Εισαγωγή στην Αστρονομία
|
|
- Τῑτάν Σπανός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Παπαδόπουλος Μιλτιάδης ΑΕΜ: Εξάμηνο: 7 ο Ασκήσεις: -5 Εισαγωγή στην Αστρονομία Από τη θεωρία είναι γνωστό ότι η ιδιοπερίοδος των ακτινικών ταλαντώσεων των αστέρων δίνεται από μια σχέση της μορφής Q[<ρ>/<ρ>] / όπου η τιμή της "σταθερής" Q εξαρτάται από την τάξη φωτεινότητας, αλλά μπορεί, σε πρώτη προσέγγιση, να θεωρηθεί σταθερή Υποθέστε ότι Q ημέρες για όλους του αστέρες Πόση θα είναι η ιδιοπερίοδος (α) του Ήλιου, (β) ενός αστέρα τάξης φωτεινότητας V και μάζας και (γ) ενός τυπικού λευκού νάνου; Δίνεται ότι για τους αστέρες της κύριας ακολουθίας ισχύει η σχέση R ~ και ότι R 6 km ρ α) Για τον Ήλιο θα έχουμε: ρ ρ Q Q ημέρες β) Για έναν αστέρα μάζας Μ θα ισχύει και R R, οπότε: ρ ρ V πr π ( R ) π ( R ), συνεπώς: ρ Q Q ημέρες γ) Τέλος για έναν τυπικό λευκό νάνο θα έχουμε ότι & R R Γ R Επομένως ρ 6 6 ρ και V πr π ( R ) π ( R ) 6 ρ Q Q ημέρες
2 - - Δείξτε (προσεγγιστικά) ότι οι αστέρες της κύριας ακολουθίας ακολουθούν μια απλή σχέση φωτεινότητας-μάζας ( ), υποθέτοντας ότι το αέριο στο εσωτερικό ακολουθεί την καταστατική εξίσωση των ιδανικών αερίων ( r) Αρχικά ξεκινάμε από την εξίσωση διάδοσης της ενέργειας με ακτινοβολία: r T ( r) ( r) ρ( r) ( r) 6πσ dt στην οποία κάνουμε τις προσεγγίσεις r R & κ dr dt T Επίσης, λόγω της μεγάλης μάζας των αστέρων της κύριας dr R ακολουθίας κυριαρχεί η αδιαφάνεια που οφείλεται στη σκέδαση ηλεκτρονίων και είναι ανεξάρτητη της θερμοκρασίας Έτσι καταλήγουμε ότι: RT R T και θέτοντας την πυκνότητα ρ προκύπτει: ρ πr Από την καταστατική εξίσωση των ιδανικών αερίων και την εξίσωση της καταστατικής ισορροπίας βρίσκουμε αντίστοιχα: T µ µ R & ρ R R µ Συνεπώς για την φωτεινότητα ισχύει R, δηλαδή: µ Με την παραδοχή ότι οι αστέρες είναι παραπλήσιας χημικής σύστασης, τότε το μέσο μοριακό βάρος τους δεν διαφέρει αισθητά και η σχέση μάζας-φωτεινότητας γίνεται:
3 5 Αν είναι γνωστός ο νόμος μάζας-φωτεινότητας ( ) - - και τα μέλη ενός διπλού αστέρα έχουν απόλυτα μεγέθη 7,7 και,5 αντίστοιχα Το φαινόμενο μέγεθος του πρωτεύοντα (S) είναι mv 7 και η γωνιώδης απόσταση του πραγματικού μεγάλου ημιάξονα της σχετικής τροχιάς του ζεύγους είναι, Να υπολογισθεί η περίοδος του ζεύγους Γνωρίζουμε ότι : mv 5 5 r οπότε για τον πρώτο αστέρα θα έχουμε: r r r pc Συνεπώς η παράλλαξη του aπ αστέρα θα είναι: π r και ο μεγάλος ημι-άξονας A AU π Επίσης έχουμε: Όμοια και για τον άλλο αστέρα: A Επομένως αστρικά έτη 68 Δύο αστέρες φαίνονται κοντά ο ένας στον άλλο πάνω στην ουράνια σφαίρα Ο ένας έχει απόλυτο μέγεθος -7 και m 5 6 ενώ ο άλλος -5 και m 9 Πως θα αποδείξετε αν είναι ή όχι διπλό σύστημα; v v Γνωρίζουμε ότι : mv 5 5 r οπότε για τον πρώτο αστέρα θα έχουμε: r r 66 και για τον δεύτερο όμοια: r r 68
