Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines"

Transcript

1 Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-yl Aldimines Filip Colpaert, Sven Mangelinckx, and Norbert De Kimpe Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium Supporting Information Table of Contents I. General methods... S-2 II. Synthetic procedures and spectral data... S-3 1. Synthesis of β-(sulfonylamino)sulfinylimidates 3... S-3 2. N-Deprotection of β-(sulfonylamino)sulfinylimidates 3 to the corresponding β- sulfonylamino imidate hydrochlorides 4... S-8 3. Synthesis of chiral β-sulfonylamino amides 5... S Synthesis of chiral β-sulfonylamino esters 6... S Synthesis of chiral γ-sulfonylamino alcohols 7... S Synthesis of chiral N-tosylazetidines 8... S-20 III. Copies of 1 H NMR and 13 C NMR spectra of 3, 4, 5, 6, 7 and 8... S-22 S-1

2 I. General methods Tetrahydrofuran (THF) and diethyl ether (Et 2 O) were freshly distilled under a nitrogen atmosphere from sodium/benzophenone ketyl. All other chemicals were of commercial grade and used without further purification. Petroleum ether refers to the C boiling fraction. 1 H NMR (300 MHz), 13 C NMR (75 MHz) spectra were recorded in deuterated solvents with tetramethylsilane (TMS, δ = 0 ppm) as internal standard unless specified otherwise. Mass spectra were recorded using a direct inlet system (ESI, 4000 V). IR spectra were obtained from samples in neat form with an ATR (Attenuated Total Reflectance) accessory. Elementary analyses were performed using a Perkin-Elmer 2400 (Series II, CHNS/O) elementary analyzer. The purification of the reaction mixtures was performed by column chromatography with silica gel (particle size mm, pore diameter ca. 6 nm). S-2

3 II. Synthetic procedures and spectral data 1. Synthesis of β-(sulfonylamino)sulfinylimidates 3 Table S1. Optimization of the addition reaction of N-sulfinyl imidate 1 across aldimines 2 R N tbu S O 1 1) base 2) 1.0 equiv N X H 2a X = Cl X 2b X = H 2c X = R S (R S,S,R)-anti-3a-c tbu tbu N S O N S O + R S + R R R X (R S,R,S)-anti-3a-c X S S N tbu S O (R S,S,S)-syn-3a-c entry X 1 (equiv) reaction conditions (R S,S,R)-3/(R S,R,S)-3/ (R S,S,S)-3 a anti/syn a yield (%) 1 Cl 1.5 1) 5 mol% DBU, DMF, 0 C ) 0 C to rt, 72 h 2 Cl 1.0 1) 1.05 equiv LDA, THF, -78 C, 2 min ) -78 C to 0 C, 3 h 3 Cl 2.0 1) 2.0 equiv LiHMDS, THF, -78 C, 45 min 67/26/7 93/7-2) -78 C, 1 h 4 Cl 2.0 1) 2.0 equiv LiHMDS, THF, -78 C, 45 min 57/37/6 94/6-2) -78 C to rt, 1 h 5 Cl 2.0 1) 2.0 equiv KHMDS, THF, -78 C, 45 min 62/16/22 78/22-2) -78 C, 1 h 6 Cl 2.0 1) 2.0 equiv LiHMDS, THF, -78 C, 45 min 45/49/6 94/ equiv ZnCl 2, -78 C, 15 min 2) -78 C, 1 h 7 Cl 1.2 1) 1.2 equiv LiHMDS, THF, -78 C, 45 min 2) -78 C, 1 h 75/25/0 > 99/1 (R S,S,R)-3a (59), (R S,R,S)-3a (21) 8 H 1.2 1) 1.2 equiv LiHMDS, THF, -78 C, 45 min 2) -78 C, 1 h 67/26/7 93/7 (R S,S,R)-3b (58), (R S,R,S)-3b (24), (R S,S,S)-3b (5) ) 1.2 equiv LiHMDS, THF, -78 C, 45 min 2) -78 C, 1 h 38/60/2 98/2 (R S,S,R)-3c (34), (R S,R,S)-3c (50) 10 Cl 1.2 1) 1.2 equiv KHMDS, THF, -78 C, 45 min 63/12/25 75/25-2) -78 C, 1 h 11 Cl 1.2 1) 1.2 equiv NaHMDS, THF, -78 C, 45 min 51/22/27 73/27-2) -78 C, 1 h 12 Cl 1.2 1) 1.2 equiv LiHMDS, Toluene, -78 C, 45 min 67/26/7 93/7-2) -78 C, 1 h 13 Cl 1.2 1) 1.2 equiv LiHMDS, THF, -97 C, 45 min 75/18/7 93/7-2) -97 C, 1 h 14 Cl 1.2 1) 1.2 equiv LiHMDS, THF, -78 C, 45 min equiv HMPA, -78 C, 15 min 2) -78 C, 1 h 15 Cl 1.2 1) 1.2 equiv LiHMDS, THF, -78 C, 45 min 87/4/9 91/ equiv MgBr 2, -78 C, 15 min 2) -78 C, 1 h 16 Cl 1.2 1) 1.2 equiv LiHMDS, THF, -97 C, 45 min equiv MgBr 2, -97 C, 15 min 91/0/9 91/9 (R S,S,R)-3a (76), (R S,S,S)-3a (6) 2) -97 C, 1 h 17 Cl 1.2 1) 1.2 equiv KHMDS, THF, -97 C, 45 min 89/1/10 90/ equiv MgBr 2, -97 C, 15 min 2) -97 C, 1 h 18 H 1.2 1) 1.2 equiv LiHMDS, THF, -97 C, 45 min equiv MgBr 2, -97 C, 15 min 2) -97 C, 1 h 89/6/5 95/5 (R S,S,R)-3b (77), (R S,R,S)-3b (3), (R S,S,S)-3b (4) ) 1.2 equiv LiHMDS, THF, -97 C, 45 min 67/30/3 b 97/ equiv MgBr 2, -97 C, 15 min 2) -97 C, 1 h ) 1.2 equiv LiHMDS, THF, -78 C, 45 min equiv MgBr 2, -78 C, 15 min 2) -78 C, 1 h 93/1/6 94/6 (R S,S,R)-3c (73), (R S,S,S)-3c (5) a Determined via 1 H NMR analysis of the crude reaction mixture. b Only 31% conversion of N-sulfinyl imidate 1 into β- (sulfonylamino)sulfinylimidates 3c. S-3

4 The synthesis of β-(sulfonylamino)sulfinylimidates 3a is representative. A solution of R s - methyl N-tert-butanesulfinyl propanimidate (1.0 equiv, 2.73 g, mmol) in THF (30 ml) was cooled to -97 C. A 1.0 M solution of LiHMDS (1.0 equiv, ml, mmol) in THF was slowly added and the resulting solution was stirred for 45 minutes at -97 C. After deprotonation a solution of MgBr 2 (1.0 equiv, 2.63 g, mmol) in THF (25mL) was added dropwise and the reaction mixture was stirred for 15 minutes at -97 C. A solution of N-(4- chloro-benzylidene)-4-methylbenzenesulfonamide (0.83 equiv, 3.50 g, mmol) in THF (15 ml) was then added dropwise and the reaction mixture was stirred at -97 C for 1.0 hours. To the reaction mixture was added a saturated solution of 4 Cl (5 ml), followed by a 1.0 N aqueous solution of NaOH (20 ml). The aqueous phase was extracted with Et 2 O (3 x 20 ml). The combined organic phases were dried (MgSO 4 ), filtered and evaporated in vacuo. The crude product was purified by flash chromatography to yield 4.40 g (9.06 mmol) of pure (R S,S,R)-methyl 2-methyl-3-(4-chlorophenyl)-3-(p-toluenesulfonylamino)-N-tertbutanesulfinyl propanimidate (R S,S,R)-anti-3a and 0.35 g (0.72 mmol) of pure (R S,S,S)-methyl 2-methyl-3-(4-chlorophenyl)-3-(p-toluenesulfonylamino)-N-tert-butanesulfinyl propanimidate (R S,S,S)-syn-3a. (R S,S,R)-Methyl 2-methyl-3-(4-chlorophenyl)-3-(p-toluenesulfonylamino)-N-tertbutanesulfinyl propanimidate (R S,S,R)-anti-3a. R f = 0.14 (petroleum ether/ Et 2 O 3:7). White crystals, yield 76%. [α] D (c 0.4, CHCl 3 ). Mp C. IR (cm -1 ): ν max 750, 1035, 1160, 1611, H NMR (300 MHz, CDCl 3 ): δ 0.94 (3H, d, J = 7.2 Hz), 1.23 (9H, s), 2.31 (3H, s), 3.74 (3H, s), (1H, m), 4.46 (1H, d x d, J = 9.6, 9.6 Hz), 6.39 (1H, d, J = 9.6 Hz), (6H, m), 7.41 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 16.0, 21.5, 22.2, 43.2, 54.5, 56.8, 60.3, (2C), (2C), (2C), (2C), 133.4, S-4

5 137.1, 137.8, 143.0, MS (ES, pos. mode) m/z (%): 485/487 (M + H +, 100). Anal. Calcd for C 22 H 29 ClN 2 O 4 S 2 : C 54.47; H 6.03; N Found: C 54.57; H 5.95; N (R S,R,S)-Methyl 2-methyl-3-(4-chlorophenyl)-3-(p-toluenesulfonylamino)-N-tertbutanesulfinyl propanimidate (R S,R,S)-anti-3a. R f = 0.33 (petroleum ether/ Et 2 O 6:4). Colourless oil, yield 21%. [α] D (c 0.8, CHCl 3 ). IR (cm -1 ): ν max 751, 1160, 1286, H NMR (300 MHz, CDCl 3 ): δ 0.84 (3H, d, J = 7.2 Hz), 1.26 (9H, s), 2.23 (3H, s), (1H, m), 3.66 (3H, s), 4.19 (1H, d x d, J = 10.7, 8.3 Hz), 6.89 (2H, d, J = 8.3 Hz), 6.94 (4H, s), 7.22 (2H, d, J = 4.4 Hz), 7.32 (1H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 14.7, 21.4, 22.0, 44.5, 54.9, 57.3, 59.8, (2C), (2C), (4C), 133.5, 137.7, 138.6, 142.3, MS (ES, pos. mode) m/z (%): 485/487 (M + H +, 100). Anal. Calcd for C 22 H 29 ClN 2 O 4 S 2 : C 54.47; H 6.03; N Found: C 54.78; H 5.98; N (R S,S,S)-Methyl 2-methyl-3-(4-chlorophenyl)-3-(p-toluenesulfonylamino)-N-tertbutanesulfinyl propanimidate (R S,S,S)-syn-3a. R f = 0.08 (petroleum ether/ Et 2 O 3:7). White crystals, yield 6%. [α] D (c 0.2, CHCl 3 ). Mp C. IR (cm -1 ): ν max 1049, 1160, 1286, H NMR (300 MHz, CDCl 3 ): δ 1.04 (9H, s), 1.37 (3H, d, J = 6.6 Hz), 2.33 (3H, s), 3.51 (3H, s), (1H, m), 4.43 (1H, d x d, J = 9.6, 9.6 Hz), 6.39 (1H, d, J = 9.6 Hz), (6H, m), 7.42 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 16.0, 21.5, 21.9, 43.9, 54.0, 56.2, 60.0, (2C), (2C), (2C), (2C), 133.4, 138.0, 138.1, 143.0, MS (ES, pos. mode) m/z (%): 485/487 (M + H +, 100). Anal. Calcd for C 22 H 29 ClN 2 O 4 S 2 : C 54.47; H 6.03; N Found: C 54.71; H 5.92; N (R S,S,R)-Methyl 2-methyl-3-phenyl-3-(p-toluenesulfonylamino)-N-tert-butanesulfinyl propanimidate (R S,S,R)-anti-3b. R f = 0.18 (petroleum ether/ Et 2 O 3:7). White crystals, yield S-5

