Supporting Information

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Supporting Information"

Transcript

1 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012 Bromenium-Catalysed Tandem Ring Opening/Cyclisation of Vinylcyclopropanes and Vinylcyclobutanes: A Metal-Free [3+2+1]/ACHTUGTREUG[4+2+1] Cascade for the Synthesis of Chiral Amidines and Computational Investigation Venkataraman Ganesh, [a] Devarajulu Sureshkumar, [a] Debasree Chanda, [a] and [a, b] Srinivasan Chandrasekaran* chem_ _sm_miscellaneous_information.pdf

2 Experimental Details All reactions were carried out in oven-dried apparatus using dry solvents under anhydrous conditions, unless otherwise noted. Reaction mixtures were stirred magnetically unless otherwise stated. Commercial grade solvents were distilled and dried according to literature procedures ( Purification of laboratory chemicals, 3 rd Ed., D. D. Perrin, W. L. F. Armarego, Pergamon Press,Oxford, 1988). Analytical TLC was performed on commercial plates coated with silica gel GF 254 (0.25 mm). Silica gel ( mesh) was used for column chromatography. MR spectra were recorded on 300 or 400 MHz instruments andchemical shifts are cited with respect to SiMe 4 as internal ( 1 H and 13 C). The following abbreviations explain the multiplicity s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad and dd = doublet of a doublet. IR spectra were recorded on a FT-IR spectrometer. High-resolution mass spectra (HR-MS) were recorded on a Micromass Q-TOF mass spectrometer. S1

3 Scheme 1. Synthesis of diversely functionalized VCPs; Reagents and conditions: (a) LiAlH 4, THF, 0 C, 2 h (b) ah, MeI, DMF, 0 C rt, 1 h (c) ah, BnBr, DMF, 0 C to rt, 1 h. General procedure for the reduction of cyclopropyl esters with LiAlH 4 : To a vigorously stirred suspension of LiAlH 4 (10 mmol, 1 equiv) in THF (15 ml) at 0 ºC, a solution of cyclopropyl ester (10 mmol, 1 equiv) in THF (10 ml) was added drop wise. The reaction mixture was stirred at rt for additional 1 h followed by quenching with EtOAc. The mixture was diluted with DCM (20 ml) and stirred and washed with 20% citric acid (20 ml X 2). The solvent was evaporated in vacuo and the resultant oil was further purified by column chromatography using silica to afford the desired cyclopropyl methanol. General procedure for the protection of alcohol as (benzyl/methyl) ether: To a stirred solution of cyclopropyl methanol (10 mmol, 1 equiv) in dry THF (15 ml) at 0 ºC, a suspension of 60% ah in mineral oil (10 mmol, 1 equiv) was added slowly. The reaction mixture was stirred at 0 ºC for additional 10 min followed by a drop wise addition of the respective alkyl halide (10 mmol, 1 eqiv). The reaction mixture was allowed to warm to rt and quenched with water at 0 ºC. The mixture was diluted with ether (40 ml) and stirred and S2

4 washed with water (20 ml X 2). The solvent was evaporated in vacuo and the resultant oil was further purified by column chromatography using silica to afford the desired VCP ether. Scheme 2. Synthesis of VCP and its reactivity with chloramine T; Reagents : (a) OsO 4, MMO, t BuOH/H 2 O, 18 h, reflux; (b) aio 4 /Silica gel, CH 2 Cl 2, 30 min, rt; (c) 4% w/v Aq. aoh (4 ml/mmol), 10 min, rt; (d) CeCl 3.7H 2 O (10 mol%), abh 4, MeOH, 15 C ; (e) BnBr, DMF, 0 C, 1 h. General procedure for Luche s reduction: To a stirred solution of unsaturated ketone (4 mmol, 1 equiv) in MeOH (20 ml), solid CeCl 3.7H 2 O was added (20 mol%) at 15 ºC The mixture was stirred for additional 30 min followed by slow addition of abh 4 (4 mmol, 1 equiv). The reaction mixture was warmed to room temperature and the progress of the reaction was monitored by TLC. The mixture was diluted with DCM (60 ml) and stirred and washed with 20% citric acid (20 ml X 2). The organic layer was dried over a 2 SO 4 and the solvent was evaporated in vacuo resulting in an oily crude product. The crude product was further purified by column chromatography using silica to afford the desired VCP. (S)-1- ((1S,5R)-6,6-dimethylbicyclo[3.1.0]hex-2-en-2-yl)ethanol 3ob: To a stirred solution of ketone 3oa (0.22 g, 1.46 mmol, 1 equiv) in MeOH (6 ml), solid CeCl 3.7H 2 O was added (0.084g, 0.30 mmol, 20 mol%) at 15 OH 3ob ºC The mixture was stirred for additional 30 min followed by slow addition of abh 4 (0.055g, 1.46 mmol, 1 equiv). The reaction mixture was warmed to room temperature and the S3

5 progress of the reaction was monitored by TLC. The mixture was diluted with DCM (20 ml) and stirred and washed with 20% citric acid (10 ml). The organic layer was dried over a 2 SO 4 and the solvent was evaporated in vacuo resulting in an oily crude product. The crude product was further purified by column chromatography using silica to afford 3ob. R f = 0.30 (hexanes/etoac, 3 : 1); Yield: 0.20 g, 90%; IR (neat) : 3416, 2945, 2918, 1522, 1090, 738, 667 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): 5.28 (s, 1H), 4.28 (dd, J = 5.7 Hz, 12.0 Hz, 1H), 2.35 (dd, J = 7.8 Hz, 18.0 Hz, 1H), 2.13 (s, 1H), (m, 1H), (m, 1H), (m, 5H), 0.98 (s, 3H), 0.73 (s, 3H); 13 C MR (75 MHz, CDCl 3 ): 148.2, 122.5, 67.1, 36.7, 31.5, 29.1, 27.3, 21.8, 19.2, 13.0; HR - MS m/z: calcd for C 10 H 16 ao[m+a + ]: ; found: General procedure for the synthesis of cyclic -sulfonylamidines To the stirred solution of the olefin (1 equiv) in the respective nitriles (~ 2M concentration) was added chloramine-t (1.1 equiv) and phenyltrimethylammonium bromide dibromide (PTAB) (10 mol%). The mixture was allowed to stir for 5-18 h at room temperature (25 C) and the reaction was monitored by TLC. When the reaction was found to be complete, the solvent was removed under reduced pressure. The solid residue was directly purified by flash column chromatography on silica gel. Compound 4aa: R f = 0.25 (hexanes/etoac, 7 : 3); Yield: 82%; m. p. 163 C;[ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2945, 1643, 1336, 1159, 1091, 813 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): 7.73 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), (m, 1H), 4.63 (t, J = 5.1 Hz, 1H), 2.36 (s, 3H), 2.33 (s, 1H), (m, 4H), (m, 2H), 1.70 (s, 3H), 1.24 (s, 3H), (m, 1H), 1.09 (s, 3H); 13 C MR (75 MHz, CDCl 3 ): 148.3, 143.7, 140.0, 138.9, 129.6, 129.5, 126.9, 126.2, 120.7, 52.8, 52.1, 42.6, 29.8, 28.7, 25.6, 24.7, 23.4, 21.4, 19.5; HR - MS m/z: calcd for C 19 H 27 2 O 2 S[M+H + ]: S4

6 ; found: CH Analysis for C 19 H 26 2 O 2 S: C, 65.86; H, 7.56;, 8.08; Found: C, 65.90; H, 7.47;, Procedure for Cbz deprotection in 4acB: To compound 4acB (0.089 g, 0.27 mmol), 40% KOH in methanol solution (3 ml) was added and heated to reflux for 12 h. The solvent was removed in vacuo and the mixture was extracted in Et 2 O (10 ml) and 1 HCl (10 ml) to remove the benzyl alcohol side-product by discarding the ether layer. The aqueous layer was basified with 10% aoh followed by extraction with ether. The organic layer was separated and dried over a 2 SO 4 and the solvent was removed in vacuo to obtain the amidine 7a (0.035 g, 68%). The crude product was found to be pure enough for characterization and processing. Procedure for Boc deprotection in 4aaA: To a solution 4aaA (0.120 g, 0.29 mmol) in dry CH 2 Cl 2 (1.7 ml) at 0 ºC, trifluoroacetic acid (0.3 ml) was added. The starting material was completely converted to the desired amidinium trifluoroacetate in 2 h. The solvent was removed in vacuo. The crude amindine 7b was found to be pure enough for further processing. S5

7 1 H and 13 C Spectral Data Compound 4aa: R f = 0.25 (hexanes/etoac, 7 : 3); Yield: 82%; m. p. 163 C;[ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2945, 1643, 1336, 1159, 1091, 813 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): 7.73 (d, J = 8.4 Ts 4aa Me Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), (m, 1H), 4.63 (t, J = 5.1 Hz, 1H), 2.36 (s, 3H), 2.33 (s, 1H), (m, 4H), (m, 2H), 1.70 (s, 3H), 1.24 (s, 3H), (m, 1H), 1.09 (s, 3H); 13 C MR (75 MHz, CDCl 3 ): 148.3, 143.7, 140.0, 138.9, 129.6, 129.5, 126.9, 126.2, 120.7, 52.8, 52.1, 42.6, 29.8, 28.7, 25.6, 24.7, 23.4, 21.4, 19.5; HR - MS m/z: calcd for C 19 H 27 2 O 2 S[M+H + ]: ; found: CH Analysis for C 19 H 26 2 O 2 S: C, 65.86; H, 7.56;, 8.08; Found: C, 65.90; H, 7.47;, HPLC Chromatogram for Compound 4aa Column Details :Chiralpak AD-H; 150 mm x 40mm Solvent System : n-heptane/isopropyl alcohol 80:20 isocratic flow InJection volume : 2 L in Isopropyl alcohol Flow Rate : 1.0 ml/min, 5.2 MPa, 298 K Detector Wavelength : 220 nm S6

8 Compound 4ab: R f = 0.40 (hexanes/etoac, 8 : 2); Yield: 74%; [ ] 25 D= (CHCl 3, c = 2.1) IR (neat) : 2964, 2930, 2873, 1645, 1339, 1156, 968, 680 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): 7.80 (d, J = 8.4 Ts 4ab Pr Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 5.97 (br, 1H), 4.70 (t, J = 5.7 Hz, 1H), (m, 1H), 2.43 (s, 3H), (m, 1H), (m, 5H), 1.78 (s, 3H), (m, 3H), 1.27 (s, 3H), 1.10 (s, 3H), 0.62 (t, J = 7.2 Hz, 3H); 13 C MR (75 MHz, CDCl 3 ): 151.9, 143.6, 139.8, 138.9, 129.5, 127.1, 120.9, 52.8, 51.9, 42.9, 39.3, 29.9, 29.0, 25.5, 23.5, 21.8, 21.5, 19.4, 13.5; HR - MS m/z: calcd for C 21 H 31 2 O 2 S[M+H + ]: ; found: Compound 4ac: R f = 0.50 (hexanes/etoac, 7 : 3); Yield: 87%; [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2927, 1652, 1340, 1149, 1093, 813 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): 7.82 (d, J = 8.4 Hz, Ts 4ac 2H), 7.29 (d, J = 8.4 Hz, 2H), (m, 1H), 4.66 (dd, J = 5.1 Hz, 5.1 Hz, 1H), 2.42 (s, 3H), (m, 2H), (m, 3H), 1.74 (s, 3H), 1.19 (s, 3H), (m, 1H), 1.01 (s, 3H), (m, 1H), (m, 2H), (m,1h); 13 C MR (75 MHz, CDCl 3 ): 151.6, 143.4, 139.4, 129.4, 129.4, 127.1, 121.2, 52.4, 52.3, 43.0, 29.9, 29.2, 25.5, 23.4, 21.4, 19.5, 15.7, 9.6, 9.5; HR - MS m/z: calcd for C 21 H 29 2 O 2 S[M+H + ]: ; found: Compound 4ad: R f = 0.60 (hexanes/etoac, 8 : 2); Yield: 25%; [ ] 25 D= (CHCl 3, c = 1.2); IR (neat) : 2972, 2932, 1656, 1636, 1522, 1504, 1352, 1163, 992, 674 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): Ts 4ad PFP 7.44 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H), 6.11 (br, 1H), 4.79 (t, J = 6 Hz, 1H), 2.40 (s, 3H), (m, 2H), 1.85 (s, 5H), (m, 1H), 1.61 (s, 1H), 1.35 (s, 3H), 1.27(s, 3H); 13 C MR (75 MHz, CDCl 3 ): 144.6, 140.9, 136.3, 130.2, 129.2, 127.2, 119.5, 55.4, 52.3, 42.9, 29.9, 28.5, 25.8, 23.6, 21.4, 19.2; 19 F MR (300MHz, CDCl 3 ): (d, J S7