4 - - r Συνεπώς: r r 98 r 955r r r Επίσης εξετάζοντας το σύστημα Αστέρα-Ήλιου, για την βαρυτική έλξη θα έχουμε: F και r r F F δηλαδή: F F F r Όπως προκύπτει, η ελκτική δύναμη που ασκεί ο Ήλιος στον δεύτερο αστέρα είναι φορές μεγαλύτερη από την αντίστοιχη του πρώτου Σε περίπτωση που ο δεύτερος αστέρας ήταν μέλος διπλού συστήματος, το άλλο μέλος θα ήταν ο Ήλιος Άρα οι δύο αστέρες δεν αποτελούν διπλό σύστημα 5 Εάν ο Ήλιος δεν χάσει καθόλου μάζα και μετατραπεί σε λευκό νάνο με ακτίνα R/ Να υπολογισθεί η αναμενόμενη πλάτυνση των φασματικών του γραμμών στο λ6α Η παρατηρούμενη πλάτυνση είναι <<,5Α Τι συμπέρασμα βγάζετε; Για την πλάτυνση των φασματικών γραμμών έχουμε: λ υ λ c ω c R Εφαρμόζοντας την αρχή διατήρησης της στροφορμής για τον Ήλιο και τον λευκό π J J I ω I ω R R 5 5 νάνο παίρνουμε ότι: ω R R 87 * 7 * *6 * 6 z π Επομένως λ λ 8 87 * * 696 * * 9979 * και για λ6α λ 5 6*995* 597 A 5 A χάνουν στροφορμή! Οπότε συμπεραίνουμε ότι οι αστέρες
5 - 5-6 Χρησιμοποιώντας το νόμο μάζας-φωτεινότητας να δείξετε ότι το απόλυτο μέγεθος Μ ενός διπλού συστήματος, θεωρούμενου ως συνόλου, είναι 65(α π όπου είναι το απόλυτο μέγεθος του Ήλιου, α ο γωνιώδης μεγάλος ημιάξονας της πραγματικής σχετικής τροχιάς, π η παράλλαξη και η περίοδος του συστήματος Αρχικά έχουμε: 5 με την φωτεινότητα του συστήματος Από το νόμο μάζας-φωτεινότητας παίρνουμε ότι 5 οπότε η σχέση μας γίνεται: k k Η μάζα του συστήματος αφορά και τους δύο αστέρες ως σύνολο και είναι εκφρασμένη σε μάζες Ήλιου Συνεπώς ο λόγος ισούται με ( ) + και η σχέση παίρνει τη μορφή: 875( + ) 875 A 875( A ) 875( A 65( A aπ 65( π 65(α π 65(α π οεδ
ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ
ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ 2016-2017 ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ 1ο Σ Ε Τ Α Σ Κ Η Σ Ε Ω Ν 1. Να κατασκευαστεί η ουράνια σφαίρα για έναν παρατηρητή που βρίσκεται σε γεωγραφικό πλάτος 25º και να τοποθετηθούν
k 3/5 P 3/5 ρ = cp 3/5 (1) dp dr = ρg (2) P 3/5 = cgdz (3) cgz + P0 cg(z h)
Αριστοτελειο Πανεπιστημιο Θεσσαλονικης ΤΜΗΜΑ ΦΥΣΙΚΗΣ 3ο Σετ Ασκήσεων Αστρονομίας Author: Σταμάτης Βρετινάρης Supervisor: Νικόλαος Στεργιούλας Λουκάς Βλάχος December 5, 215 1 Άσκηση Σφαιρικός αστέρας με
Αστροφυσική. Ενότητα # 2: Αστρική Δομή - Εφαρμογές Ρευστοδυναμικής. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 2: Αστρική Δομή - Εφαρμογές Ρευστοδυναμικής Λουκάς Βλάχος Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
2. Στο ηλιακό στέµµα η ϑερµότητα διαδίδεται µε αγωγιµότητα και η ϱοή ϑερµικής ενέργειας (heat flux)είναι
4.6 Ασκήσεις 51 4.6 Ασκήσεις 1. Μελετήστε τον στάσιµο ( t = 0) ισόθερµο άνεµο σε επίπεδο, χρησιµοποιώντας πολικές συντεταγµένες και (α) Βρείτε τη χαρακτηριστική απόσταση από τον αστέρα r στην οποία γίνεται
dλ (7) l A = l B = l = λk B T
Αριστοτελειο Πανεπιστημιο Θεσσαλονικης ΤΜΗΜΑ ΦΥΣΙΚΗΣ 2ο Σετ Ασκήσεων Αστρονομίας Author: Σταμάτης Βρετινάρης Supervisor: Νικόλαος Στεργιούλας Λουκάς Βλάχος November 0, 205 Άσκηση (α) Αν η μέση αριθμητική
