [1 μονάδα] για το άνω όριο, [1 μονάδα] για το κάτω όριο, συνεπή με τις τιμές στο (α) [1 μονάδα] για κατάλληλη έκφραση του αποτελέσματος. Συνολικά για την ερώτηση (γ): [5 μονάδες] Συνολικά για την ερώτηση 4: [12 μονάδες] Εργασία 5 η : Οι αστέρες ενός σμήνους έχουν δημιουργηθεί όλοι μαζί. Άρα έχουν όλοι την ίδια ηλικία. Αυτή είναι η ηλικία του σμήνους. Δεδομένου ότι ο χρόνος ζωής στην Κ.Α. ενός αστεριού φασματικού τύπου Α0 είναι περίπου 500 εκατομμύρια χρόνια, κατατάξτε τα σμήνη Δίας και Ήρα ως προς την ηλικία τους και δώστε μια εκτίμηση της ηλικίας του καθενός σμήνους. Το Δίας δεν δείχνει σημείο καμπής, σημάδι του ότι είναι νέο σμήνος. [2 μονάδες] Αστέρια τύπου Α0 βρίσκονται ακόμη στην ΚΑ. Άρα είναι νεότερο των 500 εκατ. χρόνων [2 μονάδες]. [catalogued age of Μ35: yr] Το Ήρα έχει σημείο καμπής περί το (0,5, 12), που αντιστοιχεί σε φασματικό τύπο μεταγενέστερο του Α0, άρα το Ήρα είναι παλιότερο των 500 εκατ χρόνων. [4 μονάδες] [catalogued age of Μ67: 2, yr] Συνολικά για την ερώτηση 5: [8 μονάδες] 18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας η φάση Ανάλυση Δεδομένων 9

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος»

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Σωτήρης Τσαντίλας (PhD, MSc), Μαθηματικός Αστροφυσικός Σύντομη περιγραφή: Χρησιμοποιώντας δεδομένα από το διαστημικό τηλεσκόπιο

Διαβάστε περισσότερα

17 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2012. 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση

17 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2012. 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση 17 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2012 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση Παρακαλούμε, διαβάστε προσεκτικά τα παρακάτω: 1. Ο διαθέσιμος χρόνος για την απάντηση των θεωρητικών

Διαβάστε περισσότερα

d = 10(m-M+5)/5 pc. (m-m distance modulus)

d = 10(m-M+5)/5 pc. (m-m distance modulus) Παρατηρησιακά χαρακτηριστικά αστέρων Α. Πόσο μακρυά βρίσκονται τα αστέρια; Μέση απόσταση Γης-'Ηλιου=1AU=149597870,7 km Απόσταση αστέρα: 206264 d= AU ή p'' d= 1 pc, p' ' όπου p είναι η παράλλαξη του αστέρα

Διαβάστε περισσότερα

Λύσεις: Τελική Εξέταση 28 Αυγούστου 2015

Λύσεις: Τελική Εξέταση 28 Αυγούστου 2015 Φ230: Αστροφυσική Ι Λύσεις: Τελική Εξέταση 28 Αυγούστου 2015 1. Ο Σείριος Α, έχει φαινόμενο οπτικό μέγεθος mv - 1.47 και ακτίνα R1.7𝑅 και αποτελεί το κύριο αστέρι ενός διπλού συστήματος σε απόσταση 8.6

Διαβάστε περισσότερα

19 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2014. 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση

19 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2014. 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση 19 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2014 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση Παρακαλούμε, διαβάστε προσεκτικά τα παρακάτω: 1. Ο διαθέσιμος χρόνος για την απάντηση των θεωρητικών

Διαβάστε περισσότερα

Ερωτήσεις Λυκείου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016

Ερωτήσεις Λυκείου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016 ΠΡΟΣΟΧΗ: Αυτό το έγγραφο ΔΕΝ θα το αποστείλετε ηλεκτρονικά (μέσω e-mail). Απλά το αναρτήσαμε για την δική σας διευκόλυνση. Μόλις βρείτε τις απαντήσεις που γνωρίζετε και τις σημειώσετε σ αυτό το έντυπο,