9 = 30 Hz), (t, J = 24 Hz), (t, J = 27 Hz) HR - MS m/z: calcd for C 24 H 24 F 5 2 O 2 S[M+H + ]: ; found: Compound 4ae: R f = 0.40 (hexanes/etoac, 8 : 2); Yield: 62%; [ ] 25 D= (CHCl 3, c = 0.87); IR (neat) : 2985, 2916, 2832, 1652, 1466, 1118 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): (m, 9H), 6.07 (d, J Ts 4ae Ph = 3.9 Hz, 1H), 4.84 (t, J = 5.4 Hz, 1H), 2.35 (s, 3H), (m, 5H), 1.83 (s, 3H), 1.35 (s, 3H), (m, 1H), 1.20 (s, 3H); 13 C MR (75 MHz, CDCl 3 ):151.3, 143.4, 139.6, 137.3,137.0, 128.9, 128.8, 128.7, 127.7, 127.3, 120.4, 54.2, 51.5, 43.6, 29.9, 29.2, 25.1, 23.6, 21.4, 19.8; HR - MS m/z: calcd for C 24 H 29 2 O 2 S[M+H + ]: ; found: Compound 4ba: R f = 0.60 (hexanes/etoac, 8 : 2); Yield: 82%; [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2945, 1643, 1336, 1159, 1091, 813 cm -1 ; 1 H MR (400 MHz, CDCl 3 ): 7.79 (d, J = 6.9 Hz, 2H), 7.31 (d, J Ts 4ba = 6.9 Hz, 2H), 6.15 (dd, J = 4.2 Hz, 12 Hz, 1H), 5.96 (dd, J = 3.6 Hz, 8Hz, 1H), 4.64 (dd, J = 4.4. Hz, 4.4 Hz, 1H), 2.43 (s, 3H), 2.38 (dd, J = 4.8 Hz, 9.6 Hz, 1H), 2.07 (s, 3H), (m, 1H), 1.57 (d, J = 8.4 Hz, 1H), 1.38 (ddd, J = 3.6 Hz, 10.1 Hz, 21.2 Hz, 1H), 1.27 (s, 3H), 1.16 (s, 3H), 1.01 (d, J = 5.6 Hz, 3H) ; 13 C MR (100 MHz, CDCl 3 ): 148.7, 143.9, 138.7, 137.5, 129.6, 127.1, 125.0, 53.0, 51.3, 38.2, 28.5, 28.5, 26.3, 26.2, 24.8, 21.5, HR - MS m/z: calcd for C 19 H 27 2 O 2 S[M+H + ]: ; found: Compound 4ca: R f = 0.60 (hexanes/etoac, 8 : 2); Yield: 73%; [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2945, 1643, 1336, 1159, 1091, 813 cm -1 ; 1 H MR (400 MHz, CDCl 3 ): 7.80 (d, J = 4.8 Hz, 2H), 7.21 (d, J Ts 4ca = 4.8 Hz, 2H), (m, 1H), 5.85 (d, J = 8 Hz, 1H), 4.67 (dd, J = 4.4 Hz, 1H), 2.43 (s, 3H), (m, 1H), 2.09 (s, 3H), (m, 2H), 1.30 (s, 3H), 1.12 (s, 3H), 1.03 (d, J S8

10 = 5.6 Hz, 3H), 0.7 (dd, J = 6 Hz, 12 Hz, 1H); 13 C MR (100 MHz, CDCl 3 ): 148.6, 143.9, 138.8, 138.5, 129.7, 127.1, 125.4, 52.9, 51.4, 43.5, 30.9, 28.8, 28.3, 25.5, 24.9, 21.5, 21.0; HR - MS m/z: calcd for C 19 H 27 2 O 2 S[M+H + ]: ; found: Compound 4da: R f = 0.60 (hexanes/etoac, 1 : 1); Yield: 84%; [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 3338, 2966, 2929, 2873, 1637, 1340, 1153, 1088, 680; 1 H-MR (400 MHz; CDCl 3 ): δ 7.75 HO Ts 4da Pr (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0Hz, 2H), 6.10 (dd, J = 1.6 Hz, 3.2 Hz, 1H), 4.64 (dd, J = 5.2 Hz, 5.2 Hz, 1H), 4.02 (s, 1H), 2.51 (ddd, J = 4.8 Hz, 10.4 Hz, 14.8 Hz, 1H), 2.34 (s, 3H), (m, 2H), 1.90 (s, 3H), 1.87 (m, 1H), (m, 4H), 1.27 (s, 3H), 1.05 (s, 3H), 0.66 (t, J = 7.2 Hz, 3H); 13 C-MR (100 MHz; CDCl 3 ): δ 152.8, 144.0, 139.0, 138.4, 129.6, 127.1, 124.5, 66.8, 60.4, 525, 51.4, 39.4, 37.0, 28.9, 28.8, 25.5, 21.8, 21.4, 21.0, 14.1, 13.5; HR - MS m/z: calcd for C 21 H 31 2 O 3 S[M+H + ]: ; found: Compound 4db: R f = 0.50 (hexanes/etoac, 7 : 3); Yield: 80%; [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 3376, 2967, 2927, 1643, 1336, 1157, 1089, 765, 682; 1 H-MR (400 MHz; CDCl 3 ): δ HO Ts 4db 7.73 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.99 (dd, J = 0.8 Hz, 4 Hz, 1H), 4.72 (dd, J = 6.0 Hz, 6.0 Hz, 1H), 4.03 (s, 1H), (m, 1H), 2.43 (s, 3H), 2.17 (ddd, J = 3.0 Hz, 6.4 Hz, 13.2 Hz, 1H), 1.95 (s, 1H), 1.88 (s, 3H), 1.86 (m, 1H), 1.34 (dt, 6.4 Hz, 13.2 Hz, 1H), 1.27 (s, 3H), 1.12 (s, 3H), 1.01 (d, J = 6.4 Hz, 3H), 0.86 (d, J = 6.4 Hz, 3H); 13 C-MR (100 MHz; CDCl 3 ): δ , 143.6, 139.1, 138.8, 129.6, 126.6, 124.4, 66.9, 52.2, 51.3, 37.2, 34.2, 29.0, 28.6, 25.4, 22.5, 21.4, 21.0, 20.2, 19.1; HR - MS m/z: calcd for C 21 H 31 2 O 3 S[M+H + ]: ; found: S9

11 Compound 4dc: R f = 0.7 (hexanes/etoac, 7 : 3); Yield: 83%; [ ] 25 D= (CHCl 3, c = 1);IR (neat) : 3392, 2957, 2925, 1624, 1156, 1037, 768; 1 H-MR (300 MHz; CDCl 3 ): δ 7.78 (d, J HO Ts 4dc = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 6.06 (d, J = 4.8 Hz, 1H), 5.24 (s, 1H), 4.61 (dd, J = 5.7 Hz, 5.7 Hz, 1H), 4.02 (s, 1H), 2.11 (ddd, J = 3 Hz, 6 Hz, 13.2 Hz, 1H), 1.86 (s, 3H), (m, 2H), (m, 2H), 1.18 (s, 3H), 0.97 (s, 3H), (m, 3H), (m,1h); 13 C-MR (100 MHz; CDCl 3 ): δ 152.5, 143.7, 138.7, 138.6, 129.5, 127.1, 126.3, 124.7, 67.0, 52.1, 51.7, 37.0, 29.0, 28.8, 25.4, 21.5, 21.0, 15.6, 9.9, 9.8; HR - MS m/z: calcd for C 21 H 29 2 O 3 S[M+H + ]: ; found: Compound 4dd: R f = 0.50 (hexanes/etoac, 7 : 3); Yield: 74%; [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 3395, 2924, 1626, 1156, 1025, 767; 1 H-MR (400 MHz; CDCl 3 ): δ (m, 3H), HO Ts 4dd Ph 7.13 (d, J = 6.8 Hz, 2H), (m, 4H), 6.17 (dd, J = 0.8 Hz, 4.4 Hz, 1H), 4.79 (dd, J = 5.2 Hz, 5.2 Hz, 1H), 3.94 (s, 1H), 2.36 (s, 3H), 2.27 (ddd, J = 2.8 Hz, 6.4 Hz, 13.6 Hz, 1H), 1.91 (s, 3H), 1.87 (dt, J = 2.4 Hz, 14.4 Hz, 1H), 1.39 (dd, J = 3.6 Hz, 14.4 Hz, 1H), 1.33 (s, 3H), 1.17 (s, 3H). 13 C-MR (100 MHz; CDCl 3 ): δ 152.2, 143.7, 136.8, 129.1, 128.6, 128.2, 127.7, 127.4, 123.9, 66.7, 50.0, 51.1, 37.6, 29.2, 29.0, 26.8, 25.2, 21.4, 21.2, 21.0, 14.1; HR - MS m/z: calcd for C 24 H 29 2 O 3 S[M+H + ]: ; found: Compound 4ea: R f = 0.50 (hexanes/etoac, 8 : 2); Yield: 87%; O [ ] 25 D= (CHCl 3, c = 1.1); IR (neat) : 2967, 2928, 2877, 1542, 1270, 1141, 1089, 711; 1 H-MR (400 MHz; CDCl 3 ): δ 7.75 Ts 4ea Pr (d, J = 7.9 Hz, 2H), (m, 3H), 5.99 (d, J = 9.7 Hz, 1H), 5.88 (dd, J = 9.5, 3.7 Hz, 1H), (m, 1H), 2.75 (t, J = 7.9 Hz, 2H), (m, 8H), 2.04 (s, 3H), 1.69 (dd, J = 15.5, 7.6 Hz, 2H), (m, 8H), 1.01 (t, J = 7.2 Hz, 3H). 13 C-MR (100 MHz; S10

12 CDCl 3 ): δ 201.1, 167.0, 141.8, 140.9, 138.2, 132.6, 131.3, 129.9, 129.6, , , 127.1, 125.9, 58.4, 40.0, 36.9, 29.8, 25.3, 24.22, 24.12, 21.3, 21.0, 20.2, 13.7; HR - MS m/z: calcd for C 23 H 33 2 O 3 S[M+a + ]: ; found: Compound 4eb: R f = 0.70 (hexanes/etoac, 8 : 2); Yield: 85%; O [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2968, 2925, 1706, 1361, 1088, 677; 1 H-MR (400 MHz; CDCl3): δ 7.79 (d, J = 8.2 Ts 4eb Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 6.17 (d, J = 3.9 Hz, 1H), 4.60 (t, J = 5.2 Hz, 1H), 3.13 (d, J = 6.5 Hz, 1H), 2.42 (s, 3H), 2.21 (s, 3H), 1.91 (d, J = 13.9 Hz, 1H), 1.81 (ddt, J = 16.3, 7.8, 3.9 Hz, 1H), 1.75 (s, 3H), 1.64 (s, 1H), 1.39 (td, J = 13.6, 6.8 Hz, 1H), 1.13 (s, 3H), 0.85 (s, 3H), 0.79 (dd, J = 4.2, 2.6 Hz, 2H), 0.68 (dd, J = 12.3, 6.6 Hz, 1H), 0.50 (td, J = 8.4, 3.4 Hz, 1H). 13 C-MR (100 MHz; CDCl 3 ): δ , , , , , , , , 52.63, 52.00, 51.74, 38.83, 29.27, 29.06, 25.23, 23.03, 22.64, 21.45, 15.56, 10.01, 9.90; HR - MS m/z: calcd for C 23 H 31 2 O 3 S[M+H + ]: ; found: Compound 4ec: R f = 0.50 (hexanes/etoac, 8 : 2); Yield: 80%; O [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2968, 2926, 2857, 1715, 1340, 1157, 1088, 768; 1 H-MR (400 MHz; CDCl3): δ 7.25 (dt, J Ts 4ec Ph = 23.1, 8.4 Hz, 5H), 7.13 (dd, J = 12.5, 7.8 Hz, 4H), 6.27 (d, J = 3.7 Hz, 1H), 4.80 (t, J = 5.2 Hz, 1H), 3.18 (d, J = 6.3 Hz, 1H), 2.38 (s, 3H), 2.24 (s, 3H), (m, 2H), 1.83 (s, 3H), (m, 3H), 1.31 (s, 3H), 1.07 (s, 3H). 13 C MR (100 MHz; CDCl 3 ): δ 208.6, 151.6, 143.8, 137.2, 136.7, 135.6, , , 128.6, 127.9, 127.5, 124.5, 53.9, 52.7, 51.1, 39.6, 29.4, 29.1, 25.0, 23.2, 23.0, 21.4; HR - MS m/z: calcd for C 26 H 31 2 O 3 S[M+H + ]: ; found: S11

13 Compound 4fa: R f = 0.30 (hexanes/etoac, 8 : 2); Yield: 80%; OH [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2968, 2926, 2857, 1715, 1340, 1157, 1088, 768; 1 H-MR (400 MHz; CDCl3): δ 7.77 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 6.09 (s, 1H), 4.63 (s, 1H), 4.13 (dd, J = 9.1, 4.9 Hz, 1H), 2.60 (ddd, J = 14.4, 9.4, 5.3 Hz, 1H), 2.43 (s, 3H), (m, 2H), 2.00 (dd, J = 26.4, 11.9 Hz, 3H), 1.84 (s, 3H), 1.38 (dt, J = 16.0, 8.0 Hz, 2H), (m, 8H), 0.97 (s, 3H), 0.71 (t, J = 7.3 Hz, 3H); 13 C-MR (100 MHz; CDCl 3 ): δ , , , , , , , 67.19, 53.10, 51.86, 44.57, 39.87, 39.55, 28.85, 26.09, 22.06, 21.75, 21.49, 20.57, 20.28, 13.57; HR - MS m/z: calcd for C 23 H 35 2 O 3 S[M+H + ]: ; found: fa Ts Pr Compound 4fb: R f = 0.50 (hexanes/etoac, 8 : 2); Yield: 76%; OH [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 3410, 2961, 2925, 2863, 1600, 1157, 1088, 1025, 767; 1 H-MR (400 MHz; CDCl3): δ 7.76 Ts 4fb (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 6.00 (dd, J = 2.6, 0.6 Hz, 1H), 4.70 (t, J = 4.6 Hz, 1H), 4.12 (qd, J = 6.2, 4.7 Hz, 1H), 2.89 (dt, J = 13.3, 6.6 Hz, 1H), 2.43 (s, 3H), 2.31 (ddd, J = 12.5, 7.1, 3.5 Hz, 1H), 1.99 (dd, J = 11.3, 2.9 Hz, 2H), 1.81 (s, 3H), 1.68 (s, 3H), 1.27 (s, 3H), 1.04 (s, 3H), 1.03 (d, J = 5.6 Hz, 3H), 0.91 (d, J = 6.7 Hz, 3H); 13 C-MR (100 MHz; CDCl3): δ , , , , , , , , 67.28, 52.86, 51.78, 44.68, 40.20, 34.26, 29.10, 25.88, 22.57, 22.07, 21.53, 20.56, 20.12, 19.28; HR - MS m/z: calcd for C 23 H 35 2 O 3 S[M+H + ]: ; found: Compound 4fc: R f = 0.50 (hexanes/etoac, 8 : 2); Yield: 80%; OH [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 3423, 2960, 2925, 1604, 1156, 1047, 771; 1 H-MR (400 MHz; CDCl3): δ 7.81 (d, J = 8.2 Ts 4fc Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 6.11 (dd, J = 2.6, 0.8 Hz, 1H), 4.63 (t, J = 4.6 Hz, 1H), S12