6 77%. [α] D (c 0.4, CHCl 3 ). Mp C. IR (cm -1 ): ν max 1038, 1161, 1614, 2951, H NMR (300 MHz, CDCl 3 ): δ 0.97 (3H, d, J = 7.2 Hz), 1.18 (9H, s), 2.30 (3H, s), 3.73 (3H, s), (1H, m), 4.43 (1H, d x d, J = 9.6, 9.6 Hz), 5.56 (1H, d, J = 9.6 Hz), (7H, m), 7.45 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 15.6, 21.4, 22.0, 43.0, 54.3, 56.3, 60.7, (2C), (2C), 127.6, (2 C), (2C), 137.6, 138.6, 142.8, MS (ES, pos. mode) m/z (%): 451 (M + H +, 100). Anal. Calcd for C 22 H 30 N 2 O 4 S 2 : C 58.64; H 6.71; N Found: C 58.31; H 6.33; N (R S,R,S)-Methyl 2-methyl-3-phenyl-3-(p-toluenesulfonylamino)-N-tert-butanesulfinyl propanimidate (R S,R,S)-anti-3b. R f = 0.49 (petroleum ether/ Et 2 O 3:7). White crystals, yield 24%. [α] D (c 0.9, CHCl 3 ). Mp C. IR (cm -1 ): ν max 1032, 1159, 1613, 2925, H NMR (300 MHz, CDCl 3 ): δ 0.92 (3H, d, J = 6.6 Hz), 1.36 (9H, s), 2.26 (3H, s), (1H, m), 3.75 (3H, s), 4.30 (1H, d x d, J = 10.5, 8.8 Hz), 6.91 (2H, d, J = 8.3 Hz), (5H, m), 7.31 (3H, d, J = 8.8 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 14.7, 21.3, 22.0, 44.6, 54.7, 57.1, 60.3, (3C), 127.4, (3C), 128.2, 128.7, 138.6, 139.2, 141.8, MS (ES, pos. mode) m/z (%): 451 (M + H +, 100). Anal. Calcd for C 22 H 30 N 2 O 4 S 2 : C 58.64; H 6.71; N Found: C 58.37; H 6.45; N (R S,S,S)-Methyl 2-methyl-3-phenyl-3-(p-toluenesulfonylamino)-N-tert-butanesulfinyl propanimidate (R S,S,S)-syn-3b. R f = 0.10 (petroleum ether/ Et 2 O 3:7). White crystals, yield 5%. [α] D (c 0.3, CHCl 3 ). Mp C. IR (cm -1 ): ν max 1057, 1160, 1291, 1601, H NMR (300 MHz, CDCl 3 ): δ 1.00 (9H, s), 1.37 (3H, d, J = 7.2 Hz), 2.31 (3H, s), 3.50 (3H, s), (1H, m), 4.47 (1H, d x d, J = 9.6, 9.6 Hz), 5.62 (1H, d, J = 9.6 Hz), (7H, m), 7.45 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 15.6, 21.5, 21.8, 44.0, 54.0, 56.0, 60.5, (2C), (2C), 127.7, (2C), (2C), 137.8, 139.3, 142.8, S-6

7 MS (ES, pos. mode) m/z (%): 451 (M + H +, 100). Anal. Calcd for C 22 H 30 N 2 O 4 S 2 : C 58.64; H 6.71; N Found: C 58.44; H 6.44; N (R S,S,R)-Methyl 2-methyl-3-(4-methoxyphenyl)-3-(p-toluenesulfonylamino)-N-tertbutanesulfinyl propanimidate (R S,S,R)-anti-3c. R f = 0.13 (petroleum ether/ Et 2 O 3:7). White crystals, yield 73%. [α] D (c 0.5, CHCl 3 ). Mp C. IR (cm -1 ): ν max 1159, 1610, H NMR (300 MHz, CDCl 3 ): δ 0.95 (3H, d, J = 6.6 Hz), 1.20 (9H, s), 2.31 (3H, s), 3.72 (3H, s), 3.73 (3H, s), (1H, m), 4.38 (1H, d x d, J = 9.6, 9.6 Hz), 5.53 (1H, d, J = 9.6 Hz), 6.60 (2H, d, J = 8.3 Hz), 6.87 (2H, d, J = 8.3 Hz), 7.04 (2H, d, J = 8.3 Hz), 7.44 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 15.7, 21.5, 22.2, 43.2, 54.4, 55.3, 56.5, 60.4, (2C), (2C), (2C), (2C), 130.9, 137.9, 142.8, 159.1, MS (ES, pos. mode) m/z (%): 481 (M + H +, 100). Anal. Calcd for C 23 H 32 N 2 O 5 S 2 : C 57.47; H 6.71; N Found: C 57.50; H 6.38; N (R S,R,S)-Methyl 2-methyl-3-(4-methoxyphenyl)-3-(p-toluenesulfonylamino)-N-tertbutanesulfinyl propanimidate (R S,R,S)-anti-3c. R f = 0.42 (petroleum ether/ Et 2 O 3:7). White crystals, yield 50%. [α] D (c 0.5, CHCl 3 ). Mp C. IR (cm -1 ): ν max 1028, 1160, 1296, 1593, 2953, H NMR (300 MHz, CDCl 3 ): δ 0.92 (3H, d, J = 6.6 Hz), 1.33 (9H, s), 2.27 (3H, s), (1H, m), 3.72 (3H, s), 3.75 (3H, s), 4.26 (1H, d x d, J = 10.7, 8.8 Hz), 6.59 (2H, d, J = 8.3 Hz), 6.94 (2H, d, J = 8.3 Hz), 7.00 (2H, d, J = 8.3 Hz), 7.25 (1H, d, J = 8.8 Hz), 7.31 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 14.8, 21.4, 22.1, 44.8, 54.8, 55.3, 57.2, 60.0, (2C), (2C), (2C), (2C), 131.3, 138.9, 141.8, 159.1, MS (ES, pos. mode) m/z (%): 481 (M + H +, 100). Anal. Calcd for C 23 H 32 N 2 O 5 S 2 : C 57.47; H 6.71; N Found: C 57.09; H 6.44; N S-7

8 (R S,S,S)-Methyl 2-methyl-3-(4-methoxyphenyl)-3-(p-toluenesulfonylamino)-N-tertbutanesulfinyl propanimidate (R S,S,S)-syn-3c. R f = 0.07 (petroleum ether/ Et 2 O 3:7). White crystals, yield 5%. [α] D (c 0.2, CHCl 3 ). Mp C. IR (cm -1 ): ν max 1047, 1159, 1249, 1605, H NMR (300 MHz, CDCl 3 ): δ 1.02 (9H, s), 1.36 (3H, d, J = 6.6 Hz), 2.32 (3H, s), 3.50 (3H, s), (1H, m), 4.41 (1H, d x d, J = 9.3, 9.3 Hz), 5.79 (1H, d, J = 9.3 Hz), (2H, m), (4H, m), 7.45 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 15.8, 21.5, 21.9, 44.1, 53.9, 55.3, 56.0, 60.0, (2C), (2C), (2C), (2C), 131.6, 138.0, 142.7, 159.0, MS (ES, pos. mode) m/z (%): 481 (M + H +, 100). Anal. Calcd for C 23 H 32 N 2 O 5 S 2 : C 57.47; H 6.71; N Found: C 57.29; H 6.49; N N-Deprotection of β-(sulfonylamino)sulfinylimidates 3 to the corresponding β- sulfonylamino imidate hydrochlorides 4 The synthesis of (S,R)-methyl 2-methyl-3-(4-chlorophenyl)-3-(ptoluenesulfonylamino)propanimidate hydrochloride (S,R)-anti-4a is representative. To a solution of (R S,S,R)-methyl 2-methyl-3-(4-chlorophenyl)-3-(p-toluenesulfonylamino)-N-tertbutanesulfinyl propanimidate (R S,S,R)-anti-3a (2.31 g, 4.77 mmol) in ethanol (40 ml) was added dropwise a 4.0 M solution of dioxane.hcl (2.0 equiv, 2.38 ml, 9.53 mmol) at 0 C. The mixture was allowed to stir for 0.5 hour at 0 C. Then the reaction mixture was concentrated in vacuo. Precipitation in diethyl ether afforded 1.69 g (4.05 mmol) of pure (S,R)-methyl 2-methyl-3-(4-chlorophenyl)-3-(p-toluenesulfonylamino)propanimidate hydrochloride (S,R)-anti-4a. (S,R)-Methyl 2-methyl-3-(4-chlorophenyl)-3-(p-toluenesulfonylamino)propanimidate hydrochloride (S,R)-anti-4a. White crystals, yield 85%. [α] D (c 0.5, DMF). Mp C. IR (cm -1 ): ν max 1090, 1159, 1655, 2873, H NMR (300 MHz, CDCl 3 ): δ S-8