Εισαγωγή στην αστρονοµία Αστρικά πτώµατα (Λευκοί Νάνοι, αστέρες νε. µαύρες τρύπες) Η ϕυσική σε ακρέες καταστάσεις
τρονίων, µαύρες τρύπες) Η φυσική σε ακρέες καταστάσεις Εισαγωγή στην αστρονοµία Αστρικά πτώµατα (Λευκοί Νάνοι, αστέρες νετρονίων, µαύρες τρύπες) Η ϕυσική σε ακρέες καταστάσεις Λουκάς Βλάχος Τµήµα Φυσικής,
Πληροφορίες για τον Ήλιο:
Πληροφορίες για τον Ήλιο: 1) Ηλιακή σταθερά: F ʘ =1.37 kw m -2 =1.37 10 6 erg sec -1 cm -2 2) Απόσταση Γης Ήλιου: 1AU (~150 10 6 km) 3) L ʘ = 3.839 10 26 W = 3.839 10 33 erg sec -1 4) Διαστάσεις: Η διάμετρος
Αστροφυσική. Ενότητα # 4: Αστρικοί άνεμοι, σφαιρική προσαύξηση και δίσκοι προσαύξησης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 4: Αστρικοί άνεμοι, σφαιρική προσαύξηση και δίσκοι προσαύξησης Λουκάς Βλάχος Τμήμα Φυσικής Άδειες Χρήσης Το παρόν
v tot = 29.86km/s v 1 = 1/15v 2 v i = 2π A i P M 1 M 2 A = αr r = 40pc (2)
Αριστοτελειο Πανεπιστημιο Θεσσαλονικης ΤΜΗΜΑ ΦΥΣΙΚΗΣ 5ο Σετ Ασκήσεων Αστρονομίας Author: Σταμάτης Βρετινάρης Supervisor: Νικόλαος Στεργιούλας Λουκάς Βλάχος January 11, 2016 1 Άσκηση Πρόσφατες παρατηρήσεις
ΑΣΤΡΟΦΥΣΙΚΗ Φεβρουάριος 2015 (λυσεις)
ΑΣΤΡΟΦΥΣΙΚΗ Φεβρουάριος 2015 (λυσεις) 1) Ενα ρευστό μηδενικής πίεσης κινείται σε βαρυτικό δυναμικό Φ. Να προσδιορισθούν οι συνιστώσες εξισώσεις της κίνησης του ρευστού, ως προς ένα σύστημα κυλινδρικών
Εισαγωγή στην αστρονοµία (Πως να προετοιµαστώ για τις εξετάσεις;)
Εισαγωγή στην αστρονοµία (Πως να προετοιµαστώ για τις εξετάσεις;) Λ. Βλάχος 1 Ιανουαρίου 2010 1 Εισαγωγικές Σκέψεις Ενα πολύ σοβαρό ϑέµα, για το οποίο σπάνια συζητάµε στα µαθήµατα, είναι το πως περιµένουν
Εισαγωγή Στην Αστρονομία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Εργασία του ΚΑΡΑΓΚΙΟΖΙΔΗ ΔΗΜΗΤΡΗ Α.Ε.Μ.13290 Εισαγωγή Στην Αστρονομία 1 ο Σετ Ασκήσεων Ημερομηνία: Παρασκευή 24/10/2014 Υπεύθυνοι καθηγητές: κ. Βλάχος, κ. Σειραδάκης,
Λύσεις: Τελική Εξέταση 28 Αυγούστου 2015
Φ230: Αστροφυσική Ι Λύσεις: Τελική Εξέταση 28 Αυγούστου 2015 1. Ο Σείριος Α, έχει φαινόμενο οπτικό μέγεθος mv - 1.47 και ακτίνα R1.7𝑅 και αποτελεί το κύριο αστέρι ενός διπλού συστήματος σε απόσταση 8.6
d = 10(m-M+5)/5 pc. (m-m distance modulus)
Παρατηρησιακά χαρακτηριστικά αστέρων Α. Πόσο μακρυά βρίσκονται τα αστέρια; Μέση απόσταση Γης-'Ηλιου=1AU=149597870,7 km Απόσταση αστέρα: 206264 d= AU ή p'' d= 1 pc, p' ' όπου p είναι η παράλλαξη του αστέρα
Κίνηση πλανητών Νόµοι του Kepler
ΦΥΣ 111 - Διαλ.29 1 Κίνηση πλανητών Νόµοι του Keple! Θα υποθέσουµε ότι ο ήλιος είναι ακίνητος (σχεδόν σωστό αφού έχει τόσο µεγάλη µάζα και η γη δεν τον κινεί).! Οι τροχιές των πλανητών µοιάζουν κάπως σα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΑΣΚΗΣΕΙΣ 2
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΑΣΚΗΣΕΙΣ 2 ΗΜ. ΠΑΡΑΔΟΣΗΣ: 9//203 2. (α) Υπολογίστε το δείκτη χρώματος ενός αστέρα όταν βρίσκεται σε απόσταση 50pc και το φαινόμενο μέγεθός του είναι mv =7.55 και το ΜΒ =2.007.