Διαβάστε περισσότερα

ΠΟΣΟ ΜΕΓΑΛΑ ΕΙΝΑΙ ΤΑ ΑΣΤΕΡΙΑ;

ΠΟΣΟ ΜΕΓΑΛΑ ΕΙΝΑΙ ΤΑ ΑΣΤΕΡΙΑ; ΠΟΣΟ ΜΕΓΑΛΑ ΕΙΝΑΙ ΤΑ ΑΣΤΕΡΙΑ; Α) Ακτίνα αστέρων (Όγκος). Στον Ήλιο, και τον Betelgeuse, μπορούμε να μετρήσουμε απευθείας τη γωνιακή διαμέτρο, α, των αστεριών. Αν γνωρίζουμε αυτή τη γωνία, τότε: R ( ακτίνα

Διαβάστε περισσότερα

Πληροφορίες για τον Ήλιο:

Πληροφορίες για τον Ήλιο: Πληροφορίες για τον Ήλιο: 1) Ηλιακή σταθερά: F ʘ =1.37 kw m -2 =1.37 10 6 erg sec -1 cm -2 2) Απόσταση Γης Ήλιου: 1AU (~150 10 6 km) 3) L ʘ = 3.839 10 26 W = 3.839 10 33 erg sec -1 4) Διαστάσεις: Η διάμετρος

Διαβάστε περισσότερα

ΠΡΟΣΟΧΗ: Διαβάστε προσεκτικά τις κάτωθι Οδηγίες για την συμμετοχή σας στην 1 η φάση «Εύδοξος»

ΠΡΟΣΟΧΗ: Διαβάστε προσεκτικά τις κάτωθι Οδηγίες για την συμμετοχή σας στην 1 η φάση «Εύδοξος» ΠΡΟΣΟΧΗ: Διαβάστε προσεκτικά τις κάτωθι Οδηγίες για την συμμετοχή σας στην 1 η φάση «Εύδοξος» Για να θεωρηθεί έγκυρη η συμμετοχή σας στην 1 η φάση, θα πρέπει απαραίτητα να έχετε συμπληρώσει τον πίνακα

Διαβάστε περισσότερα

Εργαστήριο 2008. Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών.

Εργαστήριο 2008. Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών. Υπολογισμός σταθεράς Hubble Εργαστήριο 2008 Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών. Εισαγωγή Το 1929, ο Edwin Hubble (με βάση

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό.

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό. ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Α) γ Α) β Α)γ Α4) γ Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό ΘΕΜΑ Β n a n ( ύ) a n (), ( ύ ) n

Διαβάστε περισσότερα

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009 Q 40 th International Physics Olympiad, erida, exico, -9 July 009 ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ No. Η ΕΞΕΛΙΞΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΗΣ-ΣΕΛΗΝΗΣ Οι επιστήμονες μπορούν να προσδιορίσουν την απόσταση Γης-Σελήνης, με μεγάλη

Διαβάστε περισσότερα

Κεφάλαιο 1: ΕΙΣΑΓΩΓΗ

Κεφάλαιο 1: ΕΙΣΑΓΩΓΗ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 130 Κεφάλαιο 1: ΕΙΣΑΓΩΓΗ Α. Απαντήσεις στις ερωτήσεις πολλαπλής επιλογής 1. α, β 2. γ 3. ε 4. β, δ 5. γ 6. α, β, γ, ε Β. Απαντήσεις στις ερωτήσεις συµπλήρωσης κενού 1. η αρχαιότερη

Διαβάστε περισσότερα

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ ο ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ου ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΔΕΥΤΕΡΑ 3 ΜΑΪΟΥ 200 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ () Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ ΜΑΪΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ Θέμα Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