9 0.99 (3H, d, J = 7.2 Hz), 2.31 (3H, s), (1H, m), 4.36 (1H, d x d, J = 10.5, 10.5 Hz), 4.46 (3H, s), 6.98 (2H, d, J = 8.3 Hz), 7.05 (2H, d, J = 8.3 Hz), 7.13 (2H, d, J = 8.3 Hz), 7.37 (2H, d, J = 8.3 Hz), 8.20 (1H, d, J = 10.5 Hz), (1H, br s), (1H, br s). 13 C NMR (75 MHz, CDCl 3 ): δ 14.1, 21.5, 44.7, 60.6, 61.4, (2C), (2C), (2C), (2C), 134.2, 135.3, 137.5, 143.1, MS (ES, pos. mode) m/z (%): 381/383 (M + H + - HCl, 100). Anal. Calcd for C 18 H 22 Cl 2 N 2 O 3 S: C 51.80; H 5.31; N Found: C 51.54; H 4.93; N (R,S)-Methyl 2-methyl-3-(4-chlorophenyl)-3-(p-toluenesulfonylamino)propanimidate hydrochloride (R,S)-anti-4a. White crystals, yield 69%. [α] D (c 0.4, DMF). Mp C. IR (cm -1 ): ν max 1089, 1158, 1657, 2878, H NMR (300 MHz, CDCl 3 ): δ 0.99 (3H, d, J = 6.1 Hz), 2.31 (3H, s), (1H, m), 4.36 (1H, d x d, J = 10.5, 10.5 Hz), 4.46 (3H, s), 6.97 (2H, d, J = 8.3 Hz), 7.04 (2H, d, J = 8.3 Hz), 7.12 (2H, d, J = 8.3 Hz), 7.37 (2H, d, J = 8.3 Hz), 8.21 (1H, d, J = 10.5 Hz), (2H, br s). 13 C NMR (75 MHz, CDCl 3 ): δ 14.1, 21.5, 44.7, 60.6, 61.5, (2C), (2C), (2C), (2C), 134.2, 135.3, 137.5, 143.1, MS (ES, pos. mode) m/z (%): 381/383 (M + H + - HCl, 100). Anal. Calcd for C 18 H 22 Cl 2 N 2 O 3 S: C 51.80; H 5.31; N Found: C 51.63; H 5.13; N (S,R)-Methyl 2-methyl-3-phenyl-3-(p-toluenesulfonylamino)propanimidate hydrochloride (S,R)-anti-4b. White crystals, yield 87%. [α] D (c 0.4, DMF). Mp C. IR (cm -1 ): ν max 1090, 1160, 1330, 1654, 2876, H NMR (300 MHz, CDCl 3 ): δ 0.97 (3H, d, J = 6.6 Hz), 2.27 (3H, s), (1H, m), 4.36 (1H, d x d, J = 10.5, 10.5 Hz), 4.45 (3H, s), 6.95 (2H, d, J = 8.3 Hz), (5H, m), 7.38 (2H, d, J = 8.3 Hz), 7.95 (1H, d, J = 10.5 Hz), (1H, br s), (1H, br s). 13 C NMR (75 MHz, CDCl 3 ): δ 14.0, 21.4, 44.9, 61.2, 61.3, (2C), (2C), 128.1, (2C), (2C), 136.9, S-9

10 137.7, 142.7, MS (ES, pos. mode) m/z (%): 347 (M + H + - HCl, 100). Anal. Calcd for C 18 H 23 Cl 2 N 2 O 3 S: C 56.46; H 6.05; N Found: C 56.11; H 6.31; N (R,S)-Methyl 2-methyl-3-phenyl-3-(p-toluenesulfonylamino)propanimidate hydrochloride (R,S)-anti-4b. White crystals, yield 83%. [α] D (c 0.3, DMF). Mp C. IR (cm -1 ): ν max 1090, 1160, 1330, 1650, 2880, H NMR (300 MHz, CDCl 3 ): δ 0.97 (3H, d, J = 6.6 Hz), 2.26 (3H, s), (1H, m), 4.37 (1H, d x d, J = 10.5, 10.5 Hz), 4.44 (3H, s), 6.94 (2H, d, J = 8.3 Hz), (5H, m), 7.38 (2H, d, J = 8.3 Hz), 7.98 (1H, d, J = 10.5 Hz), (2H, br s). 13 C NMR (75 MHz, CDCl 3 ): δ 14.0, 21.4, 44.9, 61.2, 61.5, (2C), (2C), 128.1, (2C), (2C), 137.0, 137.7, 142.7, MS (ES, pos. mode) m/z (%): 347 (M + H + - HCl, 100). Anal. Calcd for C 18 H 23 Cl 2 N 2 O 3 S: C 56.46; H 6.05; N Found: C 56.80; H 6.09; N (S,S)-Methyl 2-methyl-3-phenyl-3-(p-toluenesulfonylamino)propanimidate hydrochloride (S,S)-syn-4b. White crystals, yield 63%. [α] D (c 0.2, DMF). Mp decomposition at C. IR (cm -1 ): ν max 1158, 1667, 2872, H NMR (300 MHz, CDCl 3 ): δ 1.33 (3H, d, J = 6.6 Hz), 2.27 (3H, s), (1H, m), 4.18 (3H, s), 4.68 (1H, d x d, J = 9.4, 7.7 Hz), 6.99 (2H, d, J = 8.3 Hz), (5H, m), 7.50 (2H, d, J = 8.3 Hz), 7.64 (1H, d, J = 9.4 Hz), (1H, br s), (1H, br s). 13 C NMR (75 MHz, CDCl 3 ): δ 13.7, 21.4, 44.9, 60.4, 60.5, (2C), (2C), 127.9, (2C), (2C), 136.2, 137.4, 142.9, MS (ES, pos. mode) m/z (%): 347 (M + H + - HCl, 100). Anal. Calcd for C 18 H 23 Cl 2 N 2 O 3 S: C 56.46; H 6.05; N Found: C 56.76; H 5.98; N (S,R)-Methyl 2-methyl-3-(4-methoxyphenyl)-3-(p-toluenesulfonylamino)propanimidate hydrochloride (S,R)-anti-4c. White crystals, yield 80%. [α] D (c 0.2, DMF). Mp C. IR (cm -1 ): ν max 1152, 1322, 1640, 2936, H NMR (300 MHz, CDCl 3 ): δ S-10

11 0.97 (3H, d, J = 5.0 Hz), 2.28 (3H, s), (1H, m), 3.73 (3H, s), 4.32 (1H, d x d, J = 9.9, 9.9 Hz), 4.43 (3H, s), 6.63 (2H, d, J = 8.3 Hz), 6.97 (2H, d, J = 8.3 Hz), 7.10 (2H, d, J = 8.3 Hz), 7.40 (2H, d, J = 8.3 Hz), 8.03 (1H, d, J = 9.9 Hz), (2H, br s). 13 C NMR (75 MHz, CDCl 3 ): δ 14.1, 21.4, 45.0, 55.2, 60.7, 61.0, (2C), (2C), (2C), 128.9, (2C), 137.7, 142.5, 159.3, MS (ES, pos. mode) m/z (%): 377 (M + H + - HCl, 100). Anal. Calcd for C 19 H 25 ClN 2 O 4 S: C 55.26; H 6.10; N Found: C 55.12; H 6.00; N (R,S)-Methyl 2-methyl-3-(4-methoxyphenyl)-3-(p-toluenesulfonylamino)-propanimidate hydrochloride (R,S)-anti-4c. White crystals, yield 92%. [α] D (c 0.2, DMF). Mp C. IR (cm -1 ): ν max 1157, 1321, 1640, 2936, H NMR (300 MHz, CDCl 3 ): δ 0.97 (3H, d, J = 5.5 Hz), 2.28 (3H, s), (1H, m), 3.73 (3H, s), 4.30 (1H, d x d, J = 9.9, 9.9 Hz), 4.43 (3H, s), 6.63 (2H, d, J = 8.3 Hz), 6.97 (2H, d, J = 8.3 Hz), 7.10 (2H, d, J = 8.3 Hz), 7.39 (2H, d, J = 8.3 Hz), 7.91 (1H, d, J = 9.9 Hz), (2H, br s). 13 C NMR (75 MHz, CDCl 3 ): δ 14.1, 21.5, 45.1, 55.3, 60.8, 61.4, (2C), (2C), (2C), 129.0, (2C), 137.8, 142.6, 159.4, MS (ES, pos. mode) m/z (%): 377 (M + H + - HCl, 100). Anal. Calcd for C 19 H 25 ClN 2 O 4 S: C 55.26; H 6.10; N Found: C 55.04; H 6.02; N Synthesis of chiral β-sulfonylamino amides 5 The synthesis of (S,R)-methyl 2-methyl-3-(4-chlorophenyl)-3-(ptoluenesulfonylamino)propanamide (S,R)-anti-5a is representative. (S,R)-Methyl 2-methyl-3- (4-chlorophenyl)-3-(p-toluenesulfonylamino)propanimidate hydrochloride (S,R)-anti-4a (0.57 g, 1.37 mmol) was dissolved in chloroform (20 ml). The reaction mixture was stirred for 16 hours at reflux temperature and subsequently evaporated in vacuo. Recrystallization S-11

12 from diethyl ether afforded 0.46 g (1.24 mmol) of pure (S,R)-methyl 2-methyl-3-(4- chlorophenyl)-3-(p-toluenesulfonylamino)propanamide (S,R)-anti-5a. (S,R)-Methyl 2-methyl-3-(4-chlorophenyl)-3-(p-toluenesulfonylamino)propanamide (S,R)-anti-5a. White crystals, yield 91%. [α] D (c 0.3, DMF). Mp C. ee > 98%, HPLC Daicel Chiralcel OD-H column: Hexane (80%) / Ethanol (20%), 0.5 ml min -1, 35 C, t R ((R,S)-anti-5a) = min, t R ((S,R)-anti-5a) = min. IR (cm -1 ): ν max 1156, 1338, 1625, 1641, 3214, 3289, H NMR (300 MHz, CDCl 3 ): δ 1.02 (3H, d, J = 6.6 Hz), 2.33 (3H, s), (1H, m), 4.45 (1H, d x d, J = 8.8, 8.8 Hz), 6.14 (1H, br s), 6.36 (1H, br s), (6H, m), 7.20 (1H, d, J = 8.8 Hz), 7.37 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 16.0, 21.5, 46.4, 60.4, (2C), (2C), (2C), (2C), 133.3, 137.2, 137.5, 143.2, MS (ES, pos. mode) m/z (%): 367/369 (M + H +, 100). Anal. Calcd for C 17 H 19 ClN 2 O 3 S: C 55.66; H 5.22; N Found: C 55.61; H 4.86; N (R,S)-Methyl 2-methyl-3-(4-chlorophenyl)-3-(p-toluenesulfonylamino)propanamide (R,S)-anti-5a. White crystals, yield 57%. [α] D (c 0.5, DMF). Mp C. ee > 98%, HPLC Daicel Chiralcel OD-H column: Hexane (80%) / Ethanol (20%), 0.5 ml min -1, 35 C, t R ((R,S)-anti-5a) = min, t R ((S,R)-anti-5a) = min. IR (cm -1 ): ν max 1156, 1338, 1641, 3216, 3288, H NMR (300 MHz, CDCl 3 ): δ 1.19 (3H, d, J = 6.6 Hz), 2.34 (3H, s), 2.56 (1H, quintet, J = 6.6 Hz), 4.47 (1H, d x d, J = 8.5, 6.6 Hz), 5.44 (1H, br s), 5.59 (1H, br s), 6.93 (1H, d, J = 8.5 Hz), (2H, m), (4H, m), 7.45 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 16.3, 21.5, 46.3, 60.2, (2C), (2C), (2C), (2C), 133.3, 137.7, 137.8, 143.1, MS (ES, pos. mode) m/z (%): 367/369 (M + H +, 100). Anal. Calcd for C 17 H 19 ClN 2 O 3 S: C 55.66; H 5.22; N Found: C 55.37; H 5.12; N S-12