Εισαγωγή στην Αστρονομία
Παπαδόπουλος Μιλτιάδης ΑΕΜ: 13134 Εξάμηνο: 7 ο Ασκήσεις: 12-1 Εισαγωγή στην Αστρονομία 1. Ο αστέρας Βέγας στον αστερισμό της Λύρας έχει απόκλιση δ=+38 ο 47. α) Σχεδιάστε την φαινόμενη τροχιά του Βέγα στην
ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης
(Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 05 06 06 ΒΑΡΥΤΗΤΑ Νόμος της Βαρύτητας Βαρύτητα στο Εσωτερικό και Πάνω από
ΠΟΣΟ ΜΕΓΑΛΑ ΕΙΝΑΙ ΤΑ ΑΣΤΕΡΙΑ;
ΠΟΣΟ ΜΕΓΑΛΑ ΕΙΝΑΙ ΤΑ ΑΣΤΕΡΙΑ; Α) Ακτίνα αστέρων (Όγκος). Στον Ήλιο, και τον Betelgeuse, μπορούμε να μετρήσουμε απευθείας τη γωνιακή διαμέτρο, α, των αστεριών. Αν γνωρίζουμε αυτή τη γωνία, τότε: R ( ακτίνα
Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου}
Κεφάλαιο 8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ Νομος της Βαρυτητας {Διανυσματική Εκφραση, Βαρύτητα στη Γη και σε Πλανήτες} Νομοι του Kepler {Πεδίο Κεντρικών Δυνάμεων, Αρχή Διατήρησης Στροφορμής, Κίνηση Πλανητών και Νόμοι του
ΔΙΠΛΑ ΣΥΣΤΗΜΑΤΑ ΑΣΤΕΡΩΝ
ΔΙΠΛΑ ΣΥΣΤΗΜΑΤΑ ΑΣΤΕΡΩΝ Οι διπλοί αστέρες διακρίνονται ως τέτοιοι αν η γωνιώδης απόσταση τους, ω, είναι µεγαλύτερη από την διακριτική ικανότητα του τηλεσκοπίου: ω min =1.22 λ/d λ=µήκος κύµατος παρατήρησης
Εισαγωγή στην αστρονοµία Αστρικά πτώµατα (Λευκοί Νάνοι, αστέρες νε. µαύρες τρύπες) Η ϕυσική σε ακρέες καταστάσεις
Εισαγωγή στην αστρονοµία Αστρικά πτώµατα (Λευκοί Νάνοι, αστέρες νετρονίων, µαύρες τρύπες) Η ϕυσική σε ακρέες καταστάσεις Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ 1 εκεµβρίου 2009 Εισαγωγή στην αστρονοµία Αστρικά
Ερωτήσεις Λυκείου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016
ΠΡΟΣΟΧΗ: Αυτό το έγγραφο ΔΕΝ θα το αποστείλετε ηλεκτρονικά (μέσω e-mail). Απλά το αναρτήσαμε για την δική σας διευκόλυνση. Μόλις βρείτε τις απαντήσεις που γνωρίζετε και τις σημειώσετε σ αυτό το έντυπο,
ΚΕΦΑΛΑΙΟ 11. Παγκόσµια έλξη
ΚΕΦΑΛΑΙΟ Παγκόσµια έλξη ύναµη µεταξύ υλικών σηµείων Σε ένα αδρανειακό σύστηµα συντεταγµένων θεωρούµε δυο σηµειακές µάζες και Η µάζα είναι ακίνητη στην αρχή των αξόνων και η µάζα βρίσκεται στη διανυσµατική
Αστροφυσική. Ενότητα # 5: Μαγνητικά Πεδία στην Αστροφυσική. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 5: Μαγνητικά Πεδία στην Αστροφυσική Λουκάς Βλάχος Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)
ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από
ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.
ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. 1 β) Σε ένα πεδίο κεντρικών δυνάµεων F =, ένα σώµα, µε µάζα
Θεωρητική Εξέταση. 23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής η φάση: «ΠΤΟΛΕΜΑΙΟΣ»
23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2018 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση 23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας 2018 4 η φάση Θεωρητική Εξέταση 1 Παρακαλούμε, διαβάστε
Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις
Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,
(βλ. σελ. 174 του βιβλίου ΚΣ). Το y έχει τεθεί για τη διόρθωση λόγω μη KΕΦΑΛΑΙΟ 12: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ
KΕΦΑΛΑΙΟ 1: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ Σελ. : 03 έως 16 του βιβλίου ΚΣ 0 ο VIDO, 11013 0λ έως 8:40λ : Σχόλια στα αποτελέσματα της εξέτασης προόδου 8:40λ έως το τέλος: Σε ένα πλανήτη η βαρυτική του αυτοενέργεια
c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33
ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Α. Η ΕΞΙΣΩΣΗ EINSTEIN Διδάσκων: Θεόδωρος Ν. Τομαράς G µν R µν 1 g µν R = κ T µν, κ 8πG N c 4 (1) Β. Η ΕΞΙΣΩΣΗ FRIEDMANN. Για ομογενή και ισότροπο χωρόχρονο έχουμε
ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ ΠΕΙΡΑΙΑΣ ΤΗΛ ,
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 ΘΕΜΑ Α Στις προτάσεις που ακολουθούν να επιλέξετε τη σωστή απάντηση. 1. Δύο σώματα συγκρούονται πλαστικά. Τότε δεν
Αστροφυσική. Οµάδα 2. v f = 0
Αστροφυσική Οµάδα 2 1 Η εξίσωση Boltzann αποτελεί τη ϐάση της κινητικής ϑεωρίας των αερίων και περιγράφει την εξέλιξη της συνάρτησης κατανοµής ταχυτήτων f x, v, t ενός αερίου πλάσµα, αστέρες, µόρια στο
Ο Πυρήνας του Ατόμου
1 Σκοποί: Ο Πυρήνας του Ατόμου 15/06/12 I. Να δώσει μία εισαγωγική περιγραφή του πυρήνα του ατόμου, και της ενέργειας που μπορεί να έχει ένα σωματίδιο για να παραμείνει δέσμιο μέσα στον πυρήνα. II. III.
ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014
ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
(http://www.redbullstratos.com). Barbero 2013, European Journal of Physics, 34, df (z) dz
Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 7 Φεβρουαρίου 5 Διάρκεια εξέτασης ώρες, Καλή επιτυχία, ΑΜ: Να ληφθεί
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς Ορισμοί. Ενεργός διατομή 3. Ενεργός διατομή στο μοντέλο των σκληρών σφαιρών
Μέρος A: Νευτώνιες τροχιές (υπό την επίδραση συντηρητικών δυνάμεων) (3.0 μονάδες)
Theory LIGO-GW150914 (10 μονάδες) Q1-1 Το 015, το παρατηρητήριο βαρυτικών κυμάτων LIGO ανίχνευσε για πρώτη φορά τη διέλευση των βαρυτικών κυμάτων (gravitational waves ή GW) διαμέσου της Γης. Το συμβάν
GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 9 Μαΐου 01 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία bonus ερωτήματα Ονοματεπώνυμο:,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι. Οκτώβριος 2002 Τμήμα Πέτρου Ιωάννου και Θεοχάρη Αποστολάτου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Οκτώβριος 2002 Τμήμα Πέτρου Ιωάννου και Θεοχάρη Αποστολάτου Απαντήστε και στα 4 θέματα. Καλή σας επιτυχία. Θέμα (20 μονάδες) α) Διατυπώστε με σαφήνεια
Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, Μαΐου 7 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,
Θεωρητική Εξέταση. 24 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής η φάση: «ΠΤΟΛΕΜΑΙΟΣ»
24 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2019 3 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση 24 ος Πανελλήνιος Διαγωνισμός Αστρονομίας 2019 3 η φάση Θεωρητική Εξέταση 1 Παρακαλούμε, διαβάστε
Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων
Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ 28 Νοεµβρίου 2009 Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ
Σφαιρικά σώµατα και βαρύτητα
ΦΥΣ 131 - Διαλ.28 1 Σφαιρικά σώµατα και βαρύτητα q Χρησιµοποιήσαµε τις εκφράσεις F() =! GMm που ισχύουν για σηµειακές µάζες Μ και m. 2 και V () =! GMm q Ένα χαρακτηριστικό γεγονός, που κάνει τους υπολογισµούς
ΦΥΣ η ΠΡΟΟΔΟΣ 5-Μάρτη-2016
ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 5-Μάρτη-016 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
Βαρύτητα Βαρύτητα Κεφ. 12
Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011
Αστροφυσική. Ενότητα # 3: Από τη Μεσοαστρική Σκόνη στην Κύρια Ακολουθία. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 3: Από τη Μεσοαστρική Σκόνη στην Κύρια Ακολουθία Λουκάς Βλάχος Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Θεωρητική Εξέταση - Σύντοµες Ερωτήσεις
1. Στο Εθνικό Αστεροσκοπείο της Βραζιλίας, που βρίσκεται στη πόλη Ρίο ντε Τζανέιρο ( 22 54ʹ S, 43 12ʹ W), υπάρχει ένα ηλιακό ρολόι πάνω από την πόρτα του θόλου που είναι εγκατεστηµένο το τηλεσκόπιο των
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ ο ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 00 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τα
Αστροφυσική ΙΙ Tεστ II- 16 Ιανουαρίου 2009
Αστροφυσική ΙΙ Tεστ II- 16 Ιανουαρίου 2009 1. Μία περιοχή στο μεσοαστρικό χώρο με ερυθρωπή απόχρωση είναι a. Ο ψυχρός πυρήνας ενός μοριακού νέφους b. Μία περιοχή θερμού ιονισμένου αερίου c. Μία περιοχή
ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014
ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
1 Ο παράγοντας κλίμακας και ο Νόμος του Hubble
ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς Ο παράγοντας κλίμακας και ο Νόμος του Hubble Σύμφωνα με την Κοσμολογική Αρχή το Σύμπαν είναι σε μεγάλες κλίμακες ομογενές και ισότροπο.
ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Όρια καταστατικής εξίσωσης ιδανικού αερίου 2. Αποκλίσεις των Ιδιοτήτων των πραγματικών αερίων από τους Νόμους
ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 2ο set - μέρος Α - Απαντήσεις ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ.: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ο set - μέρος Α - Απαντήσεις ΘΕΜΑ Β Ερώτηση. Ένα σώμα εκτελεί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Στις παρενθέσεις δίνονται τα μόρια του κάθε ερωτήματος. Σε ένα σωματίδιο που κινείται στον
Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009
Q 40 th Intrnational Physis Olympiad, Mrida, Mxio, 1-19 July 009 ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 3 ΓΙΑΤΙ ΤΑ ΑΣΤΕΡΙΑ ΕΧΟΥΝ ΜΕΓΑΛΕΣ ΔΙΑΣΤΑΣΕΙΣ? Τα αστέρια είναι σφαίρες από ζεστό αέριο. Τα περισσότερα από αυτά λάμπουν
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
Θέμα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ 1--015 1. Ορισμένη ποσότητα ιδανικού αερίου υπόκειται σε μεταβολή κατά τη διάρκεια της οποίας η θερμοκρασία του παραμένει σταθερή, ενώ η πίεση του
Διαταραχές Τροχιάς (2)
Διαταραχές Τροχιάς (2) Μάθημα 6 ο Βαρυτικές διαταραχές δυναμικό πεπλατυσμένου σώματος Επίδραση τρίτου σώματος (α) γραμμική αέναη κίνηση (β) κίνηση σε συντονισμό Μη βαρυτικές διαταραχές Μεταβολές του μεγάλου
Οι αστέρες δαπανούν περίπου το 90% της διάρκειας της ζωής στη σύντηξη υδρογόνου που μετατρέπεται σε ήλιο σε υψηλή θερμοκρασία και υψηλή πίεση κοντά
Οι αστέρες δαπανούν περίπου το 90% της διάρκειας της ζωής στη σύντηξη υδρογόνου που μετατρέπεται σε ήλιο σε υψηλή θερμοκρασία και υψηλή πίεση κοντά στον πυρήνα. Ξεκινώντας από την μηδέν-ηλικία στην κύρια
) z ) r 3. sin cos θ,
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 4-5 Ν. Βλαχάκης. Σώμα μάζας m κινείται στο πεδίο δύναμης της πρώτης άσκησης της τέταρτης εργασίας με λ, αλλά επιπλέον είναι υποχρεωμένο να κινείται μόνο στην ευθεία
ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ. Άρα, για τις αντίστοιχες αλγεβρικές τιμές των ταχυτήτων των δύο σωμάτων πριν από την κρούση τους προκύπτει ότι:
ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΕΤΑΡΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑ (10) ΘΕΜΑ Α ΠΡΟΤΕΙΝΟΜΕΝΕΣ
Εισαγωγή στην αστρονοµία Μεταβλητοί Αστέρες
Εισαγωγή στην αστρονοµία Μεταβλητοί Αστέρες Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ 20 εκεµβρίου 2009 Εισαγωγή στην αστρονοµία Μεταβλητοί Αστέρες Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ 20 εκεµβρίου 2009 Γιατί µερικοί
mv V (x) = E με V (x) = mb3 ω 2
Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, 6 Σεπτεμβρίου 6 Διάρκεια εξέτασης ώρες, Καλή επιτυχία ( = bonus ερωτήματα),
Σχηματισμός Πλανητών. Μάθημα 9ο 10ο
Σχηματισμός Πλανητών Μάθημα 9ο 10ο Οδικός Χάρτης O πρωτοπλανητικός δίσκος αερίου / σκόνης Σχηματισμός πλανητοειδών συσσωματώσεις σκόνης στερεά σώματα ~10 km Σχηματισμός στερεών πλανητών και πυρήνων γιγάντιων
Ανακάλυψη βαρυτικών κυµάτων από τη συγχώνευση δύο µαύρων οπών. Σελίδα LIGO
Ανακάλυψη βαρυτικών κυµάτων από τη συγχώνευση δύο µαύρων οπών Σελίδα LIGO Πώς µία µάζα στο Σύµπαν στρεβλώνει τον χωροχρόνο (Credit: NASA) Πεδίο Βαρύτητας στη Γενική Σχετικότητα. Από την Επιτάχυνση ηµιουργούνται
Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009
Q 40 th International Physics Olympiad, erida, exico, -9 July 009 ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ No. Η ΕΞΕΛΙΞΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΗΣ-ΣΕΛΗΝΗΣ Οι επιστήμονες μπορούν να προσδιορίσουν την απόσταση Γης-Σελήνης, με μεγάλη
ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΠΑΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poias.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ
ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ : ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση Ένα σώμα εκτελεί απλή
3o ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΘΗΒΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΙΜΕΛΕΙΑ: ΖΑΧΑΡΙΟΥ ΦΙΛΙΠΠΟΣ (ΧΗΜΙΚΟΣ)
Σχετική ατομική μάζα Σχετική ήμ μοριακή μάζα Mole Αριθμός Avogadro Γραμμομοριακός όγκος Νόμοι των αερίων Ατομική μονάδα μάζας (amu): Σχετική ατομική μάζα (ar): Σχετική Μοριακή μάζα (Μr): Υπολογισμός
ΤΟ ΚΕΝΤΡΟ ΤΟΥ ΓΑΛΑΞΙΑ
Φύλλο εργασίας ΤΟ ΚΕΝΤΡΟ ΤΟΥ ΓΑΛΑΞΙΑ Ομάδα: Ον/μο: Τι υπάρχει στο κέντρο του Γαλαξία; Στη δραστηριότητα αυτή χρησιμοποιώντας το νόμο της παγκόσμιας έλξης και επεξεργαζόμενοι κάποια αστρονομικά δεδομένα
Το ελαστικο κωνικο εκκρεμε ς
Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,
Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.
Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών
( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης
ΦΥΣ 2 - Διαλ.4 Τι είδαμε: q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ü Ανάγαμε το πρόβλημα 2 σωμάτων σε πρόβλημα κεντρικής δύναμης ü διατήρηση ορμής CM μετατρέπει το πρόβλημα από 6 DoF σε
Ο µαθητής που έχει µελετήσει το κεφάλαιο νόµος παγκόσµιας έλξης, πεδίο βαρύτητας πρέπει:
Ο µαθητής που έχει µελετήσει το κεφάλαιο νόµος παγκόσµιας έλξης, πεδίο βαρύτητας πρέπει: Να µπορεί να διατυπώσει τον Νόµο της παγκόσµιας έλξης. Να γνωρίζει την έννοια βαρυτικό πεδίο και τι ισχύει για αυτό.
Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων
Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ 1.1. Νόμος του Boyle (ισόθερμη μεταβολή) Η πίεση ορισμένης ποσότητας αερίου, του
ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ
ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΚΑΘΗΓΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΙΑΡΚΕΙΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΠΡΟΣΟΜΟΙΩΣΗ ΝΕΟ ΦΡΟΝΤΙΣΤΗΡΙΟ 3 ΩΡΕΣ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω
ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10
ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10 1. Τρια αντικείµενα Α, Β και C µε µάζα m, 2m και 8m αντίστοιχα βρίσκονται στο ίδιο επίπεδο και στις θέσεις που φαίνονται στο σχήµα. Σε ποια θέση (x,y) πρέπει να τοποθετεί ένα τέταρτο
3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4
Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική Ι 20 Οκτωβρίου 2011
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική Ι 20 Οκτωβρίου 20 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Θέμα Α: (α) Να υπολογίσετε το βαρυτικό δυναμικό σε απόσταση r από το κέντρο ευθύγραμμης ράβδου
Εισαγωγή στην Αστροφυσική
Εισαγωγή στην Αστροφυσική Ενότητα: Ασκήσεις Ξενοφών Μουσάς Τμήμα: Φυσικής Σελίδα 2 1. Ασκήσεις... 4 Σελίδα 3 1. Ασκήσεις Άσκηση 1 α. Τι είναι οι κηλίδες; β. Πώς δημιουργούνται; Αναπτύξτε την σχετική θεωρία
θ = D d = m
Απαντήσεις Λυκείου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016 1. Πόσο χρόνο χρειαζόταν να περιμένει το κέντρο ελέγχου της αποστολής Messenger, που επισκέφτηκε τον Ερμή, για να επιστρέψει
Κίνηση πλανητών Νόµοι του Kepler
ΦΥΣ 111 - Διαλ.29 1 Κίνηση πλανητών Νόµοι του Kepler q Τρεις οι νόµοι του Kepler: Ø Oι πλανήτες κινούνται σε ελλειπτικές τροχιές µε τον ήλιο σε µια εστία τους. Ø Η επιβατική ακτίνα ενός πλανήτη διαγράφει
ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ
ΕΠΑΛ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ 1. Δίνεται η συνάρτηση f με f() s όπου η μέση τιμή και s η διακύμανση ενός δείγματος ν παρατηρήσεων μιας μεταβλητής Χ. Η εφαπτομένη της Α 1, f ( 1) έχει εξίσωση
ΓΕΝΝΗΣΗ ΕΞΕΛΙΞΗ ΚΑΙ ΘΑΝΑΤΟΣ ΑΣΤΕΡΩΝ
ΓΕΝΝΗΣΗ ΕΞΕΛΙΞΗ ΚΑΙ ΘΑΝΑΤΟΣ ΑΣΤΕΡΩΝ Πολυχρόνης Καραγκιοζίδης Mcs χημικός www.polkarag.gr Μετά τη δημιουργία του Σύμπαντος 380.000 έτη 6000 ο C Τα ηλεκτρόνια μπορούν να συνδεθούν με τα πρωτόνια ή τους άλλους
ΑΝΑΖΗΤΗΣΗ ΕΞΩΗΛΙΑΚΩΝ ΠΛΑΝΗΤΩΝ Κ.Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ
ΑΝΑΖΗΤΗΣΗ ΕΞΩΗΛΙΑΚΩΝ ΠΛΑΝΗΤΩΝ Κ.Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ ΩΡΙΩΝ, 9/1/2008 Η ΘΕΣΗ ΜΑΣ ΣΤΟ ΣΥΜΠΑΝ Γη, ο τρίτος πλανήτης του Ηλιακού Συστήματος Περιφερόμαστε γύρω από τον Ήλιο, ένα τυπικό αστέρι της κύριας ακολουθίας