Έκλειψη Ηλίου 20ης Μαρτίου 2015

Έκλειψη Ηλίου 20ης Μαρτίου 2015 Έκλειψη Ηλίου 20ης Μαρτίου 2015 Πληροφοριακό υλικό Κέντρο Επισκεπτών Ινστιτούτο Αστρονομίας Αστροφυσικής Διαστημικών Εφαρμογών και Τηλεπισκόπησης (ΙΑΑΔΕΤ) Εθνικό Αστεροσκοπείο Αθηνών Την Παρασκευή 20 Μαρτίου

Διαβάστε περισσότερα

Στέμμα. 2200 km Μεταβατική περιοχή 2100 km. Χρωμόσφαιρα. 500 km. Φωτόσφαιρα. τ500=1. -100 km. Δομή της ΗΛΙΑΚΗΣ ΑΤΜΟΣΦΑΙΡΑΣ

Στέμμα. 2200 km Μεταβατική περιοχή 2100 km. Χρωμόσφαιρα. 500 km. Φωτόσφαιρα. τ500=1. -100 km. Δομή της ΗΛΙΑΚΗΣ ΑΤΜΟΣΦΑΙΡΑΣ Στέμμα 2200 km Μεταβατική περιοχή 2100 km Χρωμόσφαιρα 500 km -100 km Φωτόσφαιρα τ500=1 Δομή της ΗΛΙΑΚΗΣ ΑΤΜΟΣΦΑΙΡΑΣ Η ΗΛΙΑΚΗ ΧΡΩΜΟΣΦΑΙΡΑ Περιοχή της ηλιακής ατμόσφαιρας πάνω από τη φωτόσφαιρα ( Πάχος της

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

Στέμμα. 2200 km Μεταβατική περιοχή 2100 km. Χρωμόσφαιρα. 500 km. Φωτόσφαιρα. τ500=1. -100 km. Δομή της ΗΛΙΑΚΗΣ ΑΤΜΟΣΦΑΙΡΑΣ

Στέμμα. 2200 km Μεταβατική περιοχή 2100 km. Χρωμόσφαιρα. 500 km. Φωτόσφαιρα. τ500=1. -100 km. Δομή της ΗΛΙΑΚΗΣ ΑΤΜΟΣΦΑΙΡΑΣ Στέμμα 2200 km Μεταβατική περιοχή 2100 km Χρωμόσφαιρα 500 km -100 km Φωτόσφαιρα τ500=1 Δομή της ΗΛΙΑΚΗΣ ΑΤΜΟΣΦΑΙΡΑΣ Η ΗΛΙΑΚΗ ΧΡΩΜΟΣΦΑΙΡΑ Περιοχή της ηλιακής ατμόσφαιρας πάνω από τη φωτόσφαιρα ( Πάχος της

Διαβάστε περισσότερα

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 1.- Από τα πρώτα σχολικά µας χρόνια µαθαίνουµε για το πλανητικό µας σύστηµα. Α) Ποιος είναι ο πρώτος και

Διαβάστε περισσότερα

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ 1 ΦΩΣ Στο μικρόκοσμο θεωρούμε ότι το φως έχει δυο μορφές. Άλλοτε το αντιμετωπίζουμε με τη μορφή σωματιδίων που ονομάζουμε φωτόνια. Τα φωτόνια δεν έχουν μάζα αλλά μόνον ενέργεια. Άλλοτε πάλι αντιμετωπίζουμε

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑΪΟΥ 204 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Εισαγωγή στην αστρονοµία (Πως να προετοιµαστώ για τις εξετάσεις;)

Εισαγωγή στην αστρονοµία (Πως να προετοιµαστώ για τις εξετάσεις;) Εισαγωγή στην αστρονοµία (Πως να προετοιµαστώ για τις εξετάσεις;) Λ. Βλάχος 1 Ιανουαρίου 2010 1 Εισαγωγικές Σκέψεις Ενα πολύ σοβαρό ϑέµα, για το οποίο σπάνια συζητάµε στα µαθήµατα, είναι το πως περιµένουν

Διαβάστε περισσότερα

ΦΩΤΟΜΕΤΡIA ΕΝΟΣ ΑΝΟΙΚΤΟΥ ΑΣΤΡΙΚΟΥ ΣΜΗΝΟΥΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ SALSA J.