13 (S,R)-Methyl 2-methyl-3-phenyl-3-(p-toluenesulfonylamino)propanamide (S,R)-anti-5b. White crystals, yield 77%. [α] D (c 0.3, DMF). Mp C. ee > 98%, HPLC Daicel Chiralcel OD-H column: Hexane (80%) / Ethanol (20%), 0.5 ml min -1, 35 C, t R ((R,S)-anti-5b) = min, t R ((S,R)-anti-5b) = min. IR (cm -1 ): ν max 1156, 1656, 3288, 3371, H NMR (300 MHz, CDCl 3 ): δ 1.12 (3H, d, J = 6.6 Hz), 2.29 (3H, s), 2.60 (1H, quintet, J = 6.6 Hz), 4.48 (1H, d x d, J = 8.8, 6.6 Hz), 5.60 (1H, br s), 5.87 (1H, br s), 6.94 (1H, d, J = 8.8 Hz), (7H, m), 7.44 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 16.2, 21.5, 46.7, 60.8, (2C), (2C), 127.4, (2C), (2C), 137.8, 139.1, 142.8, MS (ES, pos. mode) m/z (%): 333 (M + H +, 100). Anal. Calcd for C 17 H 20 N 2 O 3 S: C 61.42; H 6.06; N Found: C 61.08; H 5.87; N (R,S)-Methyl 2-methyl-3-phenyl-3-(p-toluenesulfonylamino)propanamide (R,S)-anti-5b. White crystals, yield 82%. [α] D (c 0.5, DMF). Mp C. ee > 98%, HPLC Daicel Chiralcel OD-H column: Hexane (80%) / Ethanol (20%), 0.5 ml min -1, 35 C, t R ((R,S)-anti-5b) = min, t R ((S,R)-anti-5b) = min. IR (cm -1 ): ν max 1151, 1656, 3198, H NMR (300 MHz, CDCl 3 ): δ 1.11 (3H, d, J = 7.1 Hz), 2.33 (3H, s), 2.67 (1H, quintet, J = 7.1 Hz), 4.52 (1H, d x d, 9.0, 7.1 Hz), 5.89 (1H, br s), 6.18 (1H, br s), (8H, m), 7.46 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 16.1, 21.5, 46.7, 60.9, (4C), 127.3, (2C), (2C), 137.7, 138.9, 142.7, MS (ES, pos. mode) m/z (%): 333 (M + H +, 100). Anal. Calcd for C 17 H 20 N 2 O 3 S: C 61.42; H 6.06; N Found: C 61.17; H 6.06; N (S,R)-Methyl 2-methyl-3-(4-methoxyphenyl)-3-(p-toluenesulfonylamino)propanamide (S,R)-anti-5c. White crystals, yield 86%. [α] D (c 0.5, DMF). Mp C. ee > 98%, HPLC Daicel Chiralcel OD-H column: Hexane (80%) / Ethanol (20%), 0.5 ml min -1, 35 C, t R ((R,S)-anti-5c) = min, t R ((S,R)-anti-5c) = min. IR (cm -1 ): ν max 1151, S-13

14 1321, 1617, 1639, 3215, 3286, H NMR (300 MHz, DMSO-d 6 ): δ 0.68 (3H, d, J = 6.6 Hz), 2.25 (3H, s), (1H, m), 3.65 (3H, s), 4.34 (1H, d x d, J = 9.4, 9.4 Hz), 6.59 (2H, d, J = 8.3 Hz), 6.93 (2H, d, J = 8.3 Hz), 7.04 (2H, d, J = 8.3 Hz), 7.30 (2H, d, J = 8.3 Hz), 7.96 (1H, d, J = 9.4 Hz). 13 C NMR (75 MHz, DMSO-d 6 ): δ 15.4, 20.7, 45.6, 54.8, 59.5, (2C), (2C), 128.1, (2C), (2C), 138.7, 141.3, 157.9, MS (ES, pos. mode) m/z (%): 361 (M + H +, 100). Anal. Calcd for C 18 H 22 N 2 O 4 S: C 59.65; H 6.12; N Found: C 59.40; H 5.95; N (R,S)-Methyl 2-methyl-3-(4-methoxyphenyl)-3-(p-toluenesulfonylamino)propanamide (R,S)-anti-5c. White crystals, yield 88%. [α] D (c 0.4, DMF). Mp C. ee > 98%, HPLC Daicel Chiralcel OD-H column: Hexane (80%) / Ethanol (20%), 0.5 ml min -1, 35 C, t R ((R,S)-anti-5c) = min, t R ((S,R)-anti-5c) = min. IR (cm -1 ): ν max 1151, 1321, 1617, 1639, 3216, 3286, H NMR (300 MHz, DMSO-d 6 ): δ 0.68 (3H, d, J = 7.1 Hz), 2.25 (3H, s), (1H, m, J = 7.1 Hz), 3.65 (3H, s), 4.34 (1H, d x d, J = 9.4, 9.4 Hz), 6.59 (2H, d, J = 8.3 Hz), 6.93 (2H, d, J = 8.3 Hz), 7.04 (2H, d, J = 8.3 Hz), 7.30 (2H, d, J = 8.3 Hz), 7.97 (1H, d, J = 9.4 Hz). 13 C NMR (75 MHz, DMSO-d 6 ): δ 15.4, 20.7, 45.6, 54.9, 59.5, (2C), (2C), 128.1, (2C), (2C), 138.7, 141.3, 158.0, MS (ES, pos. mode) m/z (%): 361 (M + H +, 100). Anal. Calcd for C 18 H 22 N 2 O 4 S: C 59.65; H 6.12; N Found: C 59.29; H 6.04; N Synthesis of chiral β-sulfonylamino esters 6 The synthesis of (S,R)-methyl 2-methyl-3-(4-chlorophenyl)-3-(ptoluenesulfonylamino)propanoate (S,R)-anti-6a is representative. (S,R)-Methyl 2-methyl-3-(4- chlorophenyl)-3-(p-toluenesulfonylamino)propanimidate hydrochloride (S,R)-anti-4a (0.46 g, 1.11 mmol) was dissolved in H 2 O (15 ml). The reaction mixture was stirred for 7 hours at 55 S-14

15 C and subsequently poured in a saturated aqueous solution of NaHCO 3 (20 ml) and extracted with diethyl ether (3 x 20 ml). The combined organic phases were dried (MgSO 4 ), filtered and evaporated in vacuo. The crude product was purified by flash chromatography to yield 0.32 g of pure (S,R)-methyl 2-methyl-3-(4-chlorophenyl)-3-(ptoluenesulfonylamino)propanoate (S,R)-anti-6a. (S,R)-Methyl 2-methyl-3-(4-chlorophenyl)-3-(p-toluenesulfonylamino)propanoate (S,R)- anti-6a. R f = 0.39 (petroleum ether/ Et 2 O 3:7). White crystals, yield 76%. [α] D (c 0.4, CHCl 3 ). Mp C. ee > 98%, HPLC Daicel Chiralcel OD-H column: Hexane (95.5%) / Ethanol (4.5%), 0.5 ml min -1, 35 C, t R ((R,S)-anti-6a) = min, t R ((S,R)-anti- 6a) = min. IR (cm -1 ): ν max 1155, 1734, H NMR (300 MHz, CDCl 3 ): δ 1.16 (3H, d, J = 6.6 Hz), 2.35 (3H, s), 2.79 (1H, quintet, J = 6.6 Hz), 3.56 (3H, s), 4.48 (1H, d x d, J = 8.5, 6.6 Hz), 6.00 (1H, d, J = 8.5 Hz), 6.94 (2H, d, J = 8.3 Hz), 7.09 (4H, d, J = 8.3 Hz), 7.48 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 15.3, 21.5, 46.0, 52.2, 59.8, (2C), (2C), (2C), (2C), 133.4, 137.4, 137.7, 143.2, MS (ES, pos. mode) m/z (%): 380/382 (M + H +, 100). Anal. Calcd for C 18 H 20 ClNO 4 S: C 56.61; H 5.28; N Found: C 56.49; H 5.11; N (R,S)-Methyl 2-methyl-3-(4-chlorophenyl)-3-(p-toluenesulfonylamino)propanoate (R,S)- anti-6a. R f = 0.29 (petroleum ether/ Et 2 O 3:7). White crystals, yield 86%. [α] D (c 0.3, CHCl 3 ). Mp C. ee > 98%, HPLC Daicel Chiralcel OD-H column: Hexane (95.5%) / Ethanol (4.5%), 0.5 ml min -1, 35 C, t R ((R,S)-anti-6a) = min, t R ((S,R)-anti- 6a) = min. IR (cm -1 ): ν max 1156, 1734, H NMR (300 MHz, CDCl 3 ): δ 1.11 (3H, d, J = 7.2 Hz), 2.34 (3H, s), 2.80 (1H, quintet, J = 7.2 Hz), 3.58 (3H, s), 4.48 (1H, d x d, J = 8.5, 7.2 Hz), 6.23 (1H, d, J = 8.5 Hz), 6.95 (2H, d, J = 8.3 Hz), 7.08 (4H, d, J = 8.3 Hz), 7.48 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 15.4, 21.5, 46.0, 52.2, 59.8, (2C), S-15

16 128.2 (2C), (2C), (2C), 133.4, 137.4, 137.7, 143.2, MS (ES, pos. mode) m/z (%): 380/382 (M + H +, 100). Anal. Calcd for C 18 H 20 ClNO 4 S: C 56.61; H 5.28; N Found: C 56.92; H 5.14; N (S,R)-Methyl 2-methyl-3-phenyl-3-(p-toluenesulfonylamino)propanoate (S,R)-anti-6b. R f = 0.38 (petroleum ether/ Et 2 O 3:7). White crystals, yield 72%. [α] D (c 0.3, CHCl 3 ). Mp C. ee > 98%, HPLC Daicel Chiralcel OD-H column: Hexane (95.5%) / Ethanol (4.5%), 0.5 ml min -1, 35 C, t R ((R,S)-anti-6b) = min, t R ((S,R)-anti-6b) = min. IR (cm -1 ): ν max 1163, 1737, 2922, H NMR (300 MHz, CDCl 3 ): δ 1.15 (3H, d, J = 7.2 Hz), 2.32 (3H, s), 2.83 (1H, quintet, J = 7.2 Hz), 3.56 (3H, s), 4.51 (1H, d x d, J = 8.8, 7.2 Hz), 5.93 (1H, d, J = 8.8 Hz), (2H, m), 7.06 (4H, d, J = 8.3 Hz), (3H, m), 7.49 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 15.6, 21.5, 46.1, 52.0, 60.3, (2C), (2C), 127.5, (2C), (2C), 137.9, 139.0, 142.9, MS (ES, pos. mode) m/z (%): 346 (M + H +, 100). Anal. Calcd for C 18 H 21 NO 4 S: C 62.23; H 6.09; N Found: C 62.06; H 6.03; N (R,S)-Methyl 2-methyl-3-phenyl-3-(p-toluenesulfonylamino)propanoate (R,S)-anti-6b. R f = 0.51 (petroleum ether/ Et 2 O 3:7). White crystals, yield 94%. [α] D (c 0.3, CHCl 3 ). Mp C. ee > 98%, HPLC Daicel Chiralcel OD-H column: Hexane (95.5%) / Ethanol (4.5%), 0.5 ml min -1, 35 C, t R ((R,S)-anti-6b) = min, t R ((S,R)-anti-6b) = min. IR (cm -1 ): ν max 1163, 1321, 1737, 2922, H NMR (300 MHz, CDCl 3 ): δ 1.16 (3H, d, J = 7.2 Hz), 2.32 (3H, s), 2.83 (1H, quintet, J = 7.2 Hz), 3.56 (3H, s), 4.50 (1H, d x d, J = 8.8, 6.1 Hz), 5.91 (1H, d, J = 8.8 Hz), (2H, m), 7.06 (4H, d, J = 8.3 Hz), (3H, m), 7.49 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 15.6, 21.5, 46.1, 51.9, 60.3, (2C), (2C), 127.6, (2C), (2C), 137.9, 139.0, 143.0, MS (ES, pos. S-16