14 (m, 1H), 2.42 (s, 3H), 2.25 (ddd, J = 12.1, 6.8, 3.4 Hz, 1H), 1.97 (dd, J = 11.5, 2.9 Hz, 2H), 1.82 (s, 3H), 1.25 (d, J = 6.4 Hz, 3H), 1.19 (s, 3H), 1.10 (dt, J = 13.1, 6.7 Hz, 1H), 0.90 (s, 3H), 0.80 (d, J = 4.8 Hz, 2H), 0.67 (ddd, J = 11.3, 8.5, 2.6 Hz, 1H), 0.49 (td, J = 7.9, 3.2 Hz, 1H). 13 C-MR (100 MHz; CDCl3): δ , , , , , , , 67.23, 52.63, 52.19, 44.63, 39.87, 28.96, 26.04, 22.03, 21.52, 20.50, 20.25, 15.70, 9.92, 9.66; HR - MS m/z: calcd for C 23 H 33 2 O 3 S[M+H + ]: ; found: Compound 4fd: R f = 0.50 (hexanes/etoac, 8 : 2); Yield: 72%; OH [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 3410, 2961, 2925, 2863, 1600, 1157, 1088, 1025, 767; 1 H-MR (400 MHz; CDCl3): δ Ph Ts 4fd 7.10 (m, 9H), 6.20 (s, 1H), 4.81 (s, 1H), 4.15 (dd, J = 6.1, 3.1 Hz, 1H), (m, 5H), (m, 2H), 1.88 (d, J = 19.4 Hz, 3H), 1.36 (s, 3H), 1.26 (d, J = 6.3 Hz, 3H), 1.19 (dd, J = 18.2, 5.8 Hz, 2H), 1.11 (s, 3H). 13 C-MR (100 MHz; CDCl3): δ , , , , , , , , , , , , , 67.25, 54.60, 51.60, 44.76, 40.68, 29.11, 25.77, 22.25, 21.51, 20.67, 20.61; HR - MS m/z: calcd for C 26 H 33 2 O 3 S[M+H + ]: ; found: Compound 5a: R f = 0.20 (hexanes/etoac, 9 : 1); Yield: 35%; IR (neat) : 3296, 2967, 2921, 1632, 1435, 667 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): 7.84 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), Br TsH Et 5.70 (s, 1H), 4.79 (dd, J = 6.6 Hz, 6.6 Hz, 1H), 2.45 (s, 3H), a 2.02 (m, 3H), 1.84 (s, 3H), 1.79 (s, 3H), 1.73 (s, 3H), (m, 1H), 1.34 (s, 3H), 1.21 (s, 3H); 13 C MR (75 MHz, CDCl 3 ): 150.6, 143.8, 140.2, 139.0, 129.7, 126.7, 119.4, 53.6, 52.1, 46.1, 43.6, 30.0, 28.8, 25.4, 23.4, 22.1, 21.6, ; HR - MS m/z: calcd for C 20 H 31 Br 2 O 2 S[M+H + ]: ; found: S13

15 H Ph LiAlH 4,THF H Ph H COOMe 0 C, 2 h H OH 3ga 3gb 7-phenylbicyclo[4.1.0]hept-2-en-7-yl)methanol: To a vigorously stirred suspension of LiAlH 4 (0.38 g, 10 mmol, 1 equiv) in THF (15 ml) at 0 ºC,a solution of cyclopropyl ester 3ga (2.3 g,10 mmol, 1 equiv) in THF (10 ml) was added drop wise. The reaction mixture was stirred at rt for additional 1 h followed by quenching with EtOAc. The mixture was diluted with DCM (20 ml) and washed with 20% citric acid. The solvent was evaporated in vacuo and the resultant oil was further purified by column chromatography using silica to give 3gb as colorless oil. R f = 0.50 (hexanes/etoac : 8:2); Yield: 1.86 g, 93%; IR (neat) :3331, 2948, 2945, 830, 776 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): (m, 5H), (m, 1H), 5.31 (ddd, J = 1.6, 8.4, 13.2 Hz, 1H), (m, 1H), (m, 1H), 1.96 (dd, J = 11.6, 18.4 Hz, 1H), (m, 6H), (m, 1H); 13 C MR (100 MHz, CDCl 3 ): 138.1, 130.7, 128.0, 126.5, 126.0, 124.6, 72.8, 40.9, 22.6, 21.5, 19.4, 17.0; HR - MS m/z: calcd for C 14 H 16 O [M+H + ]: ; found: Compound 3g: To a solution of 3gb (0.90 g, 5 mmol,1 equiv) in dry DMF, (15 ml) cooled to -15 ºC under inert atmosphere was added H Ph ah(60% suspension in mineral oil)(0.24 g, 6 mmol, 1.2 equiv) at once H OMe 3g and stirred vigorously until all the effervescence ceased. To this MeI (2.50 g, 0.93 ml, 1.1 equiv) was added drop wise and the mixture was allowed to stir at rt for 30 min. The reaction was quenched by the addition of water drop wise and the mixture was extracted with diethyl ether. The solution was concentrated in vacuo and was purified by column chromatography using silica gel to yield compound 3g as colorless oil. R f = 0.50 (hexanes);yield: 1.50 g 98%; 1 H MR (300 MHz, CDCl 3 ): (m, 5H), (m, 1H), 5.30 (ddd, J = 1.6, 8.4, S14

16 13.2 Hz, 1H), 3.38 (d, J = 6.4 Hz, 1H), 3.24 (d, J = 6. 4 Hz, 1H), 3.21 (s, 3H), 1.96 (dd, J = 8.8, 14.0 Hz, 1H), (m, 1H), (m, 2H) (m, 1H); 13 C MR (100 MHz, CDCl 3 ): 138.8, 130.7, 127.6, 126.1, 126.0, 124.6, 82.6, 58.8, 38.6, 24.5, 21.5, 19.4, 17.0; HR - MS m/z: calcd for C 15 H 19 O [M+H + ]: ; found: Bicyclo[3.1.0]hex-2-en-6-yl methanol: R f = 0.50 (hexanes); Yield: 95%; H 1 H-MR (400 MHz; CD Cl3): δ (m, 1H), 5.42 (dd, J = 2.4 OH Hz, 2.4 Hz, 1H), (m, 1H), (m, 1H), 2.58 (dd, J = 6.4 H Hz, 17.6 Hz, 1H), 2.34 (d, J = 17.6 Hz, 1H), 2.24 (s, 1H), (m, 1H), (m, 1H), (m, 1H). 13 C-MR (100 MHz; CDCl3): δ 133.1, 128.7, 66.0, 35.5, 31.7, 29.1, 24.4; HR - MS m/z: calcd for C 14 H 16 O [M+a + ]: ; found: Compound 4ga: R f = 0.30 (hexanes/etoac, 8 : 2); Yield: 72%; IR (neat) :2948, 2945, 1643, 1340, 1156, 1091, 830, 776 cm -1 ; 1 H MR (400 MHz, CDCl 3 ): 7.44 (d, J = 8.4 Hz, 2H), (m, 5H), 7.18 (d, J = 8.4 Hz, 2H), 6.14 (dd,j = 1.5 Hz, 1H),6.02 (dd,j = 1.5 Hz, 1H), 4.10 (m, OMe Ph H H Ts 4ga 1H), 3.75 (d, J = 9.6 Hz, 1H), 3.47 (d, J = 9.2 Hz, 1H), 3.23 (s, 3H), (m, 1H), (m, 2H), 2.42 (s, 3H), (m, 2H), 2.24 (s, 3H), (m, 1H), (m, 1H); 13 C MR (100 MHz, CDCl 3 ): 150.6, 143.8, 143.2, 138.3, 132.1, 129.7, 128.4, 127.2, 126.9, 126.4, 79.2, 61.7, 59.3, 51.8, 38.3, 25.1, 24.8, 21.5, 18.7; HR - MS m/z: calcd for C 24 H 28 2 O 3 S [M+H + ]: ; found: Compound 6a: R f = 0.50 (hexanes/etoac, 7 : 3); Yield: 68%; IR H (neat) : 2942, 2940, 1341, 1056, 1090, 831, 776 cm -1 ; 1 H MR (400 MHz, CDCl 3 ): 7.80 (d, J = 8.0 Hz, 2H), (m, 7H), 4.36 (s, Ts H 6a OBn 2H), (m, 3H), (m, 1H), 2.37 (s, 3H), (m, 1H), (m, S15

17 2H), (m, 1H), (m, 1H), (m, 2H), (m, 1H); 13 C MR (100 MHz, CDCl 3 ): 144.0, 138.4, 135.7, 129.5, 128.3, 127.5, 127.4, 72.4, 72.0, 38.1, 22.1, 21.5, 20.1, 17.9, 11.6, 10.8; HR - MS m/z: calcd for C 22 H 26 O 3 S [M+H + ]: ; found: Compound 6b: R f = 0.50 (hexanes/etoac, 7 : 3); Yield: 60%; IR (neat) : 2952, 2947, 1346, 1053, 1092, 831, 770 cm -1 ; 1 H MR (400 Ts 6b OBn MHz, CDCl 3 ): 7.82 (d, J = 8.0 Hz, 2H), (m, 7 Hz), 4.43 (s, 2H) (m, 1H), (m, 1H), (m, 2H), 2.40 (s, 3H), (m, 1H), (m, 1H), (m, 1H), (m, 2H); 13 C MR (100 MHz, CDCl 3 ): 143.4, 138.0, 137.3, 129.6, 129.5, 128.4, 127.6, 127.4, 72.7, 71.3, 47.7, 36.5, 24.9, 21.54, 18.0; HR - MS m/z: calcd for C 21 H 24 O 3 S [M+H + ]: ; found: Compound 4aaA: R f = 0.30 (hexanes/etoac, 8 : 2); Yield: 86%; IR (neat) : 2948, 2945, 1643, 1340, 1156, 1091, 830, 776 cm -1 ; 1 H-MR (400 MHz; CDCl3): δ 5.79 (s, 1H), 4.27 (s, 1H), 2.24 (s, 3H), Boc 4aaA (m, 4H), 1.69 (s, 3H), 1.51 (s, 9H), 1.43 (s, 2H), (m, 4H), (m, 4H). 13 C- MR (100 MHz; CDCl 3 ): δ , , , , 81.72, 53.76, 50.63, 42.94, 29.60, 28.94, 28.30, 25.70, 24.45, 23.67, 20.39; HR - MS m/z: calcd for C 19 H 27 2 O 2 [M+H + ]: ; found: Compound 4abA: R f = 0.30 (hexanes/etoac, 8 : 2); Yield: 85%; IR (neat) : 2970, 2945, 1643, 1340, 1156, 1091, 830, 776 cm -1 ; 1 H-MR (400 MHz; CDCl3): δ 5.77 (s, 1H), 4.31 (dd, J = 1 Hz, 1Hz, 1H), 2.85 Boc 4abA Et 2.76 (m, 1H), (m, 1H), (m, 4H), 1.79 (s, 3H), 1.51 (s, 9H), 1.33 (s, 3H), 1.10 (s, 3H), 1.08 (t, J = 7.3 Hz, 3H); 13 C-MR (100 MHz; CDCl 3 ): δ , , S16

18 138.15, , 81.72, 53.76, 50.63, 42.94, 29.60, 28.94, 28.30, 25.70, 24.45, 23.67, 20.39; HR - MS m/z: calcd for C 19 H 27 2 O 2 [M+H + ]: ; found: Compound 4acA: : R f = 0.30 (hexanes/etoac, 9 : 1); Yield: 74%; IR (neat) : 2975, 2929, 1705, 1634, 1323, 1159, 891, 773 cm -1 ; 1 H- MR (400 MHz; CDCl3): δ 5.81 (s, 1H), 4.28 (s, 1H), (m, Boc 4acA 2H), (m, 2H), 1.72 (s, 3H), 1.52 (s, 9H), 1.52 (m, 1H), 1.25 (s, 3H), 1.03 (s, 3H), (m, 3H), (m, 2H), (m, 1H); 13 C-MR (100 MHz; CDCl 3 ): δ 156.4, 153.3, 137.7, 120.8, 81.2, 53.6, 50.6, 43.5, 29.6, 29.3, 28.3, 24.1, 23.6, 20.2, 17.0, 9.9, 8.0 ; HR - MS m/z: calcd for C 19 H 31 2 O 2 [M+H + ]: ; found: Compound 4aaB: R f = 0.30 (hexanes/etoac, 8 : 2); Yield: 73%; IR (neat) : 2975, 2914, 1753, 1574, 1307, 1238, 1001, 830, 776 cm -1 ; 1 H-MR (300 MHz; CDCl3): δ (m, 5H), 5.83 (s, 1H), Cbz 4aaB 5.27 (d, J = 12.6 Hz, 1H), 5.21 (d, J = 12.6 Hz, 1H), 4.36 (s, 1H), (m, 2H), (m, 2H), 1.71 (s, 3H), 1.25 (s, 3H), 1.02 (s, 3H), (m, 2H), (m, 3H); 13 C-MR (100 MHz; CDCl3): δ 156.1, 154.6, 138.2, 136.5, 129.0, 128.7, 128.4, 120.9, 68.2, 54.2, 51.5, 43.6, 30.1, 29.8, 24.7, 24.2, 20.7, 17.4, 10.4, 9.4; HR - MS m/z: calcd for C 22 H 29 2 O 2 [M+H + ]: ; found: Compound 4abB: R f = 0.30 (hexanes/etoac, 8 : 2); Yield: 69%; IR (neat) : 2975, 2914, 1750, 1544, 1313, 1238, 1004, 833, 779 cm -1 ; 1 H-MR (300 MHz; CDCl3): δ (m, 5H), 5.77 (s, 1H), 5.27 Cbz 4abB Pr (d, J = 12.3 Hz, 1H), 5.17 (d, J = 12.3 Hz, 1H), 4.39 (s, 1H), 2.83 (ddd, J = 6.9 Hz, 8.7 Hz, 15.3 Hz, 1H), (m,1h), (m, 3H), 1.70 (s, 3H), (m, 2H), 1.32 (s, 3H), (m, 1H), 1.07 (s, 3H). 13 C-MR (100 MHz; CDCl3): 156.4, 154.9, 138.9, S17