ΦΩΤΟΜΕΤΡIA ΕΝΟΣ ΑΝΟΙΚΤΟΥ ΑΣΤΡΙΚΟΥ ΣΜΗΝΟΥΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ SALSA J. Photometry of star clusters with SalsaJ Authors: Daniel Duggan & Sarah Roberts Translation: Ioanna Ioannidou ΦΩΤΟΜΕΤΡIA ΕΝΟΣ ΑΝΟΙΚΤΟΥ ΑΣΤΡΙΚΟΥ ΣΜΗΝΟΥΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ SALSA J. Λύκειο Αγίου Ιωάννη

Διαβάστε περισσότερα

Εικ 1 Μετόπη από το ναό της Αθηνάς στην Τροία με ανάγλυφη παράσταση του Ήλιου πάνω στο άρμα του. (Staatliche Museen, Βερολίνο) ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΗΛΙΟΥ Μέση Απόσταση = 21.392.000 x 10 33 gr ΜD

Διαβάστε περισσότερα

ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος. Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος. Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Αστρικό σμήνος είναι 1 ομάδα από άστρα που Καταλαμβάνουν σχετικά μικρό χώρο στο

Διαβάστε περισσότερα

Al + He X + n, ο πυρήνας Χ είναι:

Al + He X + n, ο πυρήνας Χ είναι: ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 10 IOYNIOY 015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) Θέμα Α

Διαβάστε περισσότερα

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν τρεις ερωτήσεις και κάθε μια από αυτές βαθμολογείται με 0 βαθμούς.. Χρησιμοποιήστε μόνο το στυλό που υπάρχει

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M,

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M, ΒΑΡΥΤΗΤΑ ΝΟΜΟΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΛΞΗΣ Ο Νεύτωνας ανακάλυψε τον νόμο της βαρύτητας μελετώντας τις κινήσεις των πλανητών γύρω από τον Ήλιο και τον δημοσίευσε το 1686. Από την ανάλυση των δεδομένων αυτών ο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό ΚΕΦΑΛΑΙΟ 2 Ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικά κύματα 7. Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό κύμα; 7.2 Ποιες εξισώσεις περιγράφουν την ένταση του ηλεκτρικού

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΘΕΜΑ A ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Παρασκευή, 0 Μαΐου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ Στις ερωτήσεις Α -Α να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Μεταφορά Ενέργειας με Ακτινοβολία

Μεταφορά Ενέργειας με Ακτινοβολία ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΠΙΣΤΗΜΗ - ΕΡΓΑΣΤΗΡΙΟ Εργαστηριακή Άσκηση: Μεταφορά Ενέργειας με Ακτινοβολία Σκοπός της Εργαστηριακής Άσκησης: Να προσδιοριστεί ο τρόπος με τον οποίο μεταλλικά κουτιά με επιφάνειες διαφορετικού

Διαβάστε περισσότερα

Μονάδες 5. Α2. Τα ηλεκτρομαγνητικά κύματα

Μονάδες 5. Α2. Τα ηλεκτρομαγνητικά κύματα ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 26 ΜΑÏΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Ακτίνες επιτρεπόμενων τροχιών (2.6)

Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας το r με r n, έχουμε: Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας n=1, βρίσκουμε την τροχιά με τη μικρότερη ακτίνα n: Αντικαθιστώντας την τελευταία εξίσωση στη 2.6, παίρνουμε: Αν

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι:

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: ΗΛΙΑΚΑ ΩΡΟΛΟΓΙΑ Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: Οριζόντια Κατακόρυφα Ισημερινά Το παρακάτω άρθρο αναφέρεται στον τρόπο λειτουργίας αλλά και κατασκευής