17 mode) m/z (%): 346 (M + H +, 100). Anal. Calcd for C 18 H 21 NO 4 S: C 62.23; H 6.09; N Found: C 62.08; H 5.97; N (S,S)-Methyl 2-methyl-3-phenyl-3-(p-toluenesulfonylamino)propanoate (S,S)-syn-6b. R f = 0.42 (petroleum ether/ Et 2 O 3:7). White crystals, yield 63%. [α] D (c 0.3, CHCl 3 ). Mp C. IR (cm -1 ): ν max 1161, 1735, H NMR (300 MHz, CDCl 3 ): δ 1.16 (3H, d, J = 7.2 Hz), 2.32 (3H, s), 2.86 (1H, quintet, J = 7.2 Hz), 3.47 (3H, s), 4.54 (1H, d x d, J = 9.1, 7.2 Hz), 5.87 (1H, d, J = 9.1 Hz), (2H, m), (5H, m), 7.51 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 13.6, 21.5, 46.0, 51.9, 60.0, (2C), (2C), 127.6, (2C), (2C), 137.5, 138.3, 143.1, MS (ES, pos. mode) m/z (%): 346 (M + H +, 100). Anal. Calcd for C 18 H 21 NO 4 S: C 62.23; H 6.09; N Found: C 61.96; H 5.88; N (S,R)-Methyl 2-methyl-3-(4-methoxyphenyl)-3-(p-toluenesulfonylamino)propanoate (S,R)-anti-6c. R f = 0.23 (petroleum ether/ Et 2 O 3:7). White crystals, yield 82%. [α] D (c 0.3, CHCl 3 ). Mp C. ee > 98%, HPLC Daicel Chiralcel OD-H column: Hexane (95.5%) / Ethanol (4.5%), 0.5 ml min -1, 35 C, t R ((R,S)-anti-6c) = min, t R ((S,R)-anti- 6c) = min. IR (cm -1 ): ν max 1159, 1728, 2924, H NMR (300 MHz, CDCl 3 ): δ 1.06 (3H, d, J = 7.2 Hz), 2.30 (3H, s), 2.82 (1H, quintet, J = 7.2 Hz), 3.60 (3H, s), 3.71 (3H, s), 4.47 (1H, d x d, J = 8.8, 7.2 Hz), 6.25 (1H, d, J = 8.8 Hz), 6.62 (2H, d, J = 8.3 Hz), 6.93 (2H, d, J = 8.3 Hz), 7.04 (2H, d, J = 8.3 Hz), 7.48 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 15.1, 21.4, 46.4, 52.0, 55.3, 60.0, (2C), (2C), (2C), (2C), 130.8, 138.0, 142.7, 159.0, MS (ES, neg. mode) m/z (%): 376 (M - H +, 100). Anal. Calcd for C 19 H 23 NO 5 S: C 60.46; H 6.14; N Found: C 60.22; H 6.01; N S-17

18 (R,S)-Methyl 2-methyl-3-(4-methoxyphenyl)-3-(p-toluenesulfonylamino)propanoate (R,S)-anti-6c. R f = 0.24 (petroleum ether/ Et 2 O 3:7). White crystals, yield 78%. [α] D (c 0.3, CHCl 3 ). Mp C. ee > 98%, HPLC Daicel Chiralcel OD-H column: Hexane (95.5%) / Ethanol (4.5%), 0.5 ml min -1, 35 C, t R ((R,S)-anti-6c) = min, t R ((S,R)-anti- 6c) = min. IR (cm -1 ): ν max 1159, 1251, 1728, 2936, H NMR (300 MHz, CDCl 3 ): δ 1.09 (3H, d, J = 7.2 Hz), 2.32 (3H, s), 2.81 (1H, quintet, J = 7.2 Hz), 3.59 (3H, s), 3.73 (3H, s), 4.46 (1H, d x d, J = 8.8, 7.2 Hz), 6.05 (1H, d, J = 8.8 Hz), 6.64 (2H, d, J = 8.3 Hz), 6.92 (2H, d, J = 8.3 Hz), 7.06 (2H, d, J = 8.3 Hz), 7.49 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 15.3, 21.5, 46.3, 52.0, 55.3, 60.0, (2C), (2C), (2C), (2C), 131.0, 138.0, 142.8, 159.0, MS (ES, neg. mode) m/z (%): 376 (M - H +, 100). Anal. Calcd for C 19 H 23 NO 5 S: C 60.46; H 6.14; N Found: C 60.36; H 5.85; N Synthesis of chiral γ-sulfonylamino alcohols 7 The synthesis of γ-sulfonylamino alcohols 7 was performed according to a literature procedure starting from β-sulfonylamino esters 6. S1 The γ-sulfonylamino alcohols 7 were purified by recrystallization from diethyl ether. (R,S)-N-(3-Hydroxy-2-methyl-1-phenylpropyl)-4-methylbenzenesulfonamide (R,S)-anti- 7b. This compound is known in literature, but no spectral data are available. S2 White crystals, yield 63%. [α] D (c 0.1, CHCl 3 ). Mp C. IR (cm -1 ): ν max 1158, 1322, 3243, H NMR (300 MHz, CDCl 3 ): δ 0.76 (3H, d, J = 6.6 Hz), (1H, m), 2.33 (3H, s), 2.60 (1H, m), (1H, m), (1H, m), 4.17 (1H, d x d, J = 7.7, 7.7 Hz), 6.14 (1H, d, J = 7.7 Hz), (2H, m), (5H, m), 7.48 (2H, d, J = 8.3 Hz). 13 C NMR S1 Raheem, I. T.; Jacobsen, E. N. Adv. Synth. & Cat. 2005, 347, S2 Enders, D.; Gries, J. Synthesis 2005, 20, S-18

19 (75 MHz, CDCl 3 ): δ 14.7, 21.5, 41.0, 61.6, 65.0, (2C), (2C), 127.3, (2C), (2C), 137.4, 140.1, MS (ES, neg. mode) m/z (%): 318 (M - H +, 100). Anal. Calcd for C 17 H 21 NO 3 S: C 63.92; H 6.63; N Found: C 63.78; H 6.44; N (S,S)-N-(3-Hydroxy-2-methyl-1-phenylpropyl)-4-methylbenzenesulfonamide (S,R)-N-(3-Hydroxy-2-methyl-1-phenylpropyl)-4-methylbenzenesulfonamide (S,R)-anti- 7b. This compound is known in literature, but no spectral data are available. S2 White crystals, yield 73%. [α] D (c 0.1, MeOH). Mp C. IR (cm -1 ): ν max 1088, 1158, 1322, 3246, H NMR (300 MHz, CDCl 3 ): δ 0.76 (3H, d, J = 6.6 Hz), (1H, m), 2.33 (3H, s), 2.64 (1H, m), (1H, m), (1H, m), 4.17 (1H, d x d, J = 7.7, 7.7 Hz), 6.18 (1H, d, J = 7.7 Hz), (2H, m), (5H, m), (2H, m). 13 C NMR (75 MHz, CDCl 3 ): δ 14.7, 21.5, 41.0, 61.7, 65.0, (2C), (2C), 127.3, (2C), (2C), 137.4, 140.1, MS (ES, neg. mode) m/z (%): 318 (M - H +, 100). Anal. Calcd for C 17 H 21 NO 3 S: C 63.92; H 6.63; N Found: C 63.88; H 6.48; N (S,S)-syn- 7b. White crystals, yield 87%. [α] D (1S,2S)-7b-syn (c 0.4, MeOH) vs (1R,2R)-7b-syn and +26,1 (c 1.0, MeOH) in Lit. S3 Mp C vs C in Lit. IR (cm - 1 ): ν max 1025, 1155, 3248, H NMR (300 MHz, CDCl 3 ): δ 0.72 (3H, d, J = 6.6 Hz), (1H, m), 2.28 (1H, br s), 2.31 (3H, s), (2H, m), 4.61 (1H, d x d, J = 9.4, 4.4 Hz), 5.84 (1H, d, J = 9.4 Hz), (2H, m), 7.05 (2H, d, J = 8.3 Hz), (3H, m), 7.53 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 11.7, 21.5, 41.3, 59.2, 64.8, (2C), (3C), (2C), (2C), 137.5, 138.6, MS (ES, pos. mode) m/z (%): S2 Enders, D.; Gries, J. Synthesis 2005, 20, S3 (a) Raheem, I. T.; Jacobsen, E. N. Adv. Synth. & Cat. 2005, 347, (b) Davis, F. A.; Reddy, G. V.; Liang, C. -H. Tetr. Lett. 1997, 38, S-19

20 320 (M + H +, 100). Anal. Calcd for C 17 H 21 NO 3 S: C 63.92; H 6.63; N Found: C 63.76; H 6.56; N (S,R)-N-(3-Hydroxy-2-methyl-1-(4-methoxyphenyl)propyl)-4-methylbenzenesulfonamide (S,R)-anti-7c. White crystals, yield 86%. [α] D (c 0.4, MeOH). Mp C. IR (cm -1 ): ν max 1031, 1156, 2958, H NMR (300 MHz, CDCl 3 ): δ 0.73 (3H, d, J = 7.2 Hz), (1H, m), 2.31 (3H, s), 3.58 (1H, br s), (1H, m), 3.70 (3H, s), (1H, m), 4.10 (1H, d x d, J = 8.8, 8.8 Hz), 6.58 (2H, d, J = 8.3 Hz), 6.62 (1H, d, J = 8.8 Hz), 6.87 (2H, d, J = 8.3 Hz), 7.03 (2H, d, J = 8.3 Hz), 7.47 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 14.7, 21.5, 41.1, 55.3, 61.2, 65.2, (2C), (2C), (2C), (2C), 132.2, 137.5, 142.9, MS (ES, neg. mode) m/z (%): 348 (M - H +, 100). Anal. Calcd for C 18 H 23 NO 4 S: C 61.87; H 6.63; N Found: C 61.76; H 6.54; N Synthesis of chiral N-tosylazetidines 8 The synthesis of N-tosylazetidines 8 was performed according to a literature procedure starting from γ-sulfonylamino alcohols 7. S2 The N-tosylazetidines 8 were purified by flash chromatography. (R,R)-3-Methyl-2-phenyl-1-tosylazetidine (R,R)-trans-8b. R f = 0.37 (petroleum ether/ Et 2 O 7:3). White crystals, yield 89%. [α] D (c 0.2, CHCl 3 ) vs (c 1.0, CHCl 3, ee > 99%) in Lit. S2 Mp C vs C in Lit. ee > 98%, HPLC Daicel Chiralcel OD- H column: Hexane (99.6%) / i-propanol (0.4%), 0.5 ml min -1, 35 C, t R ((S,S)-trans-8b) = min, t R ((R,R)-trans-8b) = min. 1 H NMR (300 MHz, CDCl 3 ): δ 0.98 (3H, d, J = S2 Enders, D.; Gries, J. Synthesis 2005, 20, S-20

