Σπειρώματα. Περιεχόμενα. Είδη σύνδεσης. Τύποι σύνδεσης. 1. Μόνιμες συνδέσεις. 2. Λυόμενες συνδέσεις. Εισαγωγή. Σπειρώματα - ονοματολογία
|
|
- Τηθύς Δεσποτόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή Σπειρώματα Κοχλίες Σχεδίαση και διαστασιολόγηση σπειρωμάτων Κοχλίες Τύποι σύνδεσης 1. Μόνιμες συνδέσεις Συγκόλληση Κόλληση Γυρωτικός ήλος (περτσίνι) Είδη σύνδεσης 2. Λυόμενες συνδέσεις 2.1 Κοχλίες - περαστοί - σε τυφλή οπή - φυτευτοί 2.2 Σύνδεσμοι χωρίς σπείρωμα - σφήνες σφήνα - πείροι
2 Εφαρμογές σπειρωμάτων 1. Σπειρώματα σύνδεσης. Εφαρμογές σπειρωμάτων 1. Σπειρώματα σύνδεσης. 2. Σπειρώματα κίνησης. Στοιχείο A Στοιχείο B Στοιχείο Γ Σπειρώματα Εξωτερικό σπείρωμα Εσωτερικό σπείρωμα Σπείρωμα το οποίο δημιουργείται στο εξωτερικού ενός κυλινδρικού σώματος. Σπείρωμα το οποίο δημιουργείται στο εσωτερικό μιας κυλινδρικής οπής. Το σπείρωμα παράγεται αν μια ευθεία με γωνία κλίσης α περιτυλιχθεί γύρω από έναν κύλινδρο. y/x=tan a = P / 2 π r όπου P είναι η αξονική μετάθεση ενός σημείου κατά μία πλήρη περιστροφή πάνω στην ελικοειδή γραμμή, η οποία ονομάζεται βήμα του σπειρώματος.
3 Δεξιόστροφο Σπείρωμα το οποίο συσφίγγει όταν σπείρωμα περιστρέφεται δεξιόστροφα. Αρσερόσροφο Αριστερόστροφο Σπείρωμα το οποίο συσφίγγει σπείρωμα όταν στρέφεται αριστερόστροφα. Κορυφή Πυρήνας Γωνία κορυφής Τα σημεία πάνω στον εξωτερικό κύλινδρο του σπειρώματος. Τα σημεία πάνω στον εσωτερικό κύλινδρο του σπειρώματος. Η γωνία που δημιουργείται από δύο διαδοχικές κορυφές. Στη μηχανολογία χρησιμοποιούμε συνήθως δεξιόστροφα σπειρώματα. Γωνία κορυφής Αν κάποιο σπείρωμα είναι αριστερόστροφο τότε πρέπει να αναγράφεται κατάλληλη ένδειξη με τοπική σημείωση κατά τη διαστασιολόγησή του Πυρήνας Κορυφή Πυρήνας Κορυφή Εξωτερική Η μέγιστη διάμετρος ενός εξωτερικού ή διάμετρος εσωτερικού σπειρώματος. Εσωτερική διάμετρος ή διάμετρος πυρήνα Η ελάχιστη διάμετρος ενός εξωτερικού ή εσωτερικού σπειρώματος. Απόσταση κορυφών Βήμα Η απόσταση μεταξύ δύο διαδοχικών κορυφών του σπειρώματος. Η απόσταση κατά την οποία θα προχωρήσει ο κοχλίας αν περιστραφεί κατά 360 ο (μία πλήρη στροφή). Για σπειρώματα με μία αρχή, ίση με την απόσταση κορυφών. Εσω ωτ. διάμ. Εξωτ τ. διαμ. Εσωτ τ. διαμ. Εξωτ τ. διαμ. Απόσταση κορυφών Απόσταση κορυφών
4 Σπειρώματα Παράγον Σχήμα Σπειρώματα Το προφίλ του σπειρώματος. Στους κοχλίες κίνησης πολλές φορές χρησιμοποιούμε σπειρώματα με δύο ή περισσότερες αρχές, δηλαδή δύο ή περισσότερες ελικοειδής γραμμές παράλληλες μεταξύ τους. Σε μια πλήρη περιστροφή έχουμε πολλαπλάσια προχώρηση (διαδρομή) σε σχέση με το κοχλία μίας αρχής. Το παράγον σχήμα μπορεί να είναι τρίγωνο, τετράγωνο, τραπέζιο, ανισοσκελές τραπέζιο, ημικύκλιο. Οδηγούμαστε σε διαφορετικού είδους σπειρώματα. Παράγον Σχήμα Μετρικό τριγωνικό Παράγον Σχήμα Whitworth τριγωνικό Κατατομή ισόπλευρου τριγώνου ργ με γωνία 60 ο 60 ο Κατατομή τριγώνου με γωνία κορυφών 55 ο 55 ο Ονομαστική διάμετρος σε mm Ονομαστική διάμετρος σε ίντσες
5 Παράγον Σχήμα Μετρικό Τραπεζοειδές Κατατομή τραπεζίου με γωνία των μη παράλληλων πλευρών 30 ο Ονομαστική διάμετρος σε mm Παράγον Σχήμα Μετρικό Πριονωτό Κατατομή ανισοσκελούς τραπεζίου με γωνίες 33 ο και 3 ο Απεικόνιση σπειρωμάτων Μετρικό και Whitworth τριγωνικό: Σπειρώματα σύνδεσης Ορθογωνικά, Τραπεζοειδή, Πριονωτά, Στρογγυλά: Σπειρώματα κίνησης Ευρεία τυποποίηση σπειρωμάτων. Γιατί? 1. Κανονική σχεδίαση 2. Σχηματική σχεδίαση 3. Απλοποιημένη σχεδίαση