ΦΥΣ. 111 Κατ οίκον εργασία # 8 - Επιστροφή Πέµπτη 09/11/2017
ΦΥΣ. 111 Κατ οίκον εργασία # 8 - Επιστροφή Πέµπτη 09/11/2017 Οι ασκήσεις 1-10 στηρίζονται στα κεφάλαια 8 και 9 και των βιβλίων των Young και Serway και οι ασκήσεις 11-17 στο νόµο της παγκόσµιας έλξης κεφάλαιο
Για την ακραία σχετικιστική περίπτωση λευκού νάνου ο συντελεστής της ολικής κινητικής 2 3/2 3/2
ΚΕΦ. 13. ΣΕΛ. έως 6 ΤΟΥ ΒΙΒΛΙΟΥ ΚΣ. Ο VIDEO, 191013 0λ έως 9λ : Επανάληψη Υπενθυμίζεται ότι η τιμή του G σε ατομικές μονάδες είναι,4 10 43. Για την ακραία σχετικιστική περίπτωση λευκού νάνου ο συντελεστής
L 2 z. 2mR 2 sin 2 mgr cos θ. 0 π/3 π/2 π L z =0.1 L z = L z =3/ 8 L z = 3-1. V eff (θ) =L z. 2 θ)-cosθ. 2 /(2sin.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 15-16 Ν. Βλαχάκης 1. Σημειακό σώμα μάζας m είναι δεμένο σε αβαρές και μη εκτατό νήμα ακτίνας R και κινείται κάτω από την επίδραση του βάρους του mgẑ και της τάσης
18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2013. 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Ανάλυση Δεδομένων
18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2013 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Ανάλυση Δεδομένων Παρακαλούμε, διαβάστε προσεκτικά τα παρακάτω: 1. Μπορείτε να χρησιμοποιήσετε τον χάρακα και το κομπιουτεράκι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2003
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 3 Θέµα 1 (5 µονάδες) Απαντήστε στις ακόλουθες ερωτήσεις µε συντοµία και σαφήνεια Τµήµα Π Ιωάννου & Θ Αποστολάτου (α) Η ταχύτητα ενός
ΦΥΕ14-5 η Εργασία Παράδοση
ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο
( ) = ke r/a όπου k και α θετικές σταθερές
Παράδειγµα 1 ΦΥΣ 11 - Διαλ.15 1 Θεωρήστε την κίνηση ενός σώματος,μάζας m σε ελκτικό δυναμικό: V r ke r/a όπου k και α θετικές σταθερές (α) Σχεδιάστε το για μικρές και μεγάλες τιμές της στροφορμής,, και
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ. Κινητική Θεωρία Αερίων. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ Κινητική Θεωρία Αερίων Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός / Νόμος του Boyle: με τον όγκο. Η πίεση ορισμένης ποσότητας αερίου του οποίου η θερμοκρασία
19 ος Πανελλήνιος Μαθητικός Διαγωνισμός Αστρονομίας και Διαστημικής 2014
Θέµα ο (Ανάπτυξης) 9 ος Πανελλνιος Μαθητικός Διαγωνισμός Αστρονομίας και Διαστημικς 04 Φάση η : «ΙΠΠΑΡΧΟΣ» Ενδεικτικές Λύσεις στα Θέματα Λυκείου Σε διάφορες εποχές ανάπτυξης της Αστρονοµίας διατυπώθηκαν
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Προτεινόμενες Λύσεις Πρόβλημα-1 (15 μονάδες) Μια
O y. (t) x = 2 cos t. ax2 + bx + c b 2ax b + arcsin. a 2( a) mk.
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, 3 Ιανουαρίου 018 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Αστρονομία. Ενότητα # 12: Διπλοί Αστέρες. Νικόλαος Στεργιούλας Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστρονομία Ενότητα # 12: Διπλοί Αστέρες Νικόλαος Στεργιούλας Τμήμα Φυσικής Αριστοτέιο Πανεπιστήμιο Θεσσαλονίκης 2 Άδειες Χρήσης Το παρόν
Πρόβλεψη αστέρων νετρονίων
Πρόβλεψη αστέρων νετρονίων Η μοίρα των αστέρων μεγάλης μάζας είναι η κατάρρευση; Μπορεί να υπάρξει «νέα φυσική» που να αναχαιτίσει τη βαρυτική κατάρρευση πέρα από το όριο Chandrasekhar Πώς θα είναι ένα