21 6.6 Hz), (1H, m), 2.44 (3H, s), 3.33 (1H, t, J = 7.7 Hz), 3.91 (1H, t, J = 7.7 Hz), 4.35 (1H, d, J = 7.2 Hz), (7H, m), 7.68 (2H, d, J = 8.3 Hz). Anal. Calcd for C 17 H 19 NO 2 S: C 67.74; H 6.35; N Found: C 67.49; H 6.18; N All spectroscopic data were in good agreement with reported data. S24 (S,S)-3-Methyl-2-phenyl-1-tosylazetidine (S,S)-trans-8b. R f = 0.13 (petroleum ether/ Et 2 O 8:2). White crystals, yield 94%. [α] D (c 0.3, CHCl 3 ) vs (c 1.0, CHCl 3, ee = 97%) in Lit. S2 Mp C vs C in Lit. ee > 98%, HPLC Daicel Chiralcel OD- H column: Hexane (99.6%) / i-propanol (0.4%), 0.5 ml min -1, 35 C, t R ((S,S)-trans-8b) = min, t R ((R,R)-trans-8b) = min. 1 H NMR (300 MHz, CDCl 3 ): δ 0.97 (3H, d, J = 7.2 Hz), (1H, m), 2.44 (3H, s), 3.33 (1H, t, J = 7.7 Hz), 3.91 (1H, t, J = 7.7 Hz), 4.35 (1H, d, J = 7.2 Hz), (7H, m), 7.68 (2H, d, J = 8.3 Hz). Anal. Calcd for C 17 H 19 NO 2 S: C 67.74; H 6.35; N Found: C 67.62; H 6.22; N All spectroscopic data were in good agreement with reported data. S2 (S,S)-3-Methyl-2-(4-methoxyphenyl)-1-tosylazetidine (S,S)-trans-8c. R f = 0.18 (petroleum ether/ Et 2 O 7:3). White crystals, yield 74%. [α] D (c 0.3, CHCl 3 ). Mp C. IR (cm -1 ): ν max 1152, 1335, 1515, H NMR (300 MHz, CDCl 3 ): δ 0.95 (3H, d, J = 6.6 Hz), (1H, m), 2.44 (3H, s), 3.27 (1H, t, J = 7.7 Hz), 3.79 (3H, s), 3.88 (1H, t, J = 7.7 Hz), 4.27 (1H, d, J = 7.7 Hz), 6.86 (2H, d, J = 8.3 Hz), (4H, m), 7.67 (2H, d, J = 8.3 Hz). 13 C NMR (75 MHz, CDCl 3 ): δ 17.6, 21.7, 35.3, 54.5, 55.4, 73.1, (2C), (2C), (2C), (2C), 132.2, 132.3, 143.9, MS (ES, pos. mode) m/z (%): 332 (M + H +, 100). Anal. Calcd for C 18 H 21 NO 3 S: C 65.23; H 6.39; N Found: C 64.94; H 6.15; N S2 Enders, D.; Gries, J. Synthesis 2005, 20, S-21

22 III. Copies of 1 H NMR and 13 C NMR spectra of 3, 4, 5, 6, 7 and 8 1 H NMR (300 MHz, CDCl 3 ) N S O Cl (R S,S,R)-anti-3a S-22

23 13 C NMR (75 MHz, CDCl 3 ) N S O Cl (R S,S,R)-anti-3a S-23

24 1 H NMR (300 MHz, CDCl 3 ) S N O Cl (R S,R,S)-anti-3a S-24

25 13 C NMR (75 MHz, CDCl 3 ) S N O Cl (R S,R,S)-anti-3a S-25

26 1 H NMR (300 MHz, CDCl 3 ) N S O Cl (R S,S,S)-syn-3a S-26

27 13 C NMR (75 MHz, CDCl 3 ) N S O Cl (R S,S,S)-syn-3a S-27

28 1 H NMR (300 MHz, CDCl 3 ) S N O (R S,S,R)-anti-3b S-28

29 13 C NMR (75 MHz, CDCl 3 ) S N O (R S,S,R)-anti-3b S-29

30 1 H NMR (300 MHz, CDCl 3 ) S N O (R S,R,S)-anti-3b S-30

31 13 C NMR (75 MHz, CDCl 3 ) S N O (R S,R,S)-anti-3b S-31

32 1 H NMR (300 MHz, CDCl 3 ) S N O (R S,S,S)-syn-3b S-32

33 13 C NMR (75 MHz, CDCl 3 ) S N O (R S,S,S)-syn-3b S-33

34 1 H NMR (300 MHz, CDCl 3 ) N S O MeO (R S,S,R)-anti-3c S-34

35 13 C NMR (75 MHz, CDCl 3 ) N S O MeO (R S,S,R)-anti-3c S-35

36 1 H NMR (300 MHz, CDCl 3 ) N S O MeO (R S,R,S)-anti-3c S-36

37 13 C NMR (75 MHz, CDCl 3 ) N S O MeO (R S,R,S)-anti-3c S-37

38 1 H NMR (300 MHz, CDCl 3 ) N S O MeO (R S,S,S)-syn-3c S-38

39 13 C NMR (75 MHz, CDCl 3 ) N S O MeO (R S,S,S)-syn-3c S-39

40 1 H NMR (300 MHz, CDCl 3 ).HCl Cl (S,R)-anti-4a S-40

41 13 C NMR (75 MHz, CDCl 3 ).HCl Cl (S,R)-anti-4a S-41

42 1 H NMR (300 MHz, CDCl 3 ).HCl Cl (R,S)-anti-4a S-42

43 13 C NMR (75 MHz, CDCl 3 ).HCl Cl (R,S)-anti-4a S-43

44 1 H NMR (300 MHz, CDCl 3 ).HCl (S,R)-anti-4b S-44

45 13 C NMR (75 MHz, CDCl 3 ).HCl (S,R)-anti-4b S-45

46 1 H NMR (300 MHz, CDCl 3 ).HCl (R,S)-anti-4b S-46

47 13 C NMR (75 MHz, CDCl 3 ).HCl (R,S)-anti-4b S-47

48 1 H NMR (300 MHz, CDCl 3 ).HCl (S,S)-syn-4b S-48

49 13 C NMR (75 MHz, CDCl 3 ).HCl (S,S)-syn-4b S-49

50 1 H NMR (300 MHz, CDCl 3 ).HCl MeO (S,R)-anti-4c S-50

51 13 C NMR (75 MHz, CDCl 3 ).HCl MeO (S,R)-anti-4c S-51

52 1 H NMR (300 MHz, CDCl 3 ).HCl MeO (R,S)-anti-4c S-52

53 13 C NMR (75 MHz, CDCl 3 ).HCl MeO (R,S)-anti-4c S-53

54 1 H NMR (300 MHz, CDCl 3 ) O 2 Cl (S,R)-anti-5a S-54

55 13 C NMR (75 MHz, CDCl 3 ) O 2 Cl (S,R)-anti-5a S-55

56 1 H NMR (300 MHz, CDCl 3 ) O 2 Cl (R,S)-anti-5a S-56

57 13 C NMR (75 MHz, CDCl 3 ) O 2 Cl (R,S)-anti-5a S-57

58 1 H NMR (300 MHz, CDCl 3 ) O 2 (S,R)-anti-5b S-58

59 13 C NMR (75 MHz, CDCl 3 ) O 2 (S,R)-anti-5b S-59

60 1 H NMR (300 MHz, CDCl 3 ) O 2 (R,S)-anti-5b S-60

61 13 C NMR (75 MHz, CDCl 3 ) O 2 (R,S)-anti-5b S-61

62 1 H NMR (300 MHz, DMSO-d 6 ) O 2 MeO (S,R)-anti-5c S-62

63 13 C NMR (75 MHz, DMSO-d 6 ) O 2 MeO (S,R)-anti-5c S-63

64 1 H NMR (300 MHz, DMSO-d 6 ) O 2 MeO (R,S)-anti-5c S-64

65 13 C NMR (75 MHz, DMSO-d 6 ) O 2 MeO (R,S)-anti-5c S-65

66 1 H NMR (300 MHz, CDCl 3 ) O Cl (S,R)-anti-6a S-66

67 13 C NMR (75 MHz, CDCl 3 ) O Cl (S,R)-anti-6a S-67

68 1 H NMR (300 MHz, CDCl 3 ) O Cl (R,S)-anti-6a S-68

69 13 C NMR (75 MHz, CDCl 3 ) O Cl (R,S)-anti-6a S-69

70 1 H NMR (300 MHz, CDCl 3 ) O (S,R)-anti-6b S-70

71 13 C NMR (75 MHz, CDCl 3 ) O (S,R)-anti-6b S-71

72 1 H NMR (300 MHz, CDCl 3 ) O (R,S)-anti-6b S-72

73 13 C NMR (75 MHz, CDCl 3 ) O (R,S)-anti-6b S-73

74 1 H NMR (300 MHz, CDCl 3 ) O (S,S)-syn-6b S-74

75 13 C NMR (75 MHz, CDCl 3 ) O (S,S)-syn-6b S-75

76 1 H NMR (300 MHz, CDCl 3 ) O MeO (S,R)-anti-6c S-76

77 13 C NMR (75 MHz, CDCl 3 ) O MeO (S,R)-anti-6c S-77

78 1 H NMR (300 MHz, CDCl 3 ) O MeO (R,S)-anti-6c S-78

79 13 C NMR (75 MHz, CDCl 3 ) O MeO (R,S)-anti-6c S-79

80 1 H NMR (300 MHz, CDCl 3 ) OH (R,S)-anti-7b S-80

81 13 C NMR (75 MHz, CDCl 3 ) OH (R,S)-anti-7b S-81

82 1 H NMR (300 MHz, CDCl 3 ) OH (S,R)-anti-7b S-82

83 13 C NMR (75 MHz, CDCl 3 ) OH (S,R)-anti-7b S-83

84 1 H NMR (300 MHz, CDCl 3 ) OH (S,S)-syn-7b S-84

85 13 C NMR (75 MHz, CDCl 3 ) OH (S,S)-syn-7b S-85

86 1 H NMR (300 MHz, CDCl 3 ) OH MeO (S,R)-anti-7c S-86

87 13 C NMR (75 MHz, CDCl 3 ) OH MeO (S,R)-anti-7c S-87

88 1 H NMR (300 MHz, CDCl 3 ) N (R,R)-trans-8b S-88

89 1 H NMR (300 MHz, CDCl 3 ) N (S,S)-trans-8b S-89

90 1 H NMR (300 MHz, CDCl 3 ) N MeO (S,S)-trans-8c S-90

91 13 C NMR (75 MHz, CDCl 3 ) N MeO (S,S)-trans-8c S-91

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic

Διαβάστε περισσότερα

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Διαβάστε περισσότερα

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction Supporting Information ne-pot Approach to Chiral Chromenes via Enantioselective rganocatalytic Domino xa-michael-aldol Reaction Hao Li, Jian Wang, Timiyin E-Nunu, Liansuo Zu, Wei Jiang, Shaohua Wei, *