6 Μετρικό Σπείρωμα - Κανονική σχεδίαση Κανονική σχεδίαση Χρήση κεκλιμένων γραμμών για την απεικόνιση των σημείων που βρίσκονται στις κορυφές και στον πυρήνα. Κορυφές και πυρήνας ενώνονται με έντονα V. Τυποποίηση η σπειρωμάτων.. Ανώφελη η κανονική σχεδίασή τους. Τελείωμα (ξεθύμασμα) σπειρώματος Βήμα 60 o Σχηματική σχεδίαση Χρησιμοποιούμε εναλλασσόμενες πλήρεις και ημιτελείς γραμμές για την απεικόνιση των κορυφών και του πυρήνα του σπειρώματος. Απλοποιημένη η σχεδίαση Χρησιμοποιούμε παχειά συνεχή γραμμή για την απεικόνιση των κορυφών και λεπτή συνεχή γραμμή για την απεικόνιση του πυρήνα του σπειρώματος. Τελείωμα (ξεθύμασμα) σπειρώματος Βήμα Πυρήνας (παχειά γραμμή) Κορυφές (λεπτή γραμμή) Πυρήνας Κορυφή
7 Απλοποιημένη η σχεδίαση Τυποποιημένα σπειρώματα Χρησιμοποιούμε παχειά συνεχή γραμμή για την απεικόνιση των κορυφών και λεπτή συνεχή γραμμή για την απεικόνιση του πυρήνα του σπειρώματος. Προσοχή, οι γραμμές διαγράμμισης φτάνουν μέχρι την εσωτερική διάμετρο του σπειρώματος! Τομή Συνεργασία εσωτερικού και εξωτερικού σπειρώματος είναι δυνατή μόνο αν και τα δύο σπειρώματα έχουν ίση ονομαστική διάμετρο και βήμα. Πιν. Α-11-8 Βιβλίο, Σελ. 100 ISO (μετρικό) σπείρωμα Μετρικό λεπτό σπείρωμα Ονομαστική Εξωτερική Βήμα Εσωτερική διάμετρος διάμετρος διάμετρος M Κανονικό βήμα 1.25 mm M mm Πλεονεκτήματα: - Μικρότερη ρη δύναμη κοχλίωσης - Μεγαλύτερη ασφάλεια σε αποκοχλίωση Μειονεκτήματα: - Μεγαλύτερος χρόνος κοχλίωσης - Κίνδυνος παραμόρφωσης και καταστροφής του σπειρώματος
8 Βήματα σχεδιασμού εξωτερικού σπειρώματος Βήματα σχεδιασμού κοχλιοτομημένης οπής Σχεδιασμός λοξότμησης 45 ο Σχεδιασμός τελειώματος σε 30 o με τον οριζόντιο άξονα Σχεδιασμός κύκλου που παριστά την εξωτερική διάμετρο. 1. Διαμπερής κοχλιοτομημένη οπή Τομή Σχεδιασμός κύκλου που παριστά την εξωτερική διάμετρο. Πυρήνας Εξ. διάμετρος ς. Εσ. διάμετρος άμετρος Εξ. δι ιάμετρος Εσ. δι Κορυφή Σχεδιασμός τόξου κύκλου που παριστά την εσωτερική διάμετρο. Οι γραμμές διαγράμμισης φτάνουν ως την γραμμή κορυφών. Σχεδιασμός τόξου κύκλου που παριστά την εσωτερική διάμετρο. Βήματα σχεδιασμού κοχλιοτομημένης οπής Βήματα σχεδιασμού κοχλιοτομημένης οπής 2. Τυφλή κοχλιοτομημένη οπή Σχεδιασμός τόξου κύκλου που παριστά την εξωτερική διάμετρο. 2. Τυφλή κοχλιοτομημένη οπή Εξ. δι άμετρος Εσ. διά άμετρος Βάθος σπειρώματος Βάθος οπής Σχεδιασμός κύκλου που παριστά την εσωτερική διάμετρο. Τομή
9 Διαστασιολόγηση Διαστασιολόγηση Κοχλιοτομημένη οπή Χρήση τοπικής σημείωσης για τον ορισμό του είδους σπειρώματος, της ονομαστικής διάστασης και του βήματος (για λεπτά σπειρώματα) Χρήση τυπικής μεθόδου για τον ορισμό του μήκους σπειρώματος. M10 Κανονικό σπείρωμα M Λεπτό σπείρωμα Χρήση τοπικής σημείωσης για τον ορισμό: 1. Είδους σπειρώματος 2. Ονομαστικής διάστασης 3. Βήματος (λεπτό σπείρωμα) M10 Προσοχή, η απόσταση του πέρατος κοχλιοτόμησης από το πέρας της οπής ορίζεται από τους κανονισμούς! l Χρήση τυπικής μεθόδου για τον ορισμό: 1. Βάθους οπής 2. Βάθους σπειρώματος Μέτρηση σπειρωμάτων Κοχλίας: Ονοματολογία Κοχλίας είναι ένας κύλινδρος με σπείρωμα και κεφαλή. Κοχλίας με εξαγωνική κεφαλή και περικόχλιο Ύψος κεφαλής Μήκος κορμού Άνοιγμα κλειδιού
10 Κοχλίας: Ονοματολογία Κοχλίας: Τυποποιημένο τεμάχιο Περαστός Σε τυφλή οπή κορμού Εξαγωνικός κοχλίας με μετρικό σπείρωμα Πιν. Α-12-8, Σελ. 125 Κοχλίας : Σχεδιασμός Περικόχλιο : Σχεδιασμός Σχεδιασμός κεφαλής Σχεδιασμός κορμού Σχεδιασμός πλάγιας όψης Οι διαστάσεις του περικοχλίου δίδονται στους πίνακες του βιβλίου r=e/4, e, η διαγώνιος του εξαγώνου r=3/4 e K Μήκος κορμού S Ύψος κεφαλής Άνοιγμα κλειδιού Οι διακεκομμένες γραμμές που απεικονίζουν το εσωτερικό σπείρωμα παραλείπονται για σπείρωμα παραλείπονται για λόγους σαφήνειας.