Διαβάστε περισσότερα

3. Σε στάσιμο κύμα δύο σημεία του ελαστικού μέσου βρίσκονται μεταξύ δύο διαδοχικών δεσμών. Τότε τα σημεία αυτά έχουν

3. Σε στάσιμο κύμα δύο σημεία του ελαστικού μέσου βρίσκονται μεταξύ δύο διαδοχικών δεσμών. Τότε τα σημεία αυτά έχουν ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 25 ΜΑÏΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 -

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 - ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ H Γη είναι ένας πλανήτης από τους οκτώ συνολικά του ηλιακού μας συστήματος, το οποίο αποτελεί ένα από τα εκατοντάδες δισεκατομμύρια αστρικά συστήματα του Γαλαξία μας, ο οποίος με την

Διαβάστε περισσότερα

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές.

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές. ΜΑΘΗΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Θέµα 1 ο α) Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί µεταβολή AB από την κατάσταση A (p, V, T ) στην κατάσταση B (p, V 1, T ). i) Ισχύει V 1 = V. ii) Η µεταβολή παριστάνεται

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 10 ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Ολοήμερο Δημοτικό Σχολείο Πορταριάς «Ν. Τσοποτός» Ανάπτυξη σχεδίου εργασίας στο ολοήμερο δημοτικό σχολείο. Εισηγητής: Μακρής Νικόλαος

Ολοήμερο Δημοτικό Σχολείο Πορταριάς «Ν. Τσοποτός» Ανάπτυξη σχεδίου εργασίας στο ολοήμερο δημοτικό σχολείο. Εισηγητής: Μακρής Νικόλαος Ολοήμερο Δημοτικό Σχολείο Πορταριάς «Ν. Τσοποτός» Ανάπτυξη σχεδίου εργασίας στο ολοήμερο δημοτικό σχολείο Εισηγητής: Μακρής Νικόλαος Γενικός τίτλος «Ένας μαγικός αλλά άγνωστος κόσμος» Ένας μαγικός αλλά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ

ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ 1. Εισαγωγή. Η ενέργεια, όπως είναι γνωστό από τη φυσική, διαδίδεται με τρεις τρόπους: Α) δι' αγωγής Β) δια μεταφοράς Γ) δι'ακτινοβολίας Ο τελευταίος τρόπος διάδοσης

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2013 ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΟΜΑΛΗ ΚΙΝΗΣΗ 1) Δυο τροχοί με ακτίνες ο πρώτος 100cm και ο δεύτερος 60cm περιστρέφονται ομαλά συνδεδεμένοι μεταξύ τους με ιμάντα. Αν η συχνότητα του πρώτου τροχού είναι 10Hz να βρεθεί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Σε

Διαβάστε περισσότερα

Διαγώνισμα εφ όλης της ύλης. Στα θέματα 1 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες.

Διαγώνισμα εφ όλης της ύλης. Στα θέματα 1 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες. Διαγώνισμα εφ όλης της ύλης Θέμα ο Στα θέματα 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες. ) Στο σχήμα φαίνεται το στιγμιότυπο ενός τρέχοντος αρμονικού κύματος

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΣΤΡΟΝΟΜΙΑΣ & ΔΙΑΣΤΗΜΙΚΗΣ. Β' Τάξη Γενικού Λυκείου

ΣΤΟΙΧΕΙΑ ΑΣΤΡΟΝΟΜΙΑΣ & ΔΙΑΣΤΗΜΙΚΗΣ. Β' Τάξη Γενικού Λυκείου ΣΤΟΙΧΕΙΑ ΑΣΤΡΟΝΟΜΙΑΣ & ΔΙΑΣΤΗΜΙΚΗΣ Β' Τάξη Γενικού Λυκείου Ομάδα συγγραφής: Κων/νος Γαβρίλης, καθηγητής Μαθηματικών Β/θμιας Εκπαίδευσης. Μαργαρίτα Μεταξά, Δρ. Αστροφυσικής, καθηγήτρια Φυσικής του Τοσιτσείου-Αρσακείου