19 138.6, 129.5, 127.1, 120.9, 68.1, 52.8, 51.9, 42.9, 29.9, 29.1, 25.2, 23.5, 21.8, 21.5, 19.4, 13.5; HR - MS m/z: calcd for C 22 H 31 2 O 2 [M+H + ]: ; found: Compound 4acB: R f = 0.30 (hexanes/etoac, 7 : 3); Yield: 69%; [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2975, 2914, 1750, 1544,1313,1238, 1004, 833, 779 cm -1 ; 1 H-MR (400 MHz; CDCl3): δ Cbz 4acB Ph (m, 2H), (m, 3H), (m, 3H), 6.75 (d, J = 7.1 Hz, 2H), 5.99 (s, 1H), 4.97 (d, J = 12.4 Hz, 1H), 4.89 (d, J = 12.4 Hz, 1H), 4.53 (d, J = 0.4 Hz, 1H), (m, 4H), 1.76 (s, 3H), 1.44 (s, 3H), 1.19 (s, 3H), 1.04 (qd, J = 12.6, 5.9 Hz, 1H). 13 C-MR (101 MHz; CDCl3): δ , , , , , , , , , , , , 67.74, 55.58, 51.25, 43.85, 29.61, 29.26, 23.75, 23.64, Compound 3j: 1 H-MR (400 MHz; CDCl 3 ): δ (m, 8H), 5.68 (d, J = 1.4 Hz, 1H), 4.62 (d, J = 11.9 Hz, 1H), 4.49 (d, J = 11.9 Hz, 1H), OBn 3.53 (t, J = 4.5 Hz, 1H), 2.17 (dq, J = 11.1, 4.1 Hz, 1H), (m, 4H), 1.07 (s, 4H), 0.88 (td, J = 8.5, 4.2 Hz, 1H), 0.82 (s, 3H). 13 C-MR (100 MHz; CDCl3): δ , , , , , , , , , , 73.31, 72.09, 70.35, 27.80, 24.39, 23.28, 22.66, 21.59, 17.83, 15.18; HR - MS m/z: calcd for C 19 H 27 2 O 2 S[M+H + ]: ; found: j Compound 4jaA: : R f = 0.30 (hexanes/etoac, 7 : 3); Yield: 82%; [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2975, 2934, 1702, 1634, 1302, 1152, 776; 1 H-MR (400 MHz; CDCl3): δ BnO 4jaA Boc (m, 5H), 5.97 (d, J = 2.9 Hz, 1H), 4.62 (d, J = 11.7 Hz, 1H), 4.49 (d, J = 11.7 Hz, 1H), 3.69 (s, 1H), (m, 4H), 2.08 (d, J = 14.2 Hz, 1H), 1.79 (d, J = 20.4 Hz, 4H), (m, 10H), 1.29 (s, 3H), (m, 4H). 13 C-MR (100 MHz; CDCl 3 ): δ , , S18

20 138.57, , , , , , 82.04, 74.40, 71.89, 53.55, 50.57, 37.18, 28.83, 28.35, 25.72, 24.65, 24.49, 21.56; HR - MS m/z: calcd for C 19 H 27 2 O 2 S[M+H + ]: ; found: Compound 8a: R f = 0.30 (hexanes/etoac, 8 : 2); Yield: 43%; IR (neat) : 3588, 3476, 2982, 2946, 1756, 1575, 1331, 1181, 831 cm -1 ; 1 H-MR (400 MHz; CDCl3): δ (m, 10H), 5.83 HCbz 8a HCbz 5.82 (m, 1H), 5.25 (dd, J = 12Hz, 17.2 Hz, 2H), 5.11 (s, 2H), 4.70 (m, 2H), (m, 1H), 2.30 (s, 3H), (m, 4H), 1.71 (s, 3H), 1.34 (s, 3H), 1.10 (s, 3H), (m, 1H). 13 C-MR (101 MHz; CDCl3): δ 157.4, 154.2, 152.3, 139.2, 136.7, 136.2, 129.1, 129.0, 128.8, 128.7, 128.6, 120.7, 68.4, 67.3, 54.4, 51.4, 43.1, 30.1, 29.4, 26.0, 25.0, 24.2, 20.8; HR - MS m/z: calcd for C 28 H 35 3 O 4 [M+a + ]: ; found: Traces of cyclized product was also found; HR - MS m/z: calcd for C 20 H 26 2 O 2 [M+a + ]: ; found: Compound 8b: R f = 0.30 (hexanes/etoac, 8 : 2); Yield: 45%; [ ] 25 D= (CHCl 3, c = 2.0); IR (neat) : 3576, 3480, 2967, BnO HCbz 2942, 1761, 1570, 1335, 1187, 778 cm -1 ; 1 H-MR (400 MHz; CDCl3): δ (m, 10H), 5.97 (d, J = 3.2 Hz, 1H), b HCbz 5.19 (m, 2H), 4.62 (d, J = 11.7 Hz, 1H), 4.49 (d, J = 11.7 Hz, 1H), 4.43 (s, 1H), 3.69 (s, 1H), 2.28 (s, 3H), 2.23 (ddd, J = 13.1, 7.7, 2.9 Hz, 1H), 2.10 (d, J = 14.3 Hz, 1H), 1.76 (s, 3H), 1.30 (s, 3H), (m, 1H), 1.11 (s, 3H); 13 C-MR (100 MHz; CDCl 3 ): δ , , , , , , , , , , , , , , , , , , , , , , , , 74.26, 71.88, 68.02, 66.91, 53.64, 50.79, 36.81, 28.78, 25.50, 24.58, 24.47, 21.50; HR - MS m/z: calcd for C 35 H 41 3 O 5 [M+a + ]: ; found: S19

21 Compound 7a: Yield: 63%; IR (neat) : 3347, 2927, 1620, 1332, 1273, 772 cm -1 ; 1 H MR (400 MHz, Benzene-d 6 ): (m, 2H), 7.24 (s, 1H), (m, 3H), 5.84 (s, 1H), 4.09 (m, 1H), 1.86 (s, 3H), H 7a Ph 1.72 (s, 3H), (m, 1H), (m, 2H), 1.22 (s, 6H); 13 C MR (100 MHz, Benzene d 6 ): 149.8, 137.6, 129.2, 127.9, 127.6, 126.5, 51.2, 39.1, 30.8, 27.5, 23.3, 19.4; HR - MS m/z: calcd for C 17 H 22 2 [M+H + ]: ; found: Compound 7b: Yield: 76%; IR (neat) : 3352, 2922, 1621, 1325, 1274, 769, 699 cm -1 ; 1 H MR (400 MHz, Benzene-D 6 ): 6.99, 6.88 (s, 1H), 5.82 (d, J = 3.6 Hz, 1H), 3.93 (s, 1H), 2.00 (s, 3H), 1.88 (d, J = 4.0 Hz, 2H), 1.73 (s, 3H), 1.59 (s, 1H), 1.22 (s, 3H), 1.20 (s, 3H), (m, 1H); 13 C MR (100 MHz, Benzene d 6 ): 152.1, 136.1, 122.5, 50.7, 47.4, 38.5, 30.6, 30.5, 26.4, 23.1, 20.6, 19.1; HR - MS m/z: calcd for C 12 H 21 2 [M+H + ]: ; found: Compound 4ka: R f = 0.70 (hexanes/etoac, 7 : 3); Yield: 92%; [ ] 25 D= 79.3 (CHCl 3, c = 1.01); IR (neat) : 2964, 2930, 2873, 1649, 1343, 1156, 970, 681 cm -1 ; 1 H-MR (400 MHz; CDCl 3 ): BnO 4ka Ts δ7.76 (d, J = 8.3 Hz, 2H), 7.31 (m, J = 7.1 Hz, 7H), 5.86 (s, 1H), 4.95 (d, J = 8.7 Hz, 1H), 4.46 (d, J = 11.7 Hz, 1H), 4.33 (d, J = 11.6 Hz, 1H), 4.09 (q, J = 6.3 Hz, 1H), 2.81 (dd, J 1 =18.0, J 2 = 9.0 Hz, 1H), 2.42 (s, 3H), 2.37 (d, J = 8.6 Hz, 1H), 2.30 (d, J = 8.2 Hz, 1H), 2.27 (s, 3H), 1.26 (d, J = 9.0 Hz, 3H), 1.26 (s, 3H), 0.95 (s, 3H). 13 C MR (100 MHz, CDCl 3 ): 150.6, 150.2, 144.2, 138.2, 137.3, 129.7, 128.4, 127.7, 127.5, 127.2, 72.7, 70.2, 62.9, 52.1, 49.3, 32.0, 29.6, 25.8, 25.7, 21.5, 19.6.HR - MS m/z: calcd for C 26 H 33 2 O 3 S[M+H + ]: ; found: S20

22 Compound 4kb:R f = 0.70 (hexanes/etoac, 7 : 3); Yield: 91%; [ ] 25 D= 47.9 (CHCl 3, c = 1.11); IR (neat) : 2979, 2925, 2890, 1647, 1332, 1153, 679 cm -1 ; 1 H-MR (400 MHz; CDCl3): δ 7.81 BnO 4kb Ts (d, J = 7.9 Hz, 2H), (m, 7H), 5.79 (s, 1H), 4.98 (d, J = 8.8 Hz, 1H), 4.49 (d, J = 11.7 Hz, 1H), 4.34 (d, J = 11.7 Hz, 1H), 4.09 (q, J = 6.4 Hz, 1H), 2.80 (dd, J= 16.0, 8.0 Hz, 1H), 2.42 (s, 3H), 2.26 (dd, J = 17.8, 8.2 Hz, 2H), (m, 1H), 1.26 (d, J = 6.5 Hz, 3H), 1.18 (s, 3H), 0.88 (s, 3H), (m, 2H), (m, 1H). 13 C MR (100 MHz, CDCl 3 ): 154.2, 149.9, 143.8, 138.3, 137.7, 129.6, 128.3, 127.8, 127.6, 127.5, 127.3, 127.2, 72.8, 70.1, 63.1, 51.7, 49.5, 31.9, 29.9, 25.4, 21.5, 19.8, 15.9, 10.0, 9.0; HR - MS m/z: calcd for C 28 H 34 2 O 3 S[M+H + ]: ; found: Compound 4kc: R f = 0.70 (hexanes/etoac, 7 : 3); Yield: 81%; [ ] 25 D= 13.5 (CHCl 3, c = 1.00); IR (neat) : 2967, 2936, 2874, 1626, 1348, 1167, 681 cm -1 ; 1 H-MR (400 MHz; CDCl3): δ 7.42 BnO 4kc Ts Ph (d, J = 8.0 Hz, 2H), (m, 12H), 5.83 (s, 1H), 5.28 (d, J = 9.0 Hz, 2H), 4.45 (d, J = 11.8 Hz, 1H), 4.32 (d, J = 11.8 Hz, 1H), 4.10 (q, J = 6.3 Hz, 1H), 3.02 (dd, J 1 = 17.0, J 2 = 8.5 Hz, 1H), 2.42 (s, 1H), 2.28 (dd, J = 16.9, 8.4 Hz, 1H), 1.38 (s, 3H), 1.26 (d, J = 6.4 Hz, 3H), 1.18 (s, 3H). 13 C MR (100 MHz, CDCl 3 ): 153.8, 150.9, 143.9, 138.2, 137.9, 136.8, 129.4, 129.3, 128.4, 128.3, 127.8, 127.7, 127.4, 126.0, 73.1, 70.3, 62.8, 53.9, 50.4, 32.4, 25.1, 21.5, 20.1; HR - MS m/z: calcd for HR - MS m/z: calcd for C 31 H 35 2 O 3 S[M+H + ]: ; found: Compound 4kaA : R f = 0.40 (hexanes/etoac, 7 : 3); Yield: 81%; [ ] 25 D= (CHCl 3, c = 1.18); IR (neat) : 2972, 2925, 2871, 1725, 1648, 1162, 667 cm -1 ; 1 H-MR (400 MHz; CDCl 3 ): δ 7.37 BnO Boc 4kaA 7.26 (m, 10H), 5.81 (s, 1H), 5.27 (d, J = 12 Hz, 1H), 5.23 (d, J=12 Hz, 1H), 4.92 (d, J = 4.8 S21

23 Hz, 1H), 4.50 (d, J =12 Hz, 1H), 4.33 (d, J = 12 Hz, 1H), 4.08 (dd, J = 6.4 Hz, 12.8 Hz, 1H), 2.83 (dd, J = 8.8 Hz, 17.6 Hz, 1H), (m, 2H), (m, 2H), 1.26 (s, 3H), 1.13 (s, 3H), (m, 3H). 13 C MR (100 MHz, CDCl 3 ): 153.5, 149.6, 138.4, 135.9, 128.5, 128.3, 128.2, 127.9, 127.6, 127.5, 127.1, 73.1, 70.2, 67.8, 62.1, 52.9, 48.5, 32.2, 29.7, 24.8, 19.9, 16.5; HR - MS m/z: calcd for HR - MS m/z: calcd for C 29 H 34 2 O 3 [M+H + ]: ; found: Compound 4kbB: R f = 0.70 (hexanes/etoac, 7 : 3); Yield: 83%; [ ] 25 D= (CHCl 3, c = 1.00); IR (neat) : 2967, 2936, 2874, 1626, 1348, 1167, 681 cm -1 ; 1 H-MR (400 MHz; BnO Cbz 4kbB CDCl 3 ): δ (m, 10H), 5.81 (s, 1H), 5.27 (d, J = 12 Hz, 1H), 5.23 (d, J=12 Hz, 1H), 4.92 (d, J = 4.8 Hz, 1H), 4.50 (d, J =12 Hz, 1H), 4.33 (d, J = 12 Hz, 1H), 4.08 (dd, J = 6.4 Hz, 12.8 Hz, 1H), 2.83 (dd, J = 8.8 Hz, 17.6 Hz, 1H), (m, 2H), (m, 2H), 1.26 (s, 3H), 1.13 (s, 3H), (m, 3H). 13 C MR (100 MHz, CDCl 3 ): 153.5, 149.6, 138.4, 135.9, 128.5, 128.3, 128.2, 127.9, 127.6, 127.5, 127.1, 73.1, 70.2, 67.8, 62.1, 52.9, 48.5, 32.2, 29.7, 24.8, 19.9, 16.5; HR - MS m/z: calcd for HR - MS m/z: calcd for C 29 H 34 2 O 3 [M+H + ]: ; found: Compound 4la: R f = 0.40 (hexanes/etoac, 8 : 2); Yield: 45%; [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2973, 2929, 1660, 1343, 1162, 669 cm -1 ; Ts 1 H MR (300 MHz, CDCl 3 ): 7.88 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 4la Hz, 2H), 5.54 (t, J = 1.2 Hz, 1H), 4.09 (d, J = 1.8 Hz, 1H), (m, 1H), 2.45 (s, 3H), (m, 1H), (m, 2H), 1.45 (s, 3H), 1.40 (s, 3H), 1.11 (d, J = 1.85 Hz, 3H); 13 C MR (75 MHz, CDCl 3 ):147.0, 143.8, 137.2, 129.6, 128.5, 127.6, 59.9, 54.2, 34.9, 33.0, 29.7, 26.6, 26.4, 25.3, 21.51, 21.0; HR - MS m/z: calcd for C 19 H 27 2 O 2 S[M+H + ]: ; found: S22