11 Κοχλίας : Εφαρμογή - Διαστασιολόγηση Μ10 x 40, DIN 601 Φυτευτός κοχλίας : Ονοματολογία Φυτευτός κοχλίας (μπουζόνι) είναι ένας κοχλίας χωρίς κεφαλή με σπείρωμα και στα δύο άκρα.. Σε κατασκευαστικά σχέδια και σχέδια συναρμολόγησης προστίθεται και η απαιτούμενη ροπή σύσφιγξης. Σχεδιαστική απεικόνιση Μήκος Φυτευτός κοχλίας : Τυποποίηση Φυτευτός κοχλίας : Βήματα σχεδιασμού Λοξότμηση Τελείωμα Λοξότμηση 45 ο σπειρώματος (30 ο ) 45 ο Εξ. Διάμ. Εσ. Διάμ. Μήκος φυτευτού κοχλία
12 Φυτευτός κοχλίας : Εφαρμογή Είδη κοχλίων - Διαστάσεις 1. Άνοιγμα οπής. 2. Κοχλιοτόμηση. 3. Κοχλίωση μπουζονιού. 4. Τοποθέτηση του τεμαχίου προς συναρμολόγηση. 5. Τοποθέτηση ροδέλας και κοχλίωση του περικοχλίου.. Οι κοχλίες δεν σχεδιάζονται σε τομή. Κεφαλωτοί κοχλίες : Ονοματολογία Εξαγωνικοί Με κωνική, ημιστρόγγυλη, κυλινδρική κεφαλή με εγκοπή Κοίλης κυλινδρικής κεφαλής (allen) Κοινές ροδέλλες Παράκυκλοι (Ροδέλλες) Ροδέλλες ασφαλείας
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΠΕΙΡΩΜΑΤΑ - ΚΟΧΛΙΕΣ
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΠΕΙΡΩΜΑΤΑ - ΚΟΧΛΙΕΣ Διαμόρφωση Σπειρώματος Το σπείρωμα δημιουργείται από την κίνηση ενός παράγοντος σχήματος (τρίγωνο, ορθογώνιο κλπ) πάνω σε έλικα που
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΠΕΙΡΩΜΑΤΑ - ΚΟΧΛΙΕΣ
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΠΕΙΡΩΜΑΤΑ - ΚΟΧΛΙΕΣ Διαμόρφωση Σπειρώματος Το σπείρωμα δημιουργείται από την κίνηση ενός παράγοντος σχήματος (τρίγωνο, ορθογώνιο κλπ) πάνω σε έλικα που
Διαβάστε περισσότεραΟι κοχλίες συνδέσεως έχουν ως αποστολή την ασφαλή και λυόμενη (μή μόνιμη) σύνδεση, ανεξάρτητων στοιχείων μιας κατασκευής ή μηχανής μεταξύ τους.
ΚΟΧΛΙΕΣ 1 Οι κοχλίες συνδέσεως έχουν ως αποστολή την ασφαλή και λυόμενη (μή μόνιμη) σύνδεση, ανεξάρτητων στοιχείων μιας κατασκευής ή μηχανής μεταξύ τους. Οι κοχλίες κινήσεως μετατρέπουν κατά κανόνα την
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΑΘΗΜΑ 3-1 ΚΑΡΦΙΑ ΚΑΡΦΟΣΥΝΔΕΣΕΙΣ,
Διαβάστε περισσότεραΟι κοχλίες συνδέσεως έχουν ως αποστολή την ασφαλή και λυόμενη (μή μόνιμη) σύνδεση, ανεξάρτητων στοιχείων μιας κατασκευής ή μηχανής μεταξύ τους.
ΚΟΧΛΙΕΣ 1 Οι κοχλίες συνδέσεως έχουν ως αποστολή την ασφαλή και λυόμενη (μή μόνιμη) σύνδεση, ανεξάρτητων στοιχείων μιας κατασκευής ή μηχανής μεταξύ τους. Οι κοχλίες κινήσεως μετατρέπουν κατά κανόνα την
Διαβάστε περισσότεραΣχεδίαση τομών Συνήθη σφάλματα και Παραδείγματα. Πότε;
Σχεδίαση τομών... Πότε;...Συνήθη σφάλματα και Παραδείγματα Οταν 5 η Διάλεξη οι οψεις Τομές δημιουργουν συγχυση και δεν εμφανιζουν αμεσα το εσωτερικο των αντικειμένων Ι.Ν. ΑΓ. ΔΗΜΗΤΡΙΟΥ, ΗΠΕΙΡΟΣ Διαδικασία
Διαβάστε περισσότεραΟι κοχλίες συνδέσεως έχουν ως αποστολή την ασφαλή και λυόμενη (μη μόνιμη) σύνδεση, ανεξάρτητων στοιχείων μιας κατασκευής ή μηχανής μεταξύ τους.
ΚΟΧΛΙΕΣ 1 Οι κοχλίες συνδέσεως έχουν ως αποστολή την ασφαλή και λυόμενη (μη μόνιμη) σύνδεση, ανεξάρτητων στοιχείων μιας κατασκευής ή μηχανής μεταξύ τους. Οι κοχλίες κινήσεως μετατρέπουν κατά κανόνα την
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΑΤΡΑΚΤΩΝ. Λειτουργικές Παράμετροι
Άτρακτος: περιστρεφόμενο στοιχείο κυκλικής (συνήθως) διατομής (πλήρους ή σωληνωτής) που χρησιμοποιείται για να μεταφέρει ισχύ ή κίνηση Άξονας: μη περιστρεφόμενο στοιχείο που δεν μεταφέρει ροπή και χρησιμοποιείται
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΕΤΑΔΟΣΗ ΚΙΝΗΣΗΣ - ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ
Διαβάστε περισσότεραΛόγος δημιουργίας τομών
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Θέματα Τομές στο Μηχανολογικό Σχέδιο Εισαγωγή Ορολογία και συνήθης πρακτική Είδη τομών Διαστασιολόγηση Επικοινωνία μέσω του μηχανολογικού
Διαβάστε περισσότεραΔΙΑΙΡΕΤΗΣ. Το ΤΕ είναι συνήθως κυλινδρικό, μπορεί όμως να είναι και κωνικό ή πρισματικό.