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 23 MAΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 23 MAΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ MAΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε

Διαβάστε περισσότερα

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. Γουργουλιάτος ΜΑΥΡΕΣ ΤΡΥΠΕΣ Η ΒΑΣΙΚΗ ΙΔΕΑ Αντικείμενα που εμποδίζουν την διάδοση φωτός από αυτά Πρωτοπροτάθηκε γύρω στα 1783 (John( John Michell) ως αντικείμενο

Διαβάστε περισσότερα

AΣΤΡΟΝΟΜΙΚΕΣ ΠΑΡΑΝΟΗΣΕΙΣ ΙΙ: Ο ΗΛΙΟΣ

AΣΤΡΟΝΟΜΙΚΕΣ ΠΑΡΑΝΟΗΣΕΙΣ ΙΙ: Ο ΗΛΙΟΣ AΣΤΡΟΝΟΜΙΚΕΣ ΠΑΡΑΝΟΗΣΕΙΣ ΙΙ: Ο ΗΛΙΟΣ 1. Ο Ήλιος μας είναι ένας από τους μεγαλύτερους αστέρες της περιοχής μας, του Γαλαξία μας αλλά και του σύμπαντος (NASA Science, εικόνα 1), όντας ο μοναδικός στο ηλιακό

Διαβάστε περισσότερα

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ ΟΜΑΔΑ ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ 1)... 2)... 3)... ΗΜΕΡΟΜΗΝΙΑ : Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ Με το πείραµα αυτό θα προσδιορίσουµε: Σκοπός

Διαβάστε περισσότερα

Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων

Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ 28 Νοεµβρίου 2009 Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ Η κίνηση των πλανητών είναι το αποτέλεσμα της σύνθεσης 2 κινήσεων: μίας περιστροφής γύρω από τον Ήλιο, η περίοδος της οποίας μας δίνει το έτος κάθε πλανήτη, και πραγματοποιείται

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007

The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007 The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007 Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: 1. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν τρεις ερωτήσεις και κάθε

Διαβάστε περισσότερα

Κίνηση σε μια διάσταση

Κίνηση σε μια διάσταση Κίνηση σε μια διάσταση Θεωρούμε κίνηση κατά μήκος μιας ευθύγραμμης διαδρομής. Η απόσταση x του κινούμενου σώματος από ένα σημείο του άξονα της κίνησης που παραμένει ακίνητο χρησιμοποιείται ως συντεταγμένη.

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 25 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 25 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣΣΕΛΙ ΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 5 ΑΠΡΙΛΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009 Q 40 th Intrnational Physis Olympiad, Mrida, Mxio, 1-19 July 009 ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 3 ΓΙΑΤΙ ΤΑ ΑΣΤΕΡΙΑ ΕΧΟΥΝ ΜΕΓΑΛΕΣ ΔΙΑΣΤΑΣΕΙΣ? Τα αστέρια είναι σφαίρες από ζεστό αέριο. Τα περισσότερα από αυτά λάμπουν

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 5.4 Η ταχύτητα υ διάδοσης του κύματος, η περίοδός του Τ και το μήκος κύματος λ, συνδέονται με τη σχέση:

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 5.4 Η ταχύτητα υ διάδοσης του κύματος, η περίοδός του Τ και το μήκος κύματος λ, συνδέονται με τη σχέση: Αρμονικό κύμα ΚΕΦΑΛΑΙΟ 2 51 Κατά τη διάδοση ενός κύματος σε ένα ελαστικό μέσο: α μεταφέρεται ύλη, β μεταφέρεται ενέργεια και ύλη, γ όλα τα σημεία του ελαστικού μέσου έχουν την ίδια φάση την ίδια χρονική

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ 05 2 0 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Εισαγωγή στην παρατήρηση και τον αστρονομικό εξοπλισμό