24 HPLC Chromatogram for Compound 33aa Column Details : Chiralpak AD-3; 150 mm x 40mm Solvent System : n-heptane/isopropyl alcohol 80:20 isocratic flow InJection volume : 2 L in Isopropyl alcohol Flow Rate : 1.0 ml/min, 5.2 MPa, 298 K Detector Wavelength : 220 nm 4la Ts Figure 1: HPLC Chromatogram for racemic mixture of 14a S23

25 Figure 2. HPLC Chromatogram for 14a resulting from (+)-pinene From the chromatogram the enantiomeric ratio was found to be 65:35 Compound 4lb: R f = 0.45 (hexanes/etoac, 9 : 1); Yield: 43%; [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2976, 2927, 1658, 1342, 1162, 669 cm - 1 ; 1 H MR (300 MHz, CDCl 3 ): 7.85(d, J = 7.8 Hz, 2H), 7.34 (d, J = 7.8 Ts 4lb Et Hz, 2H), 5.41 (t, J = 1.7 Hz, 1H), 4.06 (s, 1H), (m, 2H), 2.45 (s, 3H), (m, 2H), (m, 2H), 1.45 (s, 3H), 1.13 (s, 3H), 1.00 (t, J = 7.2 Hz, 3H); 13 C MR (75 MHz, CDCl 3 ):149.8, 143.6, 137.7, 129.6, 128.9, 127.5, 59.6, 54.1, 35.0, 33.0, 31.9, 29.7, 26.5, 25.5, 21.5, 21.0, 11.6; HR - MS m/z: calcd for C 20 H 29 2 O 2 S[M+H + ]: ; found: Compound 4lc: R f = 0.6 (hexanes/etoac, 8 : 2); Yield: 35%; [ ] 25 D= (CHCl 3, c = 0.83)IR (neat) : 2977, 2925, 1653, 1340, 1163, 669 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): 7.86 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 5.40 (s, 1H), 4.07 (s, 1H), (m, S24

26 5H), 2.45 (s, 3H), (m, 2H), (m, 1H), 1.62 (s, 3H), 1.44 (s, 3H), 1.37 (s, 3H), 1.14 (s, 3H), 0.84 (t, J = 7.5 Hz,3H); 13 C MR (75 MHz, CDCl 3 ):143.6, 137.7, 129.6, 129.2, 128.8, 127.6, 127.5, 125.4, 59.7, 54.2, 40.5,.35.0, 33.0, 29.7, 26.6, 26.1, 25.5, 21.1, 20.1, 13.5; HR - MS m/z: calcd for C 21 H 31 2 O 2 S[M+H + ]: ; found: lc Ts Pr Compound 4ld: R f = 0.50 (hexanes/etoac, 8 : 2); Yield: 37%; [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2973, 2929, 1660, 1343, 1162, 669 cm - 1 ; 1 H MR (300 MHz, CDCl 3 ): (m, 4H), (m, 5H), Ts 4ld Ph 5.48 (s, 1H), 4.43 (s, 1H), 2.73 (d, J = 13.5 Hz, 1H), 2.47 (s, 1H), 2.41 (s, 3H), (m, 1H), (m, 3H), 1.88 (td, J = 14.1 Hz, 4.2 Hz, 1H), 1.58 (s, 3H), 1.52 (s, 3H), 1.50 (s, 3H); 13 C MR (75 MHz, CDCl 3 ):143.6, 137.4, 129.6, 129.4, 129.3, 129.0, 128.6, 128.3, 127.8, 127.6, 127.0, 61.2, 55.5, 40.0, 36.5, 35.2, 33.1, 29.9, 26.5, 25.9, 22.0, 21.5; HR - MS m/z: calcd for C 24 H 29 2 O 2 S[M+H + ]: ; found: CH Analysis found for C 24 H 29 2 O 2 S: C, 70.55; H, 6.91;, Found: C, 70.16; H, 6.99;, Compound 4le: R f = 0.60 (hexanes/etoac, 9 : 1); Yield: 48%; [ ] 25 D= (CHCl 3, c = 0.54); IR (neat) : 2973, 1664, 1342, 1162, 669 cm - 1 ; 1 H MR (300 MHz, CDCl 3 ): 7.90 (d, J = 8.4 Hz, 2H), 7.33 (d, J = Ts 4le 8.4 Hz, 2H), 5.41 (s, 1H), 4.13 (s, 1H), (m, 1H), 2.44 (s, 3H), (m, 1H), (m, 1H), (m, 2H), (m, 1H), 1.33 (s, 3H), 1.30 (s, 3H), 1.23 (s, 3H), (m, 2H), (m, 2H), (m, 1H); 13 C MR (75 MHz, CDCl 3 ):149.3, 143.5, 138.2, 129.5, 129.4, 127.5, 127.2, 58.9, 54.3, 35.0, 33.1, 29.9, 26.6, 25.6, 21.5, 20.9, 17.6, 10.9, 9.9, 9.2; HR - MS m/z: calcd for C 21 H 29 2 O 2 S[M+H + ]: ; found: S25

27 Compound 9: R f = 0.45 (hexanes/etoac, 9 : 1); [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 3276, 2918, 2360, 1435, 1328, 1160, 665 cm -1 ; 1 H MR TsH (300 MHz, CDCl 3 ): 7.77 (d, J = 7.8 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 5.53 (s, 1H), 4.69 (s, 1H), 4.62 (s, 1H), 4.45(d, J = 9.9 Hz, 1H) 3.86 (br, 9 1H), 2.43 (s, 3H), (m, 6H), 1.65 (s, 3H), 1.52 (s, 3H) (m, 1H); 13 C MR (100 MHz, CDCl 3 ): 148.4, 143.2, 138.4, 132.9, 129.6, 127.0, 125.8, 109.5, 54.3, 40.1, 36.5, 30.3, 21.5, 20.8, 19.9; HR - MS m/z: calcd for C 17 H 23 ao 2 S[M+a + ]: ; found: CH Analysis found for C 17 H 23 O 2 S: C, 66.85; H, 7.59;, 4.59; Found: C, 66.67; H, 7.49;, Compound 4ma: R f = 0.30 (hexanes/etoac, 7 : 3); Yield: 48%; [ ] 25 D= (CHCl 3, c = 0.96); IR (neat) : 2974, 2927, 1662, MeO Ts 1342, 1162, 1095, 670 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): 7.9 (d, 4ma J = 8.1 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 5.79 (t, J = 3.6 Hz, 1H), 4.52 (s, 1H), 3.20 (dd, J = 10.8 Hz, 8.7 Hz, 2H), 2.98 (s, 3H), 2.63 (d, J = 13.8 Hz, 1H), 2.45 (s, 3H), (m, 1H) (m, 1H), 2.03 (s, 3H), (m, 1H), 1.75 (td, J = 13.8 Hz, 3.3 Hz, 1H), 1.46 (s, 3H), 1.43 (s, 3H); 13 C MR (75 MHz, CDCl 3 ): 172.3, 143.7, 137.5, 130.4, 129.6, 127.7, 73.5, 60.1, 57.6, 49.8, 35.1, 33.0, 29.6, 26.5, 25.3, 21.5; HR - MS m/z: calcd for C 20 H 29 2 O 3 S[M+H + ]: ; found: Compound 4na: R f = 0.30 (hexanes/etoac, 7 : 3); Yield: 42%; [ ] 25 D= (CHCl 3, c = 2.9); IR (neat) : 2974, 2929, 2870, 1659, BnO Ts 1598, 1343, 1162, 1093, 670 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): 4na 7.82(d, J = 8.7 Hz, 2H), (m, 7H), (m, 1H), 4.39 (d, J = 12 Hz, 1H), 4.34 (d, J = 12 Hz, 1H), 4.19 (s, 1H), 3.19 (t, J = 6.6 Hz, 2H), (m, 1H), (m, 2H), 2.38 (s, 3H), 2.09 (s, 3H), (m, 2H), (m, 1H), 1.45 (s, 3H), 1.40 (s, S26

28 3H); 13 C MR (75 MHz, CDCl 3 ): 147.2, 143.9, 138.2, 137.0, 130.0, 129.6, 128.9, 127.6, 127.6, 127.4, 126.3, 72.7, 68.6, 60.0, 52.5, 35.0, 33.8, 32.9, 29.5, 26.6, 26.5, 25.3, 21.4; HR - MS m/z: calcd for C 27 H 35 2 O 3 S [M+H + ]: ; found: Compound 4nb: R f = 0.30 (hexanes/etoac, 6 : 4); Yield: 57%; IR (neat) : 3281, 2973, 2929, 2858, 1715, 1705, 1525, 1318, BnO Ts 1204, 1065, 737 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): 7.85(d, J 4nb = 8.4 Hz, 2H), (m, 7H), 5.51 (m, 1H), 4.42 (d, J = 12 Hz, 1H), 4.34 (d, J = 12 Hz, 1H), 4.21 (s, 1H), 3.25 (dd, J = 7.2 Hz, 7.2 Hz, 2H), (m, 4H), 2.39 (s, 3H), 2.05 (dd, J = 6.9 Hz, 19.2 Hz, 1H), (m, 1H), (m, 4H), 1.41 (ddd, J = 4.8 Hz, 8.4 Hz, 12.6 Hz, 1H), 1.33 (s, 3H), 1.30 (s, 3H), (m, 1H), (m, 2H), (m, 1H); 13 C MR (75 MHz, CDCl 3 ): 149.4, 143.6, 130.8, 129.6, 128.5, 128.3, 127.6, 127.4, 127.1, 121.6, 72.7, 68.7, 58.9, 52.6, 35.2, 34.0, 33.1, 30.5, 29.8, 26.6, 25.6, 21.5, 17.8, 9.8, 9.5. Compound 4laA: R f = 0.30 (hexanes/etoac, 7 : 3); Yield: 52%; [ ] 25 D= (CHCl 3, c = 0.91); IR (neat) : 2978, 2925, 1720, 1343, 1162, 1098, 776 cm -1 ; 1 H-MR (400 MHz; CDCl3): δ 5.52 (s, 1H), 4.50 (s, 1H), 2.32 Boc 4laA (m, 2H), (m, 2H), 2.02 (s, 3H), (m, 5H), 1.48 (s, 9H), 1.47 (s, 3H), 1.43 (s, 3H), 1.11 (s, 3H). 13 C-MR (100 MHz; CDCl 3 ): δ , , , 81.10, 59.54, 34.51, 33.12, 28.74, 28.46, 28.06, 26.75, 24.57, 21.67; HR - MS m/z: calcd for C 19 H 27 2 O 2 S[M+H + ]: ; found: Compound 4laB: R f = 0.30 (hexanes/etoac, 6 : 4); Yield: 48%; IR (neat) : 3281, 2973, 2929, 2858, 1715, 1705, 1525, 1318, 1204, 1065, 737 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): (m, 5H), (m, 1H), 5.21 Cbz 4laB S27

29 (s, 2H), 4.58 (s, 1H), (m, 2H), (m, 1H), 2.02 (s, 3H), (m, 5H), 1.43 (s, 3H), 1.07 (s, 3H); 13 C MR (100 MHz, CDCl 3 ): 153.5, 151.2, 136.0, 129.1, 128.5, 128.1, 128.0, 127.0, 67.6, 59.6, 50.6, 34.4, 33.0, 28.7, 26.6, 24.7, 21.6; HR - MS m/z: calcd for C 20 H 27 2 O 2 [M+H + ]: ; found: (S)-1-((1S,5R)-6,6-dimethylbicyclo[3.1.0]hex-2-en-2-yl)ethanol: R f = 0.30 (hexanes/etoac, 3 : 1); Yield: 90%; IR (neat) : 3416, 2945, 2918, 1522, 1090, 738, 667 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): 5.28 (s, 1H), OH 4.28 (dd, J = 5.7 Hz, 12.0 Hz, 1H), 2.35 (dd, J = 7.8 Hz, 18.0 Hz, 1H), 2.13 (s, 1H), (m, 1H), (m, 1H), (m, 5H), 0.98 (s, 3H), 0.73 (s, 3H); 13 C MR (75 MHz, CDCl 3 ): 148.2, 122.5, 67.1, 36.7, 31.5, 29.1, 27.3, 21.8, 19.2, 13.0; HR - MS m/z: calcd for C 10 H 16 ao[m+a + ]: ; found: Compound 3o: R f = 0.40 (hexanes); Yield: 98%; 1 H MR (400 MHz, CDCl 3 ): (m, 5H), 5.41 (s, 1H), 4.57 (d, J = 12.0 Hz), 4.40 (d, J = 12.0, 1H), 4.06 (dd, J = 5.8 Hz, 11.6 Hz, 1H), 2.44 (dd, J = 7.6 Hz, OBn 3o 18.0 Hz, 1H), (m, 1H), (m, 1H), (m, 9H), 1.09 (s, 3H), 0.98 (s, 3H); 13 C MR (100 MHz, CDCl 3 ): 140.3, 133.1, 122.3, 121.5, 118.5, 67.8, 63.3, 30.9, 25.9, 23.6, 20.4, 17.6, 13.5, 7.3; HR - MS m/z: calcd for C 17 H 23 ao[m+h + ]: ; found: Compound 4oa: R f = 0.30 (hexanes/etoac, 7 : 3); Yield: 90%; [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2974, 2929, 2870, 1659, 1598, 1343, 1162, 1093, 670 cm -1 ; 1 H-MR (400 MHz; CDCl3): δ 7.71 (d, J = 8.2 Ts OBn 4oa Hz, 1H), 7.41 (d, J = 7.3 Hz, 1H), 7.35 (t, J = 7.3 Hz, 1H), 7.27 (d, J = 6.8 Hz, 1H), 5.92 (s, 1H), 5.14 (d, J = 9.0 Hz, 1H), 4.56 (d, J = 11.0 Hz, 1H), 4.49 (d, J = 11.0 Hz, 1H), 4.39 (q, J S28