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information for AgOTf-catalyzed one-pot reactions of 2-alkynylbenzaldoximes with α,β-unsaturated carbonyl compounds Qiuping Ding 1, Dan Wang 1, Puying Luo* 2, Meiling Liu 1, Shouzhi Pu* 3 and

Διαβάστε περισσότερα

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2016 Supporting information Copper-Catalyzed Oxidative Dehydrogenative - Bond Formation

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Montmorillonite KSF-Catalyzed One-pot, Three-component, Aza-Diels- Alder Reactions of Methylenecyclopropanes With Arylaldehydes and Aromatic Amines Li-Xiong Shao and Min Shi* General

Διαβάστε περισσότερα

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces Highly enantioselective cascade synthesis of spiropyrazolones Alex Zea a, Andrea-Nekane R. Alba a, Andrea Mazzanti b, Albert Moyano a and Ramon Rios a,c * Supporting Information NMR spectra and HPLC traces

Διαβάστε περισσότερα

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Supporting Information for: Room Temperature Highly Diastereoselective Zn-Mediated Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Stereoselectivity Reversal

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Lewis acid catalyzed ring-opening reactions of methylenecyclopropanes with diphenylphosphine oxide in the presence of sulfur or selenium Min Shi,* Min Jiang and Le-Ping Liu State

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Ceric Ammonium Nitrate (CAN) catalyzed efficient one-pot three component aza-diels-alder reactions for a facile synthesis of tetrahydropyranoquinoline derivatives Ravinder Goud Puligoundla

Διαβάστε περισσότερα

Supplementary information

Supplementary information Electronic Supplementary Material (ESI) for MedChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary information Synthesis of carboxyimidamide-substituted benzo[c][1,2,5]oxadiazoles

Διαβάστε περισσότερα

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic Supporting Information Asymmetric Binary-acid Catalysis with Chiral Phosphoric Acid and MgF 2 : Catalytic Enantioselective Friedel-Crafts Reactions of β,γ- Unsaturated-α-Ketoesters Jian Lv, Xin Li, Long

Διαβάστε περισσότερα

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%. Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%. S1 Supplementary Figure S2. Single X-ray structure 5a at probability ellipsoids of 20%. S2 H 15 Ph Ac Ac I AcH Ph Ac

Διαβάστε περισσότερα

Divergent synthesis of various iminocyclitols from D-ribose

Divergent synthesis of various iminocyclitols from D-ribose Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 205 Divergent synthesis of various iminocyclitols from D-ribose Ramu Petakamsetty,

Διαβάστε περισσότερα

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Unprecedented Carbon-Carbon Bond Cleavage in Nucleophilic Aziridine Ring Opening Reaction, Efficient Ring Transformation of Aziridines to Imidazolidin-4-ones Jin-Yuan

Διαβάστε περισσότερα

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Enantioselective Organocatalytic Michael Addition of Isorhodanines to α,

Διαβάστε περισσότερα

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Supporting Information for Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Changkun Li and Jianbo Wang* Beijing National Laboratory

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information for Lewis acid-catalyzed redox-neutral amination of 2-(3-pyrroline-1-yl)benzaldehydes via intramolecular [1,5]-hydride shift/isomerization reaction Chun-Huan Jiang, Xiantao Lei,

Διαβάστε περισσότερα

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors Supporting Information Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors Frédéric Pin, a Frédéric Buron, a Fabienne Saab, a Lionel Colliandre,

Διαβάστε περισσότερα

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer

Διαβάστε περισσότερα

The Free Internet Journal for Organic Chemistry

The Free Internet Journal for Organic Chemistry The Free Internet Journal for Organic Chemistry Paper Archive for Organic Chemistry Arkivoc 2018, part iii, S1-S6 Synthesis of dihydropyranones and dihydropyrano[2,3- d][1,3]dioxine-diones by cyclization

Διαβάστε περισσότερα

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol FeCl 3 6H 2 O-Catalyzed Disproportionation of Allylic Alcohols and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol Jialiang Wang, Wen Huang, Zhengxing Zhang, Xu

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Supporting Information for An atom-economic route to densely functionalized thiophenes via base-catalyzed rearrangement of 5-propargyl-2H-thiopyran-4(3H)-ones Chunlin Tang a, Jian Qin b, Xingqi Li *a a

Διαβάστε περισσότερα

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Supporting Information Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Shohei Shimokawa, Yuhsuke Kawagoe, Katsuhiko Moriyama, Hideo Togo* Graduate

Διαβάστε περισσότερα

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of Supporting Information File 1 for First DMAP-mediated direct conversion of Morita Baylis Hillman alcohols into γ-ketoallylphosphonates: Synthesis of γ-aminoallylphosphonates Marwa Ayadi 1,2, Haitham Elleuch

Διαβάστε περισσότερα

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang* Facile construction of the functionalized 4H-chromene via tandem benzylation and cyclization Jinmin Fan and Zhiyong Wang* Hefei National Laboratory for Physical Science at Microscale, Joint- Lab of Green

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Synthesis of 3-omosubstituted Pyrroles via Palladium- Catalyzed Intermolecular Oxidative Cyclization

Διαβάστε περισσότερα

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran 1 Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran Munawar Hussain, a Rasheed Ahmad Khera, a Nguyen Thai Hung, a Peter Langer* a,b a Institut für Chemie, Universität Rostock,

Διαβάστε περισσότερα

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Won-Suk Kim, Hyung-Jin Kim and Cheon-Gyu Cho Department of Chemistry, Hanyang University, Seoul 133-791, Korea Experimental Section

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Copper/Silver Cocatalyzed Oxidative Coupling of Vinylarenes with ICH 2 CF 3 or ICH 2 CHF 2 Leading to β-cf 3 /CHF 2 -Substituted Ketones Niannian Yi, Hao Zhang, Chonghui Xu, Wei

Διαβάστε περισσότερα

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes 1 Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes Gonzalo Blay, Isabel Fernández, Alícia Marco-Aleixandre, and José R. Pedro Departament de Química Orgànica, Facultat de Química,

Διαβάστε περισσότερα

Supporting Information. Experimental section

Supporting Information. Experimental section Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Proton nuclear magnetic resonance ( 1

Διαβάστε περισσότερα

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du* Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Supporting Information for Catalytic Enantioselective Conjugate Reduction of β,β- Disubstituted α,β-unsaturated sulfones Tomás Llamas, Ramón

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information An Approach to 3,6-Disubstituted 2,5-Dioxybenzoquinones via Two Sequential Suzuki Couplings. Three-step Synthesis of Leucomelone Xianwen Gan, Wei Jiang, Wei Wang,,,* Lihong Hu,,*

Διαβάστε περισσότερα

Aminofluorination of Fluorinated Alkenes

Aminofluorination of Fluorinated Alkenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Synthesis of ɑ CF 3 and ɑ CF 2 H Amines via Aminofluorination of Fluorinated Alkenes Ling Yang,

Διαβάστε περισσότερα

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2 Free Radical Initiated Coupling Reaction of Alcohols and Alkynes: not C-O but C-C Bond Formation Zhongquan Liu,* Liang Sun, Jianguo Wang, Jie Han, Yankai Zhao, Bo Zhou Institute of Organic Chemistry, Gannan

Διαβάστε περισσότερα

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines Direct Palladium-Catalyzed Arylations of Aryl Bromides with 2/9-Substituted Pyrimido[5,4-b]indolizines Min Jiang, Ting Li, Linghua Meng, Chunhao Yang,* Yuyuan Xie*, and Jian Ding State Key Laboratory of

Διαβάστε περισσότερα

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol Supporting Information for: Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol Yu-Fang Zhang, Diao Chen, Wen-Wen

Διαβάστε περισσότερα

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates:

Διαβάστε περισσότερα

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors Supporting Information Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors Xiao-Peng He, abd Cui Li, d Xiao-Ping Jin, b Zhuo Song, b Hai-Lin Zhang,

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information for Quinine-Catalyzed Highly Enantioselective Cycloannulation

Διαβάστε περισσότερα

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Supporting Information Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine

Διαβάστε περισσότερα

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting information Copper-catalysed intramolecular O-arylation: a simple

Διαβάστε περισσότερα

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via

Διαβάστε περισσότερα

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl Philippe Pierrat, Philippe Gros* and Yves Fort Synthèse Organométallique

Διαβάστε περισσότερα

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of novel 1,2,3-triazolyl derivatives of

Διαβάστε περισσότερα

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China; Supplementary Data Synthesis, Chemo-selective Properties of Substituted 9-Aryl-9H-fluorenes from Triarylcarbinols and Enantiomerical Kinetics of Chiral 9-Methoxy-11-(naphthalen-1-yl)-11H-benzo[a]fluorene

Διαβάστε περισσότερα

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions Supplementary Information for Phosphorus xychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions u Chen,* a,b Xunfu Xu, a Liu Liu, a Guo Tang,* a

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Lewis Acid Mediated [2,3]-Sigmatropic Rearrangement of Allylic α-amino Amides. Jan Blid, Peter Brandt, Peter Somfai*, Department of Chemistry, rganic Chemistry, Royal Institute of

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Silver or Cerium-Promoted Free Radical Cascade Difunctionalization

Διαβάστε περισσότερα

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate upporting Information Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate Jing-Yu Wu, Zhi-Bin Luo, Li-Xin Dai and Xue-Long Hou* a tate Key Laboratory of Organometallic

Διαβάστε περισσότερα

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry Electronic Supplementary Information (ESI) For Iron-Catalysed xidative Amidation of Alcohols with Amines Silvia Gaspa, a Andrea

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Convenient and General Zinc-Catalyzed Borylation of Aryl Diazonium Salts and Aryltriazenes under Mild Conditions

Διαβάστε περισσότερα

Supporting Information

Supporting Information S1 Supporting Information Synthesis of 2-Arylated Hydroxytyrosol Derivatives via Suzuki-Myaura Cross-Coupling Roberta Bernini, a Sandro Cacchi, b* Giancarlo Fabrizi, b* Eleonora Filisti b a Dipartimento