Εισαγωγή στην παρατήρηση και τον αστρονομικό εξοπλισμό Εισαγωγή στην παρατήρηση και τον αστρονομικό εξοπλισμό Θεόφιλος Στεργίου Αστρονομική Εταιρία ΩΡΙΩΝ Είδη Ερασιτεχνικής αστρονομίας (Δεν είναι αστροφυσική) Αστρονόμος του καναπέ Παρατηρησιακός αστρονόμος

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2013 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2013 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Γ Γυμνασίου 20 Απριλίου 2013 Θέμα 1 ο Στις ερωτήσεις A, B, Γ, Δ μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 214-2 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/1/214 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΤΑ ΑΚΡΟΤΑΤΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ

ΤΑ ΑΚΡΟΤΑΤΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ ΤΑ ΑΚΡΟΤΑΤΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ Το λαμπρότερο αστέρι στον νυχτερινό ουρανό είναι ο Σείριος Α του αστερισμού του Μεγάλου Κυνός (a Canis Majoris) και αποτελεί μέρος διπλού συστήματος αστέρων. Απέχει από το ηλιακό

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης

Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης Οδηγός για τον εκπαιδευτικό Περιεχόμενα Προετοιμασία δραστηριότητας Α. Υλικά και φύλλα εργασίας 3 Β. Εγκατάσταση του προγράμματος "Google

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 27 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Δεύτερη Φάση) Κυριακή, 31 Μαρτίου, 2013 Ώρα: 10:00-13:00 Απενεργοποιήστε τα κινητά σας τηλέφωνα!!! Παρακαλώ διαβάστε πρώτα τα πιο κάτω,

Διαβάστε περισσότερα

Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της γης

Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της γης Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της Α. Το Μαγνητικό πεδίο σαν διάνυσμα Σο μαγνητικό πεδίο περιγράφεται με το μέγεθος που αποκαλούμε ένταση μαγνητικού

Διαβάστε περισσότερα

The 37 th International Physics Olympiad Singapore Theory Competition Monday, 10 July 2006

The 37 th International Physics Olympiad Singapore Theory Competition Monday, 10 July 2006 Σελ. 1 από 6 The 37 th International Physics Olympiad Singapore Theory Competition Monday, 10 July 006 Παρακαλώ διαβάστε προσεκτικά τις πιο κάτω οδηγίες: 1. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν

Διαβάστε περισσότερα

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012 1 Τοπικός Μαθητικός Διαγωνισμός 11η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2013 11Η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΕΚΦΕ Τρικάλων Πειραματική Δοκιμασία στη Φυσική Τοπικός Μαθητικός Διαγωνισμός Τρίκαλα,

Διαβάστε περισσότερα

Παρατηρήσεις μεταβλητότητας AGN. Επεξεργασία εικόνας για φωτομετρία

Παρατηρήσεις μεταβλητότητας AGN. Επεξεργασία εικόνας για φωτομετρία Παρατηρήσεις μεταβλητότητας AGN Επεξεργασία εικόνας για φωτομετρία Eκθέσεις ηλεκτρονικού υποβάθρου Bias Frames Ηλεκτρονικά κάμερας Θερμική παραγωγή ηλεκτρονίων μέσα στην κάμερα Διάφραγμα κλειστό Μηδενικός

Διαβάστε περισσότερα

ΦΑΣMAΤΙΚΗ ΤΑΞΙΝΟΜΗΣΗ ΑΣΤΕΡΩΝ

ΦΑΣMAΤΙΚΗ ΤΑΞΙΝΟΜΗΣΗ ΑΣΤΕΡΩΝ ΦΑΣMAΤΙΚΗ ΤΑΞΙΝΟΜΗΣΗ ΑΣΤΕΡΩΝ Εισαγωγή στην κβαντομηχανική και στην ατομική Φυσική ΦΩΣ = Ηλεκτρομαγνητικό κύμα με σωματιδιακές ιδιότητες (δυική φύση) Τα «σωματίδια» του φωτός ονομάζονται ΦΩΤΟΝΙΑ και έχουν

Διαβάστε περισσότερα

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σενάριο με το λογισμικό modellus Τίτλος: Πότε δύο τρένα έχουν την ελάχιστη απόσταση μεταξύ τους; Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σε μια πρώτη

Διαβάστε περισσότερα

σωµάτων. φωτός και η µελέτη του φάσµατός της. τις οποίες αποτελείται.