30 = 5.9 Hz, 1H), 2.83 (q, J = 8.5 Hz, 1H), 2.41 (s, 1H), (m, 1H), 2.34 (s, 1H), 2.21 (ddd, J = 17.3, 8.3, 2.8 Hz, 1H), 1.38 (d, J = 6.3 Hz, 1H), 1.20 (s, 1H), 0.73 (s, 1H); 13 C-MR (100 MHz; CDCl3): δ , , , , , , , , , , , 71.13, 70.46, 63.59, 52.66, 50.86, 33.20, 30.01, 26.63, 25.24, 21.55, 18.90; HR - MS m/z: calcd for C 19 H 27 2 O 2 S[M+H + ]: ; found: Compound 4ob: R f = 0.30 (hexanes/etoac, 7 : 3); Yield: 87%; [ ] 25 D= (CHCl 3, c = 1); 1 H-MR (300 MHz; CDCl3): δ 7.78 (d, J = 8.4 Hz, 2H), (m, 5H), 7.26 (d, J = 8.4 Hz, 2H), 5.89 (s, 1H), 5.17 (dd, J = 1.5 Hz, 9.0 Hz, 1H), 4.60 (d, J = 7.8 Hz, 1H), Ts OBn 4ob 4.49 (d, J = 7.8 Hz, 1H), 4.40 (dd, J = 7.2 Hz, 12.6 Hz, 1H), 2.79 (dd, J = 8.1 Hz, 17.1 Hz, 1H), 2.40 (s, 3H), (m, 3H), 1.41 (d, J = 6.3 Hz, 3H), 1.11 (s, 3H), (m, 5H), 0.64 (s, 3H) ; 13 C-MR (100 MHz; CDCl3): δ 158.0, 149.0, 144.0, 139.5, 138.0, 132.0, 129.0, 128.9, 128.6, 128.3, 127.9, 72.0, 71.5, 63.5, 53.5, 52.0, 34.5, 31.0, 23.5, 21.5, 19.5, 18.0, 15.0; HR - MS m/z: calcd for C 19 H 27 2 O 2 S[M+H + ]: ; found: Compound 4oc: R f = 0.30 (hexanes/etoac, 7 : 3); Yield: 73%; [ ] 25 D= (CHCl 3, c = 1); 1 H-MR (300 MHz; CDCl3): δ 7.48 (d, J = 7.8 Hz, 2H), (m, 10H), 7.07 (d, J = 7.8 Hz, 2H), 5.92 (s, 1H), 5.45 (dd, J = 3 Hz, 9.6 Hz, 1H), 4.63 (d, J = 11.1 Hz, 1H), 4.57 (d, J = 11.1 Hz, Ts OBn 4oc Ph 1H), (m, 1H), 2.97 (dd, J =8.4 Hz, 17.1 Hz, 1H), (m, 2H), 2.36 (s, 3H), 2.24 (dd, J = 2.1 Hz, 8.1 Hz, 1H), 1.50 (d, J = 6.6 Hz, 3H), 1.33 (s, 3H), 1.04 (s, 3H); 13 C-MR (100 MHz; CDCl3): δ 154.6, 146.3, 143.9, 139.2, 138.2, 136.4, 131.8, 129.7, 129.0, 128.8, 128.5, 128.3, 127.9, 127.8, 127.4, 127.1, 70.4, 69.5, 63.1, 54.2, 51.4, 33.3, 30.4, 25.0, 21.5, 18.2; HR - MS m/z: calcd for C 19 H 27 2 O 2 S[M+H + ]: ; found: S29

31 Compound 4oaA: R f = 0.30 (hexanes/etoac, 7 : 3); Yield: 90%; [ ] 25 D= (CHCl 3, c = 1.02); IR (neat) : 2974, 2929, 2870, 1720, 1649, 1347, 1159, 1086, 877, 664 cm -1 ; 1 H-MR (400 MHz; CDCl3): δ 7.34 (qd, J = 7.4, 5.6 Hz, 5H), 5.81 (s, 1H), 5.09 (dd, J = 1.9, 9.8 Hz, Boc OBn 4oaA 1H), 4.54 (d, J = 11.5 Hz, 1H), 4.40 (d, J = 11.4 Hz, 1H), 4.19 (q, J = 6.3 Hz, 1H), 2.94 (q, J = 8.5 Hz, 1H), 2.43 (dd, J = 16.8, 7.5 Hz, 1H), (m, 1H), 2.19 (s, 3H), 1.47 (s, 9H), 1.42 (s, 3H), 1.35 (s, 3H), 1.33 (s, 3H), 1.14 (s, 3H); 13 C-MR (100 MHz; CDCl3): δ , , , , , , , , , 81.57, 77.30, 76.98, 76.66, 72.37, 70.46, 61.57, 53.81, 49.96, 33.38, 29.51, 28.22, 25.37, 24.45, 20.86; HR - MS m/z: calcd for C 24 H 25 2 ao 3 [M+a + ]: ; found: Compound 4obA: R f = 0.60 (hexanes/etoac, 7 : 3); Yield: 85%; [ ] 25 D= (CHCl 3, c = 1.08); IR (neat) : 2971, 2938, 2845, 1727, 1643, 1346, 1283, 1082, 875, 660 cm -1 ; 1 H-MR (400 MHz; CDCl3): δ 7.38 (d, J = 7.6 Hz, 2H), (m, 3H), 5.81 (s, 1H), 5.10 (dd, J = Boc OBn 4obA Et 1.6, 9.6 Hz, 1H), 4.56 (d, J = 10.8 Hz, 1H), 4.45 (d, J = 10.8 Hz, 1H), 4.16 (dd, J = 6.4 Hz, 12.8 Hz, 1H), 2.91 (dd, J = 8.8 Hz, 13.2 Hz, 1H), (m, 1H), (m, 2H), (m, 1H), 1.48 (s, 9H), 1.35 (d, J = 6.0 Hz, 3H), 1.33 (s, 3H), 1.14 (s, 3H), 1.04 (t, J = 7.6 Hz, 3H); 13 C-MR (100 MHz; CDCl3): δ 161.1, 152.5, 146.3, 139.0, 129.7, 128.2, 127.8, 127.3, 81.4, 71.9, 70.7, 61.8, 53.5, 50.1, 33.3, 31.3, 29.6, 28.2, 24.3, 20.0, 12.1; HR - MS m/z: calcd for C 25 H 36 2 O 3 [M+H + ]: ; found: Compound 4ocA: R f = 0.60 (hexanes/etoac, 7 : 3); Yield: 83%; [ ] 25 D= (CHCl 3, c = 1.25); IR (neat) : 2975, 2931, 2865, 1707, 1365, 1342, 1163, 698 cm -1 ; 1 H-MR (400 MHz; CDCl3): δ Boc OBn 4ocA Ph S30

32 (m, 4H), (m, 4H), (m, 2H), 5.83 (s, 1H), 5.29 (dd, J = 2.0, 9.6 Hz, 1H), 4.67 (d, J = 10.8 Hz, 1H), 4.57 (d, J = 10.8 Hz, 1H), 4.37 (dd, J = 6.4 Hz, 12.8 Hz, 1H), 3.04 (dd, J = 8.8 Hz, 16.8 Hz, 1H), (m, 1H), (m, 1H), 1.53 (d, J = 6.4 Hz, 1H), 1.44 (s, 3H), 1.26 (s, 3H), 1.06 (s, 9H); 13 C-MR (100 MHz; CDCl3): δ 156.9, 152.8, 145.8, 139.0, 130.7, 129.1, 128.2, 128.0, 127.8, 127.3, 126.8, 81.0, 71.9, 71.0, 61.3, 54.8, 50.9, 33.3, 29.7, 27.5, 24.2, 19.1; HR - MS m/z: calcd for C 29 H 37 2 O 3 [M+H + ]: ; found: Compound 4oaB: R f = 0.30 (hexanes/etoac, 7 : 3); Yield: 80%; [ ] 25 D= (CHCl 3, c = 1); IR (neat) : 2974, 2929, 2870, 1716,, 1598, 1343, 1162, 1093, 670 cm -1 ; 1 H-MR (400 MHz; CDCl3): δ (m, 10H), 5.80 (s, 1H), (m, 3H), 4.48 (d, J = 11.5 Cbz OBn 4oaB Hz, 1H), 4.37 (d, J = 11.5 Hz, 1H), 4.14 (q, J = 6.3 Hz, 1H), 2.93 (q, J = 8.5 Hz, 1H), 2.43 (dd, J = 17.1, 7.3 Hz, 1H), (m, 4H), 1.33 (s, 3H), 1.32 (d, J = 6.6 Hz, 3H), (m, 1H), 1.11 (s, 3H). 13 C-MR (100 MHz; CDCl 3 ): δ , , , , , , , , , , 72.27, 70.43, 67.95, 61.74, 53.99, 49.78, 33.43, 29.55, 25.27, 24.62, 20.19; HR - MS m/z: calcd for C 19 H 27 2 O 2 S[M+H + ]: ; found: Compound 10: R f = 0.20 (hexanes/etoac, 9 : 1); Yield: 23%; [ ] 25 D= (CHCl 3, c = 2.05); IR (neat) : 3318, 2973, 2922, Br TsH Et 1639, 1599, 1450 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): 7.86 (d, J = Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 5.43 (s, 1H), 4.83 (dd, J = 6.6 Hz, 12.9 Hz, 1H), 3.92 (s, 1H), (m, 1H), 2.46 (s, 3H), (m, 1H), (m, 1H), 1.87 (d, J = 6.6 Hz, 3H), 1.75 (dt, J = 3.9 Hz, 15.6 Hz, 1H), 1.49 (s, 3H), 1.33 (s, 3H), 1.22 (t, 3H); 13 C MR (75 MHz, CDCl 3 ): 146.3, 144.2, , 129.9, 128.7, 127.9, 127.5, 60.7, 54.5, 47.8, S31

33 35.3, 32.6, 29.1, 26.5, 26.3, 24.9, 22.5, 21.6; HR - MS m/z: calcd for C 20 H 31 Br 2 O 2 S[M+H + ]: ; found: Compound 11: R f = 0.30 (hexanes/etoac, 7 : 3); Yield: 54%; IR (neat) : 3316, 2973, 2925, 2097, 1549, 1274, 1141, 1090, 738 cm -1 ; 1 H MR (300 MHz, CDCl 3 ): 7.78 (d, J = 9 Hz, 2H), 7.31 (d, J = 9 3 TsH 11 Hz, 2H), 5.50 (s, 1H), (d, J = 12 Hz, 1H), 3.07(br, 1H), 3.07 (s,3h) 2.43 (s, 3H), (m, 9H), 0.99 (s, 6H); 13 C MR (75 MHz, CDCl 3 ): 143.2, 138.4, 133.3, 129.5, 127.0, 125.8, 75.7, 55.0, 48.7, 41.6, 33.2, 26.4, 21.9, 21.8, 21.5, 19.7; HR - MS m/z: calcd for C 18 H 27 ao 3 S[M+a + ]: ; found: Compound 12: R f = 0.30 (hexanes/etoac, 1 : 1); Yield: 59%; IR (neat) : 3326, 3312, 2973, 2925, 1549, 1140, 1090, 738 cm -1 ; 1 H MR (400 MHz, CDCl 3 ): 7.73 (d, J = 6.4 Hz, 2H), 7.70 (d, J = TsH 12 TsH 8.0 Hz, 2H), 7.29 (d, J = 6.4 Hz, 2H), 7.24 (d, J = 6.4 Hz, 2H), 5.45 (s, 1H), (m, 1H), 4.53 (d, J = 7.6 Hz, 1H), (m, 1H), 2.41 (s, 3H), 2.40 (s, 3H), 2.28 (s, 3H), (m, 3H), (m, 2H), 1.48 (s, 3H), 1.17 (s, 3H), 1.16 (s, 3H), 1.03 (dd, J = 9.6, 18.8 Hz, 1H); 13 C MR (100 MHz, CDCl 3 ): 164.0, 143.3, 142.1, 140.7, 138.1, 133.3, 129.6, 129.2, 127.0, 126.7, 125.3, 58.2, 54.8, 38.9, 33.4, 26.2, 23.6, 23.2, 21.9, 21.5, 21.4; HR - MS m/z: calcd for C 18 H 27 ao 3 S[M+a + ]: ; found: S32

34 X Ray Crystallography Data Compound 4la: CCDC o The structure was solved by direct methods (SIR92). Refinement was by full-matrix leastsquares procedures on F 2 by using SHELXL-97. CCDC o Crystal system: Orthorhombic, space group: P , cell parameters: a = 7.320, b = , c = Å, = 90.00, = 90.00, = 90.00, V = Å 3, Z = 4, calcd = 1.26 g cm -3, F(000) = 743.9, = mm -1, = Å. Total number l.s. parameters = 222. R1 = for 3208F o 4 (F o ) and 0.09 for all data. wr2 = 0.110, GOF = 0.627, restrained GOF = for all data. S33

35 Compound 4la: CCDC o The structure was solved by direct methods (SIR92). Refinement was by full-matrix leastsquares procedures on F 2 by using SHELXL-97. CCDC o Crystal system: Monoclinic, space group: P2 1 /c, cell parameters: a = , b = 8.407, c = Å, = 90.00, = , = 90.00, V = Å 3, Z = 4, calcd = 1.25 g cm -3, F(000) = 743.9, = mm -1, = Å. Total number l.s. parameters = 222. R1 = for 3386F o 4 (F o ) and 0.09 for all data. wr2 = 0.121, GOF = 1.045, restrained GOF = for all data. S34