ΔΙΑΙΡΕΤΗΣ ΓΕΝΙΚΑ O διαιρέτης είναι μηχανουργική συσκευή, με την οποία μπορούμε να εκτελέσουμε στην επιφάνεια τεμαχίου (TE) κατεργασίες υπό ίσες ακριβώς γωνίες ή σε ίσες αποστάσεις. Το ΤΕ είναι συνήθως
Διαβάστε περισσότεραιαστασιολόγηση Περιεχόμενα Ορισμός Μηχανολογικός Σχεδιασμός Εισαγωγή Στοιχεία διαστασιολόγησης ιαστασιολόγηση χαρακτηριστικών αντικειμένων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή ιαστασιολόγηση η Στοιχεία διαστασιολόγησης ιαστασιολόγηση χαρακτηριστικών αντικειμένων Πρακτική διαστασιολόγησης Μηχανολογικός
Διαβάστε περισσότεραΜηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 5: Κοχλίες Ι Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΈλεγχος Μηχανουργικού Προϊόντος Άσκηση 3 η
Μετροτεχνικό Εργαστήριο Τομέας Βιομηχανικής Διοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών Έλεγχος Μηχανουργικού Προϊόντος Άσκηση 3 η Δομή παρουσίασης 1. ΕΙΣΑΓΩΓΗ ΙΣΤΟΡΙΚΑ ΣΤΟΙΧΕΙΑ 2. ΕΙΔΗ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α
Διαβάστε περισσότεραΈλεγχος Μηχανουργικού Προϊόντος Άσκηση 4 η
Μετροτεχνικό Εργαστήριο Τομέας Βιομηχανικής Διοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών Έλεγχος Μηχανουργικού Προϊόντος Άσκηση 4 η ΓΕΩΜΕΤΡΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ d - Εξωτερική διάμετρος d
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΣΤΑΣΕΙΣ - ΤΟΜΕΣ
ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΣΤΑΣΕΙΣ - ΤΟΜΕΣ Διαστασιολόγηση Μια από τις σημαντικότερες εργασίες του σχεδιαστή, αλλά και η πιο δύσκολη και υπεύθυνη, είναι η σωστή τοποθέτηση διαστάσεων
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΟΥΡΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Μετρολογία ΚΕΦΑΛΑΙΟ 3.5. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΜΗΚΩΝ Μικρόμετρο
ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΟΥΡΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Μετρολογία ΚΕΦΑΛΑΙΟ 3.5 ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΜΗΚΩΝ Μικρόμετρο Τα μικρομετρα χρησιμοποιούνται για τη μέτρηση εσωτερικών και εξωτερικών διαστάσεων και για μετρήσεις βάθους.
Διαβάστε περισσότεραΘΕΜΑ 1 ο Α. Ποια είναι τα μορφολογικά χαρακτηριστικά και ποια τα υλικά κατασκευής των δισκοειδών συνδέσμων; Μονάδες 12
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 30 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ
Διαβάστε περισσότερα1.4 Κλίµακες σχεδίασης και κανόνες τοποθέτησης διαστάσεων
1.4 Κλίµακες σχεδίασης και κανόνες τοποθέτησης διαστάσεων 1.4.1 Κλίµακες σχεδίασης Στο µηχανολογικό σχέδιο είναι επιθυµητό να σχεδιάζεται ένα αντικείµενο σε φυσικό µέγεθος, γιατί έτσι παρουσιάζεται η αληθινή
Διαβάστε περισσότεραΣχ. 6.1α. Είδη κατσαβιδιών.
6. ΚΑΤΣΑΒΙΔΙΑ ΚΛΕΙΔΙΑ Η βίδα μαζί με το περικόχλιο (παξιμάδι) ή χωρίς αυτό, αποτελεί ένα μέσο που μας επιτρέπει να συνδέουμε δυο ή περισσότερα κομμάτια. Για να πραγματοποιήσουμε όμως τη σύνδεση με τη βίδα
Διαβάστε περισσότεραΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΕΠΑΛ
ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΕΠΑΛ Προτεινόμενα θέματα 2017-2018 ΕΚΠΑΙΔΕΥΤΙΚΟΣ: ΒΑΝΤΣΗΣ Β. ΓΕΩΡΓΙΟΣ ΜΗΧΑΝΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ ΠΕ17 1 ο Θ Ε Μ Α Α. Να γράψετε στο τετράδιό σας το γράμμα καθεμιάς από τις παρακάτω προτάσεις
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΑΘΗΜΑ 4-2 ΑΤΡΑΚΤΟΙ ΑΞΟΝΕΣ - ΣΤΡΟΦΕΙΣ
Διαβάστε περισσότερα2 β. ιάμετρος κεφαλών (ή κορυφών) 3 γ. Βήμα οδόντωσης 4 δ. ιάμετρος ποδιών 5 ε. Πάχος δοντιού Αρχική διάμετρος
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΤΡΙΤΗ 11 ΙΟΥΝΙΟΥ 019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό
Διαβάστε περισσότεραΣΤΟΧΟΙ: Με τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει:
ΤΟΜΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει: 1. Να αναγνωρίζει τη σημασία της τομής. 2. Να επιλέγει τη θέση των επιπέδων τομής. 3. Να σχεδιάζει και να συμβολίζει τα επίπεδα
Διαβάστε περισσότεραΈλεγχος Μηχανουργικού Προϊόντος Άσκηση 4 η
Μετροτεχνικό Εργαστήριο Τομέας Βιομηχανικής Διοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών Έλεγχος Μηχανουργικού Προϊόντος Άσκηση 4 η ΓΕΩΜΕΤΡΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ d - Εξωτερική διάμετρος d
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΟΜΕΣ - ΔΙΑΣΤΑΣΕΙΣ
ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΟΜΕΣ - ΔΙΑΣΤΑΣΕΙΣ Τομές Η σχεδίαση σε τομή είναι απαραίτητη όταν θέλουμε να αποδώσουμε το εσωτερικό ενός αντικειμένου ή ενός μηχανήματος. Η σχεδίαση σε τομή
Διαβάστε περισσότεραΔΙΑΣΤΑΣΕΙΣ ΣΧΕΔΙΟΥ. Αναγκαιότητα τοποθέτησης διαστάσεων. 29/10/2015 Πολύζος Θωμάς
Αναγκαιότητα τοποθέτησης διαστάσεων 29/10/2015 Πολύζος Θωμάς 1 Αναγκαιότητα τοποθέτησης διαστάσεων Σφάλμα μέτρησης που οφείλεται: Σε υποκειμενικό λάθος εκείνου που κάνει την μέτρηση. Σε σφάλμα του οργάνου
Διαβάστε περισσότεραΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.
ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 4
Διαβάστε περισσότεραΣΕΙΡΑ ΟΡΓΑΝΩΝ ΜΗΧΑΝΙΚΗΣ
ΣΕΙΡΑ ΟΡΓΑΝΩΝ ΜΗΧΑΝΙΚΗΣ ΕΓΧΕΙΡΙΔΙΟ ΛΕΙΤΟΥΡΓΙΑΣ 1 Συσκευή Κεκλιμένου Επιπέδου Πολλαπλών Χρήσεων 1.1 Συναρμολόγηση Οριζοντίωση σχήμα 1 σχήμα 2 σχήμα 3 σχήμα 4 σχήμα 5 σχήμα 6 ΓΕΝΙΚΗ ΜΗΧΑΝΟΥΡΓΙΚΗ Α.Ε. 1 Απαιτούνται:
Διαβάστε περισσότεραΚΟΧΛΙΟΣΥΝ ΕΣΕΙ Σ. ΑΣΚΗΣΗ 1η
ΚΟΧΛΙΟΣΥΝ ΕΣΕΙ Σ ΑΣΚΗΣΗ 1η Η πρώτη (α) εργασία αποσκοπεί _ στην εύρεση: α) των διαστάσεων µήκους φυτευτού κοχλία ή κοχλία, β) της διαµέτρου οπής στη σύνδεση τεµαχίων, γ) του.µήκους κοχλιώσεως, και του
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ ΓΙΑ ΕΠΙΠΕΔΗ ΣΤΕΓΗ
Επίπεδη στέγη ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ ΓΙΑ ΕΠΙΠΕΔΗ ΣΤΕΓΗ Τρίγωνο ανύψωσης για επίπεδη στέγη Αλουμίνιο (EN-AW-6063 T6) Προσαρμόσιμο ανά 5 μοίρες Ολοκληρωτικά προσυναρμολογημένο g Το τρίγωνο μπορεί να στερεωθεί
Διαβάστε περισσότεραΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ I CAD
ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ I CAD ΘΕΜΑΤΑ ΑΣΚΗΣΕΩΝ ΣΧΕΔΙΟΥ Κώστας Κονταξάκης - Θωμάς Πολύζος - Γιώργος Κοζυράκης Page 1 of 29 Page 2 of 29 Θεωρία Εισαγωγή στη Μηχανολογική σχεδίαση Τρισδιάστατη αντίληψη δισδιάστατη
Διαβάστε περισσότεραΕργαστήριο Εισαγωγή στο Σχεδιασμό Τεχνολογικών Συστημάτων Τομές & Διαστάσεις
Εργαστήριο Εισαγωγή στο Σχεδιασμό Τεχνολογικών Συστημάτων Τομές & Διαστάσεις Τομές Οι τομές είναι όψεις στις οποίες έχει γίνει μια νοερή τομή σε ένα επίπεδο κάθετο στο επίπεδο σχεδίασης. Το τμήμα του αντικειμένου
Διαβάστε περισσότεραΔΙΑΣΤΑΣΕΙΣ. Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων
ΔΙΑΣΤΑΣΕΙΣ Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων Η Σωστή τοποθετηση Διαστασεων στο Μηχανολογικο Σχεδιο ειναι απαραιτητη για τη Σωστή Κατασκευή Εχετε κατι να παρατηρησετε;
Διαβάστε περισσότεραμε τόξο ακτίνας R 43 1.2.14 Σύνδεση ευθείας τ με δύο τόξα ακτίνας R και R 1
Πρόλογος 19 1 1.1 ΒΑΣΙΚΟΙ ΚΑΝΟΝΙΣΜΟΙ ΚΑΙ ΟΡΓΑΝΑ ΣΧΕΔΙΟΥ 21 1.1.1 Χαρτί σχεδίου 21 1.1.2 Κανονισμοί στο σχέδιο 21 1.1.3 Τοποθέτηση του χαρτιού 23 1.1.4 Αναδίπλωση 23 1.1.5 Υπόμνημα 24 1.1.6 Κλίμακα 25 1.1.7
Διαβάστε περισσότεραΣχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος)
Άσκηση Μ1 Θεωρητικό μέρος Μήκος και μάζα (βάρος) Όργανα μέτρησης μήκους Διαστημόμετρο Με το διαστημόμετρο μετράμε μήκη μέχρι και μερικά μέτρα, σε χαμηλές απαιτήσεις ως προς την ακρίβεια. Το κύριο μέρος
Διαβάστε περισσότερα289 Κεφάλαιο 6 Τομές 289
Κεφάλαιο 6 Τομές Mark Manders, Ολλανδός καλλιτέχνης Μικρή άψητη πήλινη μορφή Συμμετοχή με ένα γλυπτό του στην 1 η Μπιενάλε της Αθήνας 2007 Destroy Athens 6.1 Τι είναι τομή στο σχέδιο; Πολλές φορές στο
Διαβάστε περισσότεραΑΡΧΗ ΜΑ: ΘΕΜΑ Α1. Να. στ. σης. εγκοπή. Πείρος με
Γ ΤΑΞΗΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΑΡΑΣΚΕΥΗ ΣΕΠΤΕΜΒΡΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜ ΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝΝ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΥΠΟΛΟΓΙΣΜΟΣ ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ TREYLOR ΜΕΓΙΣΤΗΣ ΙΚΑΝΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑΣ ΦΟΡΤΙΟΥ 500Kp ΣΠΟΥΔΑΣΤΕΣ
Διαβάστε περισσότεραΣΥΝΔΕΣΕΙΣ ΕΞΑΡΤΗΜΑΤΩΝ
8 Κ Ε Φ Α Λ Α Ι Ο ΣΥΝΔΕΣΕΙΣ ΕΞΑΡΤΗΜΑΤΩΝ 8. Συνδέσεις Γενικά ονομάζουμε συνδέσεις τις άμεσες ενώσεις δύο εξαρτημάτων ή μηχανικών οργάνων. Οι ενώσεις αυτές μπορεί να είναι: Κινητές, όπου τα συνδεδεμένα κομμάτια
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΚΕΣ ΚΑΜΠΥΛΕΣ
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΜΠΥΛΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει: 1. Να σχεδιάζει γεωμετρικές καμπύλες (ελλειψοειδή, ωοειδή, παραβολή, υπερβολή, έλικα, σπείρα) εφαρμόζοντας τους
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Στοιχεία Μηχανών ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στοιχεία Μηχανών ΙΙ Ενότητα 1: Γενικά στοιχεία οδοντωτών τροχών - Γεωμετρία οδόντωσης Μετωπικοί τροχοί με ευθεία οδόντωση Δρ Α.