σωµάτων. φωτός και η µελέτη του φάσµατός της. τις οποίες αποτελείται. Φάσµατα Το φαινόµενο του διασκεδασµού του φωτός αξιοποιείται στα φασµατοσκόπιαµε µε τα οποία παίρνουµε τα φάσµατατων των σωµάτων. Το φασµατοσκόπιοείναι ένα όργανο µε το οποίο γίνεται η ανάλυσηµίας δέσµης

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 04 Α Λυκείου 9 Μαρτίου 04 ΟΔΗΓΙΕΣ:. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε Τετράδιο το οποίο θα σας δοθεί και το οποίο θα παραδώσετε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία. Ενότητα 1: Εισαγωγή στη Φωτομετρία

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία. Ενότητα 1: Εισαγωγή στη Φωτομετρία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Φωτοτεχνία Ενότητα 1: Εισαγωγή στη Φωτομετρία Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.4 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Μια ευθύγραμμη κίνηση στην οποία το διάνυσμα της ταχύτητας δεν μένει σταθερό, δηλαδή έχουμε μεταβολή της ταχύτητας, την ονομάζουμε ευθύγραμμη μεταβαλλόμενη κίνηση.

Διαβάστε περισσότερα

Η Φυσική στην Α Λυκείου. Η ΔΙΔΑΣΚΑΛΙΑ 9.

Η Φυσική στην Α Λυκείου. Η ΔΙΔΑΣΚΑΛΙΑ 9. Η Φυσική στην Α Λυκείου. Η ΔΙΔΑΣΚΑΛΙΑ 9. users.sch.gr/ /yphysicsalyceum9.htm 1/14 Η ομαλή κυκλική κίνηση είναι ΚΙΝΗΣΗ υλικού σημείου, είναι δηλαδή ένα ΦΑΙΝΟΜΕΝΟ κατά το οποίο η θέση ενός υλικού σημείου

Διαβάστε περισσότερα

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΔΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΤΑΛΑΝΤΩΣΕΙΣ - ΚΥΜΑΤΑ

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΔΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΤΑΛΑΝΤΩΣΕΙΣ - ΚΥΜΑΤΑ ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΔΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΤΑΛΑΝΤΩΣΕΙΣ - ΚΥΜΑΤΑ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΟΙ ΑΣΤΕΡΕΣ

ΚΕΦΑΛΑΙΟ 5 ΟΙ ΑΣΤΕΡΕΣ ΚΕΦΑΛΑΙΟ 5 ΟΙ ΑΣΤΕΡΕΣ Α. Ερωτήσεις πολλαπλής επιλογής Για να απαντήσεις στις ερωτήσεις που ακολουθούν αρκεί να επιλέξεις την ή τις σωστές από τις προτεινόµενες απαντήσεις. 1. Το φαινόµενο µέγεθος ενός

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας Διδάσκων: Αναγνωστόπουλος Χρήστος Κώδικες μετρήσεων αντικειμένων σε εικόνα Χρωματικά μοντέλα: Munsell, HSB/HSV, CIE-LAB Κώδικες μετρήσεων αντικειμένων σε εικόνες Η βασική

Διαβάστε περισσότερα

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 2. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ Με τον όρο ακτινοβολία

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 3 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α. Στις

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ (ΟΜΑ ΑΣ Β ) ΠΕΜΠΤΗ 27 MAΪΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ:

Διαβάστε περισσότερα

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: 39th Iteratioal Physis Olympiad - Haoi - Vietam - 008 Theoretial Problem No. Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν τρεις ερωτήσεις και κάθε μια από

Διαβάστε περισσότερα