36 Compound 4ld: CCDC o The structure was solved by direct methods (SIR92). Refinement was by full-matrix leastsquares procedures on F 2 by using SHELXL-97. CCDC o Crystal system: Monoclinic, space group: P2 1 /c, cell parameters: a = , b = 8.641, c = Å, = 90.00, = , = 90.00, V = Å 3, Z = 4, calcd = 1.30 g cm -3, F(000) = 871.9, = mm -1, = Å. Total number l.s. parameters = 266. R1 = for 3680F o 4 (F o ) and 0.09 for all data. wr2 = 0.121, GOF = 1.078, restrained GOF = for all data. S35

37 Compound 9: CCDC o The structure was solved by direct methods (SIR92). Refinement was by full-matrix leastsquares procedures on F 2 by using SHELXL-97. CCDC o Crystal system: Orthorhombic, space group: P , cell parameters: a = 5.209, b = , c = Å, = 90.00, = 90.00, = 90.00, V = Å 3, Z = 4, calcd = 1.17 g cm -3, F(000) = 655.9, = 0.19 mm -1, = Å. Total number l.s. parameters = 193. R1 = for 3041F o 4 (F o ) and 0.04 for all data. wr2 = 0.140, GOF = 1.238, restrained GOF = for all data. S36

38 1 H, 13 C, DEPT MR Spectra Ts 4aa Me 13 C, CDCl 3, 75 MHz S37

39 Ts 4aa Me Ts 4ab Pr S38

40 Ts 4ab Pr Ts 4ac S39

41 Ts 4ac Ts 4ad PFP S40

42 Ts 4ad PFP S41

43 Ts 4ad PFP Ts 4ae Ph S42

44 Ts 4ae Ph Ts 4ba S43

45 Ts 4ba S44

46 Ts 4ca S45

47 Ts 4ca S46

48 Ts 4ca S47

49 HO Ts 4da Pr S48

50 HO Ts 4db S49

51 HO Ts 4dc S50

52 HO Ts 4dd Ph S51

53 O Ts 4ea Pr S52

54 O Ts 4eb S53

55 O Ts 4ec Ph S54

56 OH Ts 4fa Pr S55

57 OH Ts 4fb S56

58 OH Ts 4fc S57

59 OH Ts 4fd Ph S58

60 Br TsH Et 5a Br TsH Et 5a S59

61 S60

62 H Ph H OH S61

63 H Ph H 3g OMe S62

64 H OMe Ph H Ts 4ga S63

65 1 H - 1 H COSY CDCl 3, 400 MHz H OMe Ph H Ts 4ga S64

66 1 H 13 C COSY CDCl 3, 400 MHz H OMe Ph H Ts 4ga S65

67 OESY CDCl 3, 400 MHz H OMe Ph H Ts 4ga S66

68 H OH H S67

69 H Ts H 6a OBn S68

70 Ts 6b OBn S69

71 Boc 4aaA S70

72 Boc 4abA Et S71

73 Boc 4acA S72

74 Cbz 4aaB S73

75 Cbz 4abB Pr S74

76 Cbz 4acB Ph 13 C, CDCl 3, 100 MHz S75

77 OBn 3j S76

78 S77

79 S78

80 S79

81 S80

82 S81

83 S82

84 S83

85 S84

86 BnO 4ka Ts S85

87 BnO 4ka Ts BnO Ts 4kb S86

88 BnO 4kb Ts BnO 4kc Ts Ph S87

89 BnO 4kc Ts Ph BnO 4kaA Boc S88

90 BnO 4kaA Boc BnO Cbz 4kbB S89

91 BnO Cbz 4kbB 4la Ts S90

92 4la Ts S91

93 Ts Et 4lb S92

94 Ts Et 4lb Ts Pr 4lc S93

95 Ts Pr 4lc S94

96 Ts Ph 4ld S95

97 Ts 4le S96

98 TsH 9 S97

99 1 H - 1 H COSY CDCl 3, 400 MHz TsH 9 S98

100 1 H 13 C COSY CDCl 3, 400 MHz TsH 9 S99

101 MeO Ts 4ma S100

102 MeO Ts 4ma BnO Ts 4na S101

103 BnO Ts 4na BnO Ts 4nb S102

104 BnO Ts 4nb Boc 4laA S103

105 Boc 36 Cbz 4laB S104

106 Cbz 4laB S105

107 OH S106

108 OBn 3o S107

109 S108

110 Ts OBn 4ob S109

111 Ts OBn 4oc Ph S110

112 S111

113 S112

114 S113

115 S114

116 Br TsH Et 10 S115

117 Br TsH Et HTs S116

118 3 11 HTs S117

119 HTs 12 HTs HTs 12 HTs S118

120 1 H 1H COSY, 400 MHz HTs 12 HTs S119

121 1 H 13 C COSY, 400 MHz HTs 12 HTs S120

122 OESY, 400 MHz HTs 12 HTs S121

123 Computational Details References 1. Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K..; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega,.; Petersson, G. A.; akatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; akajima, T.; Honda, Y.; Kitao, O.; akai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; anayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; akatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; akajima, T.; Honda, Y.; Kitao, O.; akai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K..; Staroverov, V..; Kobayashi, R.; ormand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,.; Millam,. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, S 122

124 Cartesian coordinates of Model Alkene Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of 3a S 123

125 Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z S 124

126 Level: M06 2X/6 31+G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of 3k (similar in skeleton) Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6 311+G** S 125

127 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: M06 2X/6 31+G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of 3o (similar in skeleton) Standard orientation: S 126

128 Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6 311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z S 127

129 Level: M06 2X/6 31+G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of compound 3l Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= S 128

130 Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: M06 2X/6 31+G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Model BrCl Complex (M) Standard orientation: S 129

131 Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Intermediate Int 1a Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z S 130

132 Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z S 131

133 Level: M06 2X/6 31+G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Int 2a Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= S 132

134 Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: M06 2X/6 31+G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Int 3a S 133

135 Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z S 134

136 Level: M06 2X/6 31+G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Int 4 Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z S 135

137 Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: M06 2X/6 31+G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= S 136

138 Cartesian coordinates of Intermediate Sol 1a Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z S 137

139 Level: M06 2X/6 31+G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Intermediate Sol 2a Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z S 138

140 Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Intermediate Sol 3a Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z S 139

141 Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Intermediate Sol 4a Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z S 140

142 Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Transition State TS 1a Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6-311+G**//B3LYP/6 31G* S 141

143 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: M06 2X/6 31+G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Transition State TS 2a: S 142

144 Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6-311+G**//B3LYP/6 31G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z S 143

145 Level: M06 2X/6 31+G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Transition State TS 3a Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6-311+G**//B3LYP/6 31G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= S 144

146 Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: M06 2X/6 31+G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Transition State TS 4a Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z S 145

147 Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z S 146

148 Level: M06 2X/6 31+G* Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Transition State Sol TS 4a Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: M06 2x/6 31+G* S 147

149 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Cartesian coordinates of Intermediate Int 1b 1 Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6-311+G** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= S 148

150 Cartesian coordinates of Intermediate Sol 1b 1 Standard orientation: Center Atomic Atomic Coordinates (Angstroms) umber umber Type X Y Z Level: B3LYP/6-311+G** Geometry not converged even after 500 Cycles. SCF Done: E(RB+HF-LYP) = S 149

Divergent synthesis of various iminocyclitols from D-ribose

Divergent synthesis of various iminocyclitols from D-ribose Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 205 Divergent synthesis of various iminocyclitols from D-ribose Ramu Petakamsetty,

Διαβάστε περισσότερα

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information for Lewis acid-catalyzed redox-neutral amination of 2-(3-pyrroline-1-yl)benzaldehydes via intramolecular [1,5]-hydride shift/isomerization reaction Chun-Huan Jiang, Xiantao Lei,

Διαβάστε περισσότερα

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic Supporting Information Asymmetric Binary-acid Catalysis with Chiral Phosphoric Acid and MgF 2 : Catalytic Enantioselective Friedel-Crafts Reactions of β,γ- Unsaturated-α-Ketoesters Jian Lv, Xin Li, Long

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Lewis acid catalyzed ring-opening reactions of methylenecyclopropanes with diphenylphosphine oxide in the presence of sulfur or selenium Min Shi,* Min Jiang and Le-Ping Liu State

Διαβάστε περισσότερα

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Supporting Information Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Shohei Shimokawa, Yuhsuke Kawagoe, Katsuhiko Moriyama, Hideo Togo* Graduate

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information for AgOTf-catalyzed one-pot reactions of 2-alkynylbenzaldoximes with α,β-unsaturated carbonyl compounds Qiuping Ding 1, Dan Wang 1, Puying Luo* 2, Meiling Liu 1, Shouzhi Pu* 3 and

Διαβάστε περισσότερα

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction Supporting Information ne-pot Approach to Chiral Chromenes via Enantioselective rganocatalytic Domino xa-michael-aldol Reaction Hao Li, Jian Wang, Timiyin E-Nunu, Liansuo Zu, Wei Jiang, Shaohua Wei, *

Διαβάστε περισσότερα

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic

Διαβάστε περισσότερα

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran 1 Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran Munawar Hussain, a Rasheed Ahmad Khera, a Nguyen Thai Hung, a Peter Langer* a,b a Institut für Chemie, Universität Rostock,

Διαβάστε περισσότερα

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Supporting Information for: Room Temperature Highly Diastereoselective Zn-Mediated Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Stereoselectivity Reversal

Διαβάστε περισσότερα

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2017 Laboratoire de Méthodologie et ynthèse de Produit aturels. Université du Québec

Διαβάστε περισσότερα

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 205 Vilsmeier aack reagent-promoted formyloxylation of α-chloro-arylacetamides by formamide Jiann-Jyh

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Copper/Silver Cocatalyzed Oxidative Coupling of Vinylarenes with ICH 2 CF 3 or ICH 2 CHF 2 Leading to β-cf 3 /CHF 2 -Substituted Ketones Niannian Yi, Hao Zhang, Chonghui Xu, Wei

Διαβάστε περισσότερα

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces Highly enantioselective cascade synthesis of spiropyrazolones Alex Zea a, Andrea-Nekane R. Alba a, Andrea Mazzanti b, Albert Moyano a and Ramon Rios a,c * Supporting Information NMR spectra and HPLC traces

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Synthesis of 3-omosubstituted Pyrroles via Palladium- Catalyzed Intermolecular Oxidative Cyclization

Διαβάστε περισσότερα

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of Supporting Information File 1 for First DMAP-mediated direct conversion of Morita Baylis Hillman alcohols into γ-ketoallylphosphonates: Synthesis of γ-aminoallylphosphonates Marwa Ayadi 1,2, Haitham Elleuch

Διαβάστε περισσότερα

Supporting information

Supporting information Electronic upplementary Material (EI) for New Journal of Chemistry. This journal is The Royal ociety of Chemistry and the Centre National de la Recherche cientifique 7 upporting information Lipase catalyzed,-addition

Διαβάστε περισσότερα

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines Direct Palladium-Catalyzed Arylations of Aryl Bromides with 2/9-Substituted Pyrimido[5,4-b]indolizines Min Jiang, Ting Li, Linghua Meng, Chunhao Yang,* Yuyuan Xie*, and Jian Ding State Key Laboratory of

Διαβάστε περισσότερα

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol FeCl 3 6H 2 O-Catalyzed Disproportionation of Allylic Alcohols and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol Jialiang Wang, Wen Huang, Zhengxing Zhang, Xu

Διαβάστε περισσότερα

Supplementary information

Supplementary information Electronic Supplementary Material (ESI) for MedChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary information Synthesis of carboxyimidamide-substituted benzo[c][1,2,5]oxadiazoles

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Ceric Ammonium Nitrate (CAN) catalyzed efficient one-pot three component aza-diels-alder reactions for a facile synthesis of tetrahydropyranoquinoline derivatives Ravinder Goud Puligoundla

Διαβάστε περισσότερα

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates:

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Wiley-VC 007 9 Weinheim, Germany ew ear Infrared Dyes and Fluorophores Based on Diketopyrrolopyrroles Dipl.-Chem. Georg M. Fischer, Dipl.-Chem. Andreas P. Ehlers, Prof. Dr. Andreas

Διαβάστε περισσότερα

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Won-Suk Kim, Hyung-Jin Kim and Cheon-Gyu Cho Department of Chemistry, Hanyang University, Seoul 133-791, Korea Experimental Section

Διαβάστε περισσότερα

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%. Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%. S1 Supplementary Figure S2. Single X-ray structure 5a at probability ellipsoids of 20%. S2 H 15 Ph Ac Ac I AcH Ph Ac

Διαβάστε περισσότερα

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 1 A Facile Way to Synthesize 2H-Chromenes: Reconsideration of the Reaction Mechanism between Salicylic Aldehyde and

Διαβάστε περισσότερα

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Enantioselective Organocatalytic Michael Addition of Isorhodanines to α,

Διαβάστε περισσότερα

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors Supporting Information Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors Frédéric Pin, a Frédéric Buron, a Fabienne Saab, a Lionel Colliandre,

Διαβάστε περισσότερα

Aminofluorination of Fluorinated Alkenes

Aminofluorination of Fluorinated Alkenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Synthesis of ɑ CF 3 and ɑ CF 2 H Amines via Aminofluorination of Fluorinated Alkenes Ling Yang,

Διαβάστε περισσότερα

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry Electronic Supplementary Information (ESI) For Iron-Catalysed xidative Amidation of Alcohols with Amines Silvia Gaspa, a Andrea

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Montmorillonite KSF-Catalyzed One-pot, Three-component, Aza-Diels- Alder Reactions of Methylenecyclopropanes With Arylaldehydes and Aromatic Amines Li-Xiong Shao and Min Shi* General

Διαβάστε περισσότερα

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Supporting Information for An atom-economic route to densely functionalized thiophenes via base-catalyzed rearrangement of 5-propargyl-2H-thiopyran-4(3H)-ones Chunlin Tang a, Jian Qin b, Xingqi Li *a a