Διαβάστε περισσότερα

Supplementary Material

Supplementary Material Supplementary Material Chiral N-aryl tert-butanesulfinamide-olefin ligands for rhodium-catalyzed asymmetric 1,4-addition Shuai Yuan, Qingle Zeng,* Jiajun Wang, Lihong Zhou State Key Laboratory of Geohazard

Διαβάστε περισσότερα

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Supporting Information. Synthesis and biological evaluation of nojirimycin- and Supporting Information for Synthesis and biological evaluation of nojirimycin- and pyrrolidine-based trehalase inhibitors Davide Bini 1, Francesca Cardona 2, Matilde Forcella 1, Camilla Parmeggiani 2,3,

Διαβάστε περισσότερα

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors Andrea Trabocchi a, icolino Pala b, Ilga Krimmelbein c, Gloria Menchi a, Antonio Guarna a, Mario Sechi b, Tobias Dreker c, Andrea Scozzafava

Διαβάστε περισσότερα

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 205 Vilsmeier aack reagent-promoted formyloxylation of α-chloro-arylacetamides by formamide Jiann-Jyh

Διαβάστε περισσότερα

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION Eur. J. Inorg. Chem. 2007 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ISSN 1434 1948 SUPPORTING INFORMATION Title: Synthesis of Cyclic Carbonates from Atmospheric Pressure Carbon Dioxide Using

Διαβάστε περισσότερα

Crossed Intramolecular Rauhut-Currier-Type Reactions via Dienamine Activation

Crossed Intramolecular Rauhut-Currier-Type Reactions via Dienamine Activation Crossed Intramolecular Rauhut-Currier-Type Reactions via Dienamine Activation Eugenia Marqués-López, Raquel P. Herrera, Timo Marks, Wiebke C. Jacobs, Daniel Könning, Renata M. de Figueiredo, Mathias Christmann*

Διαβάστε περισσότερα

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles Supporting Information for Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles Angélica de Fátima S. Barreto*, Veronica Alves dos Santos, and Carlos

Διαβάστε περισσότερα

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2017 Laboratoire de Méthodologie et ynthèse de Produit aturels. Université du Québec

Διαβάστε περισσότερα

Supplementary Information for

Supplementary Information for Supplementary Information for Organocatalytic Asymmetric Intramolecular [3+2] Cycloaddition: A Straightforward Approach to Access Multiply Substituted Hexahydrochromeno[4,3-b]pyrrolidine Derivatives in

Διαβάστε περισσότερα

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent Supplementary information for the paper Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent Yang Xue, Ling-Po Li, Yan-Hong He * & Zhi Guan * School of Chemistry and Chemical Engineering,

Διαβάστε περισσότερα

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z51171 Wiley-VCH 2003 69451 Weinheim, Germany 1 Tin-Free Radical Allylation of B- Alkylcatecholboranes Arnaud-Pierre Schaffner and Philippe Renaud* University

Διαβάστε περισσότερα

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans Liang Yun, Shi Tang, Xu-Dong Zhang, Li-Qiu Mao, Ye-Xiang Xie and Jin-Heng Li* Key Laboratory

Διαβάστε περισσότερα

Experimental procedure

Experimental procedure Supporting Information for Direct electrophilic N-trifluoromethylthiolation of amines with trifluoromethanesulfenamide Sébastien Alazet 1,2, Kevin Ollivier 1 and Thierry Billard* 1,2 Address: 1 Institute

Διαβάστε περισσότερα

Acrylate Esters for Synthesis of Chiral γ-lactams and Amino Acids

Acrylate Esters for Synthesis of Chiral γ-lactams and Amino Acids Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supplementary Information for: Highly Efficient Asymmetric Hydrogenation

Διαβάστε περισσότερα

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF. ESI for A simple and efficient protocol for the palladium-catalyzed ligand-free Suzuki reaction at room temperature in aqueous DMF Chun Liu,* Qijian i, Fanying Bao and Jieshan Qiu State Key Laboratory

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Wiley-VC 007 9 Weinheim, Germany ew ear Infrared Dyes and Fluorophores Based on Diketopyrrolopyrroles Dipl.-Chem. Georg M. Fischer, Dipl.-Chem. Andreas P. Ehlers, Prof. Dr. Andreas

Διαβάστε περισσότερα

Effect of uridine protecting groups on the diastereoselectivity

Effect of uridine protecting groups on the diastereoselectivity Supporting Information for Effect of uridine protecting groups on the diastereoselectivity of uridine-derived aldehyde 5 -alkynylation Raja Ben Othman, Mickaël J. Fer, Laurent Le Corre, Sandrine Calvet-Vitale*

Διαβάστε περισσότερα

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPRTIG IFRMATI Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst-

Διαβάστε περισσότερα

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions This journal is The Royal Society of Chemistry 213 Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions Wenjing Cui, a Bao Zhaorigetu,* a Meilin Jia, a and Wulan

Διαβάστε περισσότερα

Supporting Information. Design and Synthesis of 2-Arylbenzimidazoles and. Evaluation of Their Inhibitory Effect against. Chlamydia pneumoniae

Supporting Information. Design and Synthesis of 2-Arylbenzimidazoles and. Evaluation of Their Inhibitory Effect against. Chlamydia pneumoniae Supporting Information Design and Synthesis of 2-Arylbenzimidazoles and Evaluation of Their Inhibitory Effect against Chlamydia pneumoniae Leena Keurulainen,, Olli Salin,, Antti Siiskonen,, Jan Marco Kern,

Διαβάστε περισσότερα

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts S1 SUPPORTING INFORMATION Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts Hao Yu, Zhen Li, and Carsten Bolm* Institute of Organic Chemistry, RWTH Aachen University

Διαβάστε περισσότερα

Supporting Information. Experimental section

Supporting Information. Experimental section Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Anhydrous solvents were transferred by

Διαβάστε περισσότερα

Supporting Information. for

Supporting Information. for Supporting Information for A general synthetic route to [Cu(X)(NHC)] (NHC = N- heterocyclic carbene, X =Cl, Br, I) complexes Orlando Santoro, Alba Collado, Alexandra M. Z. Slawin, Steven P. Nolan and Catherine

Διαβάστε περισσότερα

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 Silver-Catalyzed Asymmetric Synthesis of 2,3-Dihydrobenzofurans: A New Chiral Synthesis of Pterocarpans Leticia Jiménez-González, Sergio

Διαβάστε περισσότερα

The Supporting Information for

The Supporting Information for The Supporting Information for Synthesis of Azacyclic ucleoside Analogues via Asymmetric [3+2] Cycloaddition of 9-(2-tosylvinyl)-9H-purines Dan-Jie Zhang, Ming-Sheng Xie,* Gui-Rong Qu, Yao-Wei Gao, and

Διαβάστε περισσότερα

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p Supplementary Figure 1 (X-ray structures of 6p and 7f) Me Br 6p 6p Supplementary Figures 2-68 (MR Spectra) Supplementary Figure 2. 1 H MR of the 6a Supplementary Figure 3. 13 C MR of the 6a Supplementary

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Enantiospecific Synthesis of the Cubitane Skeleton Elisabeth Schöttner, M. Wiechoczek, Peter G. Jones, and Thomas Lindel * TU Braunschweig, Institutes of rganic, Inorganic and Analytical

Διαβάστε περισσότερα

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of α-diazoketones with Various Amines: A Strategy for Catalytic Wolff 1,2,3-Triazole Synthesis Zikun Wang, a Xihe

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Metal-catalyzed Stereoselective and Protecting-group-free Synthesis of 1,2-cis-Glycosides Using 4,6-Dimethoxy-1,3,5-triazin-2-yl Glycosides as Glycosyl Donors Tomonari Tanaka,* 1

Διαβάστε περισσότερα

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 1 A Facile Way to Synthesize 2H-Chromenes: Reconsideration of the Reaction Mechanism between Salicylic Aldehyde and

Διαβάστε περισσότερα

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process Jincan Zhao 1, Hong Fang 1, Jianlin Han* 1,2 and Yi Pan* 1

Διαβάστε περισσότερα

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information. Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2018 The,-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H Carbonylation using

Διαβάστε περισσότερα

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid Yawen Wei, a Chao Wang,* a Xue Jiang, a Dong Xue, a Zhao-Tie Liu, a and Jianliang Xiao* a,b a Key Laboratory of Applied

Διαβάστε περισσότερα

Supporting information

Supporting information Electronic upplementary Material (EI) for New Journal of Chemistry. This journal is The Royal ociety of Chemistry and the Centre National de la Recherche cientifique 7 upporting information Lipase catalyzed,-addition

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information 1. General experimental methods (S2). 2. Table 1: Initial studies (S2-S4).

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Supporting Information for A ovel Synthesis of luorinated Pyrazoles via Gold(I)-Catalyzed Tandem Aminofluorination of Alkynes in the Presence of Selectfluor Jianqiang Qian, Yunkui Liu,* Jie Zhu, Bo Jiang,

Διαβάστε περισσότερα

Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse. Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening

Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse. Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening Reaction Involving 2-Methoxyfurans as Efficient Dienophiles Rong Huang, Xin

Διαβάστε περισσότερα

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008 Palladium(0)-catalyzed direct cross-coupling reaction of allylic alcohols with aryland alkenylboronic acids Hirokazu Tsukamoto, Tomomi Uchiyama, Takamichi Suzuki and Yoshinori Kondo Graduate School of

Διαβάστε περισσότερα

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br) Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2014 Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using

Διαβάστε περισσότερα

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A new Entry to N-Carbamate Protected Arylamines Bing Zhou,* Juanjuan Du, Yaxi Yang,* Huijin Feng, Yuanchao Li Shanghai Institute of Materia Medica,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Gold-catalyzed Cycloisomerization of 1,6-Diyne-4-en-3-ols to form Naphthyl Ketone Derivatives. Jian-Jou Lian and Rai-Shung Liu* Department of Chemistry, National Tsing-Hua University,

Διαβάστε περισσότερα

Palladium-Catalyzed C H Monoalkoxylation of α,β-unsaturated Carbonyl Compounds

Palladium-Catalyzed C H Monoalkoxylation of α,β-unsaturated Carbonyl Compounds Supporting Information Palladium-Catalyzed C H Monoalkoxylation of α,β-unsaturated Carbonyl Compounds Yasunari Monguchi,* Kouki Kunishima, Tomohiro Hattori, Tohru Takahashi, Yuko Shishido, Yoshinari Sawama,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Siloxy(trialkoxy)ethene Undergoes Regioselective [2+2] Cycloaddition to Ynones and Ynoates en route to Functionalized Cyclobutenediones Shin Iwata, Toshiyuki Hamura, and Keisuke

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Selective Synthesis of xygen-containing Heterocycles via Tandem Reactions of 1,2-Allenic Ketones with Ethyl 4-Chloroacetoacetate Qiang Wang, a, b Zhouqing Xu b and Xuesen Fan a *

Διαβάστε περισσότερα

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System Supporting Information for Highly Selective Hydroiodation of Alkynes Using Iodine-Hydrophosphine Binary System Shin-ichi Kawaguchi and Akiya Ogawa * Department of Applied Chemistry, Graduate School of

Διαβάστε περισσότερα