Διαβάστε περισσότεραΠΑΝΕΛΛΗΝΙΕΣ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΘΕΜΑΤΑ
ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΘΕΜΑ Α ΘΕΜΑΤΑ Α1. Να γράψετε στο τετράδιό σας τους αριθμούς 1, 2, 3, 4, 5 από τη στήλη Α και δίπλα ένα από τα γράμματα α, β, γ, δ, ε, στ της στήλης
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» ΕΠΑ.Λ.
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» ΕΠΑ.Λ. ΖΗΤΗΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ ΤΜΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ Τ.Ε.Λ. ΠΕΜΠΤΗ 1 ΙΟΥΝΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΙ ΙΚΟΤΗΤΑΣ ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΑΠΟΦΟΙΤΟΥΣ
Διαβάστε περισσότεραΑΡΧΗ ΜΑ: ΘΕΜΑ Α1. Να
Γ ΤΑΞΗΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΕΜΠΤΗ 21 ΣΕΠΤΕΜΒΡΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜ ΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝΝ
Διαβάστε περισσότεραΣχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία
2. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΧΑΡΑΞΗΣ 2.1 Μετρητικές ταινίες Οι μετρητικές ταινίες, πτυσσόμενες (αρθρωτές) ή περιελισσόμενες σε θήκη, είναι κατασκευασμένες από χάλυβα ή άλλο ελαφρύ κράμα και έχουν χαραγμένες υποδιαιρέσεις
Διαβάστε περισσότεραΓενικές αρχές στοιχείων μηχανών και αντοχής υλικών
Γενικές αρχές στοιχείων μηχανών και αντοχής υλικών Στοιχεία Μηχανών Τα στοιχεία μηχανών είναι τεμάχια που χρησιμοποιούνται κατ' επανάληψη, στην ίδια ή παραπλήσια μορφή, για τη συγκρότηση μηχανών, συσκευών
Διαβάστε περισσότεραΤροχαλίες και τροχοί. Μηχανολογικό Σχέδιο ΙΙ. Dr.-Ing. Β. Ιακωβάκης
Τροχαλίες και τροχοί Μηχανολογικό Σχέδιο ΙΙ Dr.-Ing. Β. Ιακωβάκης Βιβλιογραφία Handbuch Kettentechnik, IWIS http://www.hreiter.at/userfiles/file/36af028e-4450-44ae-bca1-816754d1474dkettenraeder.pdf Ιμαντοκινήσεις
Διαβάστε περισσότεραΟδοντωτοί τροχοί. Εισαγωγή. Είδη οδοντωτών τροχών. Σκοπός : Μετωπικοί τροχοί με ευθύγραμμους οδόντες
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Διδάσκοντες : X. Παπαδόπουλος Λ. Καικτσής Οδοντωτοί τροχοί Εισαγωγή Σκοπός : Μετάδοση περιστροφικής κίνησης, ισχύος και ροπής από έναν άξονα
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων
Διαβάστε περισσότεραΜηχανουργικές Κατεργασίες. Τόρνευση- Φασεολόγιο. Μηχανουργικές Κατεργασίες, Διδάσκων: Δρ. Δημητρέλλου Σωτηρία, Μηχ/γος Μηχ/κός
Μηχανουργικές Κατεργασίες Τόρνευση- Φασεολόγιο Μηχανουργικές Κατεργασίες, Διδάσκων: Δρ. Δημητρέλλου Σωτηρία, Μηχ/γος Μηχ/κός Κατεργασία κοπής με τόρνο Κατεργασία κοπής με τόρνο Αρχικοί έλεγχοι λειτουργίας
Διαβάστε περισσότεραΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο
Διαβάστε περισσότεραΜηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 6: Κοχλίες ΙΙ Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότερα2.2 Αναπτύγµατα. Σχέδιο Ειδικότητας Αµαξωµάτων
2.2 Αναπτύγµατα Ανάπτυγµα ενός γεωµετρικού στερεού σώµατος είναι η αποτύπωση σε ένα επίπεδο του συνόλου των επιφανειών του. Με βάση τα αναπτύγµατα, γίνεται η κοπή της πρώτης ύλης (έλασµα, λάµα) και µε
Διαβάστε περισσότεραΓ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ ΤΕΤΑΡΤΗ 9/04/07 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις που
Διαβάστε περισσότεραΒασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
Διαβάστε περισσότεραΕΡΓΑΛΕΙΑ ΚΟΠΗΣ ΣΠΕΙΡΩΜΑΤΩΝ ΣΤΟ ΕΦΑΡΜΟΣΤΗΡΙΟ. Εκπαιδευτής Μηχανολογίας Γιώργος Πηλάτσης
ΕΡΓΑΛΕΙΑ ΚΟΠΗΣ ΣΠΕΙΡΩΜΑΤΩΝ ΣΤΟ ΕΦΑΡΜΟΣΤΗΡΙΟ 1 ΚΟΧΛΙΟΤΟΜΟΙ (ΚΟΥΛΑΟΥΖΑ) 2 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΠΕΙΡΩΜΑΤΩΝ Χαρακτηριστικά για κάθε σπείρωμα είναι τα εξής μεγέθη: 1. Τo προφίλ (τριγωνικό, τραπεζοειδές κ.λ.π.) 2.