Διαβάστε περισσότερα

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes 1 Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes Gonzalo Blay, Isabel Fernández, Alícia Marco-Aleixandre, and José R. Pedro Departament de Química Orgànica, Facultat de Química,

Διαβάστε περισσότερα

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions Supplementary Information for Phosphorus xychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions u Chen,* a,b Xunfu Xu, a Liu Liu, a Guo Tang,* a

Διαβάστε περισσότερα

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles Supporting Information for Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles Angélica de Fátima S. Barreto*, Veronica Alves dos Santos, and Carlos

Διαβάστε περισσότερα

Supporting Information. Experimental section

Supporting Information. Experimental section Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Proton nuclear magnetic resonance ( 1

Διαβάστε περισσότερα

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting information Copper-catalysed intramolecular O-arylation: a simple

Διαβάστε περισσότερα

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors Supporting Information Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors Xiao-Peng He, abd Cui Li, d Xiao-Ping Jin, b Zhuo Song, b Hai-Lin Zhang,

Διαβάστε περισσότερα

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol Supporting Information for: Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol Yu-Fang Zhang, Diao Chen, Wen-Wen

Διαβάστε περισσότερα

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Unprecedented Carbon-Carbon Bond Cleavage in Nucleophilic Aziridine Ring Opening Reaction, Efficient Ring Transformation of Aziridines to Imidazolidin-4-ones Jin-Yuan

Διαβάστε περισσότερα

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2016 Supporting information Copper-Catalyzed Oxidative Dehydrogenative - Bond Formation

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information An Approach to 3,6-Disubstituted 2,5-Dioxybenzoquinones via Two Sequential Suzuki Couplings. Three-step Synthesis of Leucomelone Xianwen Gan, Wei Jiang, Wei Wang,,,* Lihong Hu,,*

Διαβάστε περισσότερα

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate upporting Information Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate Jing-Yu Wu, Zhi-Bin Luo, Li-Xin Dai and Xue-Long Hou* a tate Key Laboratory of Organometallic

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Lewis Acid Mediated [2,3]-Sigmatropic Rearrangement of Allylic α-amino Amides. Jan Blid, Peter Brandt, Peter Somfai*, Department of Chemistry, rganic Chemistry, Royal Institute of

Διαβάστε περισσότερα

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China; Supplementary Data Synthesis, Chemo-selective Properties of Substituted 9-Aryl-9H-fluorenes from Triarylcarbinols and Enantiomerical Kinetics of Chiral 9-Methoxy-11-(naphthalen-1-yl)-11H-benzo[a]fluorene

Διαβάστε περισσότερα

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary information Copper-Catalyzed xidative Coupling of Acids with Alkanes Involving Dehydrogenation:

Διαβάστε περισσότερα

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process Jincan Zhao 1, Hong Fang 1, Jianlin Han* 1,2 and Yi Pan* 1

Διαβάστε περισσότερα

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang* Facile construction of the functionalized 4H-chromene via tandem benzylation and cyclization Jinmin Fan and Zhiyong Wang* Hefei National Laboratory for Physical Science at Microscale, Joint- Lab of Green

Διαβάστε περισσότερα

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors Andrea Trabocchi a, icolino Pala b, Ilga Krimmelbein c, Gloria Menchi a, Antonio Guarna a, Mario Sechi b, Tobias Dreker c, Andrea Scozzafava

Διαβάστε περισσότερα

The Free Internet Journal for Organic Chemistry

The Free Internet Journal for Organic Chemistry The Free Internet Journal for Organic Chemistry Paper Archive for Organic Chemistry Arkivoc 2018, part iii, S1-S6 Synthesis of dihydropyranones and dihydropyrano[2,3- d][1,3]dioxine-diones by cyclization

Διαβάστε περισσότερα

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 Silver-Catalyzed Asymmetric Synthesis of 2,3-Dihydrobenzofurans: A New Chiral Synthesis of Pterocarpans Leticia Jiménez-González, Sergio

Διαβάστε περισσότερα

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Supporting Information for Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Changkun Li and Jianbo Wang* Beijing National Laboratory

Διαβάστε περισσότερα

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du* Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic

Διαβάστε περισσότερα

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of novel 1,2,3-triazolyl derivatives of

Διαβάστε περισσότερα

Supporting Information

Supporting Information S1 Supporting Information Synthesis of 2-Arylated Hydroxytyrosol Derivatives via Suzuki-Myaura Cross-Coupling Roberta Bernini, a Sandro Cacchi, b* Giancarlo Fabrizi, b* Eleonora Filisti b a Dipartimento

Διαβάστε περισσότερα

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-yl Aldimines Filip Colpaert, Sven Mangelinckx, and Norbert De Kimpe Department

Διαβάστε περισσότερα

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Supporting Information Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine

Διαβάστε περισσότερα

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4 Cent. Eur. J. Chem. 9(5) 2011 S164-S175 DI: 10.2478/s11532-011-0082-y Central European Journal of Chemistry Supplement: Intramolecular to acyl migration in conformationally mobile 1 -acyl-1- benzyl-3,4

Διαβάστε περισσότερα

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides Supporting Information for Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds in Aromatic Amides Feifan Wang, Qiyan Hu, Chao Shu, Zhiyang Lin, Dewen Min, Tianchao Shi and Wu Zhang* Key Laboratory

Διαβάστε περισσότερα

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes Xiao-Hui Yang and Vy M. Dong* dongv@uci.edu Department of Chemistry, University

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2014 69451 Weinheim, Germany Copper-Catalyzed Coupling of Oxime Acetates with Sodium Sulfinates: An Efficient Synthesis of Sulfone Derivatives** Xiaodong Tang, Liangbin

Διαβάστε περισσότερα

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION Eur. J. Inorg. Chem. 2007 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ISSN 1434 1948 SUPPORTING INFORMATION Title: Synthesis of Cyclic Carbonates from Atmospheric Pressure Carbon Dioxide Using

Διαβάστε περισσότερα

Diastereoselective Access to Trans-2-Substituted Cyclopentylamines

Diastereoselective Access to Trans-2-Substituted Cyclopentylamines Supporting Information Diastereoselective Access to Trans-2-Substituted Cyclopentylamines Antoine Joosten, Emilie Lambert, Jean-Luc Vasse, Jan Szymoniak jean-luc.vasse@univ-reims.fr jan.szymoniak@univ-reims.fr

Διαβάστε περισσότερα

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A new Entry to N-Carbamate Protected Arylamines Bing Zhou,* Juanjuan Du, Yaxi Yang,* Huijin Feng, Yuanchao Li Shanghai Institute of Materia Medica,

Διαβάστε περισσότερα

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF. ESI for A simple and efficient protocol for the palladium-catalyzed ligand-free Suzuki reaction at room temperature in aqueous DMF Chun Liu,* Qijian i, Fanying Bao and Jieshan Qiu State Key Laboratory

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Supporting Information for Catalytic Enantioselective Conjugate Reduction of β,β- Disubstituted α,β-unsaturated sulfones Tomás Llamas, Ramón

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Modular Synthesis of Propargylamine Modified Cyclodextrins by a Gold(III)-catalyzed Three Component

Διαβάστε περισσότερα

Supporting Information. Experimental section

Supporting Information. Experimental section Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Anhydrous solvents were transferred by

Διαβάστε περισσότερα

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Supporting Information. Synthesis and biological evaluation of nojirimycin- and Supporting Information for Synthesis and biological evaluation of nojirimycin- and pyrrolidine-based trehalase inhibitors Davide Bini 1, Francesca Cardona 2, Matilde Forcella 1, Camilla Parmeggiani 2,3,

Διαβάστε περισσότερα

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Synthesis and evaluation of novel aza-caged Garcinia xanthones Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry Synthesis and evaluation of novel aza-caged Garcinia xanthones Xiaojin Zhang, a,1 Xiang Li, a,1 Haopeng Sun, * b Zhengyu Jiang,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Enantiospecific Synthesis of the Cubitane Skeleton Elisabeth Schöttner, M. Wiechoczek, Peter G. Jones, and Thomas Lindel * TU Braunschweig, Institutes of rganic, Inorganic and Analytical

Διαβάστε περισσότερα

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu* Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 204 Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2010 A Highly Effective Bis(sulfonamide) Diamine Ligand: A Unique Chiral Skeleton for the Enantioselective Cu-Catalyzed

Διαβάστε περισσότερα

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z51171 Wiley-VCH 2003 69451 Weinheim, Germany 1 Tin-Free Radical Allylation of B- Alkylcatecholboranes Arnaud-Pierre Schaffner and Philippe Renaud* University

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Metal-catalyzed Stereoselective and Protecting-group-free Synthesis of 1,2-cis-Glycosides Using 4,6-Dimethoxy-1,3,5-triazin-2-yl Glycosides as Glycosyl Donors Tomonari Tanaka,* 1

Διαβάστε περισσότερα

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p Supplementary Figure 1 (X-ray structures of 6p and 7f) Me Br 6p 6p Supplementary Figures 2-68 (MR Spectra) Supplementary Figure 2. 1 H MR of the 6a Supplementary Figure 3. 13 C MR of the 6a Supplementary

Διαβάστε περισσότερα

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl Philippe Pierrat, Philippe Gros* and Yves Fort Synthèse Organométallique

Διαβάστε περισσότερα

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2 Free Radical Initiated Coupling Reaction of Alcohols and Alkynes: not C-O but C-C Bond Formation Zhongquan Liu,* Liang Sun, Jianguo Wang, Jie Han, Yankai Zhao, Bo Zhou Institute of Organic Chemistry, Gannan

Διαβάστε περισσότερα

Fischer Indole Synthesis in Low Melting Mixtures

Fischer Indole Synthesis in Low Melting Mixtures Fischer Indole Synthesis in Low Melting Mixtures Sangram Gore, a,b Sundarababu Baskaran* a and Burkhard König* b Supporting Information Table of Contents: General Information General Procedure for the

Διαβάστε περισσότερα

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols Dr. Xiao un Tang and Prof. Qing un Chen* Key Laboratory of Organofluorine Chemistry,

Διαβάστε περισσότερα

New Glucuronic Acid Donors for the Modular Synthesis of Heparan Sulfate Oligosaccharides

New Glucuronic Acid Donors for the Modular Synthesis of Heparan Sulfate Oligosaccharides Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 214 Supporting Information New Glucuronic Acid Donors for the Modular Synthesis

Διαβάστε περισσότερα

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions This journal is The Royal Society of Chemistry 213 Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions Wenjing Cui, a Bao Zhaorigetu,* a Meilin Jia, a and Wulan

Διαβάστε περισσότερα

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information. Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2018 The,-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H Carbonylation using

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Diphenylprolinol Silyl Ether as a Catalyst in an Enantioselective, Catalytic, Formal Aza [3+3] Cycloaddition Reaction for the Formation of

Διαβάστε περισσότερα

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL Photoredox-Catalyzed Intramolecular Difluoromethylation of -Benzylacrylamides Coupled with a Dearomatizing Spirocyclization: Access to CF2H Containing 2- Azaspiro[4.5]deca-6,9-diene-3,8-diones. Zuxiao

Διαβάστε περισσότερα

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane Supporting Information Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane Chang-Hee Lee,, Soo-Min Lee,, Byul-Hana Min, Dong-Su Kim, Chul-Ho

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Supporting Information for A ovel Synthesis of luorinated Pyrazoles via Gold(I)-Catalyzed Tandem Aminofluorination of Alkynes in the Presence of Selectfluor Jianqiang Qian, Yunkui Liu,* Jie Zhu, Bo Jiang,

Διαβάστε περισσότερα

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin Takahiro Suzuki, a Kenji Usui, a Yoshiharu Miyake, a Michio Namikoshi, b and Masahisa Nakada a, * a Department of Chemistry, School of Science

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Co(III)-Catalyzed Synthesis of Quinazolines via C-H Activation of -Sulfinylimines and Benzimidates Fen Wang, He Wang, Qiang Wang, Songjie Yu, Xingwei Li* Dalian Institute of Chemical

Διαβάστε περισσότερα

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPRTIG IFRMATI Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst-

Διαβάστε περισσότερα

Total Synthesis of Echinopines A and B

Total Synthesis of Echinopines A and B Total Synthesis of Echinopines A and B K. C. Nicolaou,* anfeng Ding, Jean-Alexandre Richard, and David Y.-K. Chen* Contribution from Chemical Synthesis Laboratory@Biopolis, Institute of Chemical and Engineering

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information for Quinine-Catalyzed Highly Enantioselective Cycloannulation

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Supporting Information for Palladium-Catalyzed C-H Bond Functionalization of C6-Arylpurines Hai-Ming Guo,* Wei-Hao Rao, Hong-Ying iu, Li-Li Jiang, Ge ng, Jia-Jia Jin, Xi-ing Yang, and Gui-Rong Qu* College

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Siloxy(trialkoxy)ethene Undergoes Regioselective [2+2] Cycloaddition to Ynones and Ynoates en route to Functionalized Cyclobutenediones Shin Iwata, Toshiyuki Hamura, and Keisuke

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for rganic Chemistry Frontiers. This journal is the Partner rganisations 2018 Palladium-catalyzed direct approach to α-cf 3 aryl ketones from arylboronic acids Bo

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information 1. General experimental methods (S2). 2. Table 1: Initial studies (S2-S4).

Διαβάστε περισσότερα

SUPPORTING INFORMATION

SUPPORTING INFORMATION Eur. J. Org. Chem. 2006 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 ISSN 1434 193X SUPPORTING INFORMATION Title: Sulfonamide Ligands Attained Through Opening of Saccharin Derivatives Author(s):

Διαβάστε περισσότερα

Diastereo- and Enantioselective Propargylation of Benzofuranones. Catalyzed by Pybox-Copper Complex

Diastereo- and Enantioselective Propargylation of Benzofuranones. Catalyzed by Pybox-Copper Complex Diastereo- and Enantioselective Propargylation of Benzofuranones Catalyzed by Pybox-Copper Complex Long Zhao, Guanxin Huang, Beibei Guo, Lijun Xu, Jie Chen, Weiguo Cao, Gang Zhao, *, Xiaoyu Wu *, Department

Διαβάστε περισσότερα