Διαβάστε περισσότερα1.2 Στοιχεία Μηχανολογικού Σχεδίου
1.2 Στοιχεία Μηχανολογικού Σχεδίου Τα µηχανολογικά σχέδια, ανάλογα µε τον τρόπο σχεδίασης διακρίνονται στις παρακάτω κατηγορίες: Σκαριφήµατα Κανονικά µηχανολογικά σχέδια Προοπτικά σχέδια Σχηµατικές παραστάσεις.
Διαβάστε περισσότερα3. ΣΥΝΔΕΤΙΚΑ ΥΛΙΚΑ & ΤΥΠΟΙ ΣΥΝΔΕΣΕΩΝ
Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Σχεδιασμού & Τεχνολογίας Ξύλου & Επίπλου Μάθημα: Τεχνολογία ξύλινων κατασκευών ΙΙ. Εξωτερικές κατασκευές 3. ΣΥΝΔΕΤΙΚΑ ΥΛΙΚΑ & ΤΥΠΟΙ ΣΥΝΔΕΣΕΩΝ Καθ. Γεωργίου
Διαβάστε περισσότεραΣύνδεσμοι στερέωσης για στέγες
Σύνδεσμοι στερέωσης για στέγες Συστήματα Στερέωσης Στέγης άγκιστρα στέγης ΑΛΟΥΜΙΝΙΟΥ Με 3 θέσεις στερέωσης Αλουμίνιο (ΕΝ-AW-6082 T6) g Χαμηλό βάρος Ευελιξία χάριν της προσαρμοστικότητας σε ύψος και πλευρά
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10
ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09
Διαβάστε περισσότερα2. τα ρωμαϊκά, που το λούκι έχει μετασχηματιστεί σε επίπεδο και έχει ενσωματωθεί στο καπάκι
Οι αριθμοί αντιμετωπίζονται με τον ίδιο τρόπο, αλλά είναι σημαντικό να μελετήσουμε τον τρόπο που σημειώνονται οι αριθμοί που αποδίδουν στα σχέδια τις διαστάσεις του αντικειμένου. Οι γραμμές διαστάσεων
Διαβάστε περισσότεραΕΠΙΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ. Για την καλύτερη κατανόηση των γραναζιών αρχικά αγνοούμε τις εγκοπές τους, έτσι παρατηρούμε ότι:
1 ΕΠΙΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ Ο ΟΝΤΩΣΕΩΝ 2 Για την καλύτερη κατανόηση των γραναζιών αρχικά αγνοούμε τις εγκοπές τους, έτσι παρατηρούμε ότι: Ηπεριστροφήτωνδύοαξόνωνθαείναι αντίθετης φοράς Η διάμετρος των δίσκων
Διαβάστε περισσότεραΕσωτερικές Αλληλεπιδράσεις Νο 3.
Το θέμα του 05, (επαναληπτικές) Εσωτερικές λληλεπιδράσεις Νο 3. Δύο ράβδοι είναι συνδεδεμένες στο άκρο τους και σχηματίζουν σταθερή γωνία 60 ο μεταξύ τους, όπως φαίνεται στο Σχήμα. Οι ράβδοι είναι διαφορετικές
Διαβάστε περισσότεραΣελίδα. Σελίδα 4. ΒΑΣΗ ΑΠΟ ΟΡΙΖΟΝΤΙΑ ΚΑΙ ΚΑΘΕΤΑ ΠΡΟΦΙΛ (ΣΤΑΥΡΩΤΟΥ ΤΥΠΟΥ) 8. 5. Λαμαρίνα στερέωσης 9
Οδηγίες εγκατάστασης Συστημάτων Στερέωσης Περιεχόμενα Σελίδα Σελίδα 1. Κεραμοσκεπή με ξύλινο σκελετό 2-4 2. Στέγη από λαμαρίνα (κυματοειδής, τραπεζοειδής, σάντουϊτς) 5 2.1 Στερέωση με προ/νες βίδες στήριξης
Διαβάστε περισσότεραΠανεπιστήμιο Θεσσαλίας Τμήμα Μηχανολόγων Μηχ/κων Στοιχεία Μηχανών Διδάσκων: Αλ. Κερμανίδης. Κοχλίες
Κοχλίες Γενικά-Ορισμοί- Προδιαγραφές Ανάλογα με τον σκοπό οι κοχλίες διακρίνονται σε (α) κοχλίες σύσφιγξης (σύνδεση με κοχλίες) και σε () κοχλίες κινήσεως ή μεταφοράς ισχύος Οι κοχλίες σύσφιγξης χρησιμοποιούνται
Διαβάστε περισσότεραΕ Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.
Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.
Διαβάστε περισσότεραΜέτρον Αυτοματισμοί. Οδηγίες Εγκατάστασης 2ΦK Πόρτας Ορόφου A2. Εγχειρίδιο Οδηγιών
Μέτρον Αυτοματισμοί Οδηγίες Εγκατάστασης 2ΦK Πόρτας Ορόφου A2 Εγχειρίδιο Οδηγιών Περιεχόμενα 3-6 4 4 5 6 7-10 11-14 15-18 19-20 21-22 23-26 27-30 31-32 33-34 1. Περιεχόμενα συσκευασίας 1.1 Περιεχόμενα
Διαβάστε περισσότεραΔΗΜΟΣΙΑ ΕΠΙΧΕΙΡΗΣΗ ΗΛΕΚΤΡΙΣΜΟΥ Α.Ε. ΔΙΕΥΘΥΝΣΗ ΝΕΩΝ ΕΡΓΩΝ ΜΕΤΑΦΟΡΑΣ
ΔΗΜΟΣΙΑ ΕΠΙΧΕΙΡΗΣΗ ΗΛΕΚΤΡΙΣΜΟΥ Α.Ε. ΔΙΕΥΘΥΝΣΗ ΝΕΩΝ ΕΡΓΩΝ ΜΕΤΑΦΟΡΑΣ ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΠΥΡΓΩΝ ΓΡΑΜΜΩΝ ΜΕΤΑΦΟΡΑΣ 150 KV 1. Ελαφρού τύπου απλού κυκλώματος Ε 2. Βαρέος τύπου απλού κυκλώματος Β 3. Βαρέος τύπου
Διαβάστε περισσότεραΚατάλογος περιεχομένων
Κατάλογος περιεχομένων Οδηγός χρήσης...3 Στήριξη φωτοβολταϊκών πλαισίων σε σκεπή...4 Στήριξη φωτοβολταϊκών πλαισίων σε ταράτσα...5 Διασύνδεση των φωτοβολταϊκών πλαισίων...6 Πως συνδέονται τα πάνελ με τα
Διαβάστε περισσότεραΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότεραΒΙΔΕΣ ΚΑΤΑ DIN 933. d 6 8 10 12 14 16 18 20 22 24 27 30 s 10 13 17 19 22 24 27 30 32 36 41 46 k 4 5,3 6,4 7,5 8,8 10 11,5 12,5 14 15 17 18,7
ΒΙΔΕΣ ΚΑΤΑ DIN 933 ΠΟΙΟΤ: 8.8 d 6 8 10 12 14 16 18 20 22 24 27 30 s 10 13 17 19 22 24 27 30 32 36 41 46 k 4 5,3 6,4 7,5 8,8 10 11,5 12,5 14 15 17 18,7 BHMA (P) 1 1,25 1,5 1,75 2 2 2,5 2,5 2,5 3 3 3,5 ΜΗΚΟΣ
Διαβάστε περισσότεραΜέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών
Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του
Διαβάστε περισσότεραΠρόλογος 9. Τα βασικά στοιχεία του AutoCAD. Μάθημα 1.1 Εισαγωγή στο AutoCAD και στη σχεδίαση με Η/Υ 15 1.1.1 Η σχεδίαση με τη βοήθεια Η/Υ
Περιεχόμενα Πρόλογος 9 Ενότητα 1 η Τα βασικά στοιχεία του AutoCAD Μάθημα 1.1 Εισαγωγή στο AutoCAD και στη σχεδίαση με Η/Υ 15 1.1.1 Η σχεδίαση με τη βοήθεια Η/Υ 17 1.1.2 Ας γνωρίσουμε το AutoCad 18 1.1.3
Διαβάστε περισσότερα2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
Διαβάστε περισσότεραΚεφάλαιο 7 Γεωμετρικές Κατασκευές
Κεφάλαιο 7 Γεωμετρικές Κατασκευές Συντομεύσεις Ακρωνύμια... 2 Σύνοψη... 3 Προαπαιτούμενη γνώση... 3 7.1. Κατασκευή ευθύγραμμων τμημάτων... 3 7.2. Κατασκευή γωνιών... 8 7.3. Κατασκευή πολυγώνων... 11 7.4.
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
Διαβάστε περισσότερα1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.
Ερωτήσεις ανάπτυξης 1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο (A = 90 ) και πλευρές = 3 cm, = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Να βρείτε: α) Το εµβαδό Ε Π της παράπλευρης επιφάνειας.
Διαβάστε περισσότεραΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ.
ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΔΙΑΡΚΕΙΑ: 1 περιόδους 28/9/2008 12:48 καθ. Τεχνολογίας 28/9/2008 12:57 Προοπτικό σχέδιο με 2 Σημεία Φυγής Σημείο φυγής 1 Σημείο φυγής 2 Γωνία κτιρίου
Διαβάστε περισσότεραΟδηγίες συναρμολόγησης
604 968 0/005 GR Για τον τεχνικό Οδηγίες συναρμολόγησης Σετ σύνδεσης λέβητα-μπόιλερ Logano G5/G5 Logalux LT00 Διαβάστε προσεκτικά πριν από τη συναρμολόγηση Περιεχόμενα Εγκατάσταση...............................................
Διαβάστε περισσότεραΜΕΤΑΦΟΡΙΚΕΣ ΚΑΙ ΑΝΥΨΩΤΙΚΕΣΜΗΧΑΝΕΣ. ΚΕΦΑΛΑΙΟ 2 ο : - ΜΕΤΑΦΟΡΙΚΕΣΤΑΙΝΙΕΣ ΤΑΙΝΙΕΣ -
ΜΕΤΑΦΟΡΙΚΕΣ ΚΑΙ ΑΝΥΨΩΤΙΚΕΣΜΗΧΑΝΕΣ ΚΕΦΑΛΑΙΟ 2 ο : - ΜΕΤΑΦΟΡΙΚΕΣΤΑΙΝΙΕΣ ΤΑΙΝΙΕΣ - Σχήµα 2.1: Τυπική µεταφορική ταινία Σχήµα 2.2α: Κοίλη µεταφορική ταινία Σχήµα 2.2β: Κυρτή µεταφορική ταινία Σχήµα 2.2γ: Οριζόντια
Διαβάστε περισσότεραΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών
Διαβάστε περισσότεραΑΡΧΗ ΣΕΙΣ ΣΑΒΒΑΤΟ ΜΑ: ΘΕΜΑ Α1. Να ΣΤΗΛΗ. α. β. γ. δ. ε. στ. Κεφαλής. Γρύλος
Γ ΤΑΞΗΣ HMEΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣ ΣΕΙΣ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 10 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜ ΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝΝ ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραΑΡΧΗ ΣΕΙΣ ΣΑΒΒΑΤΟ ΜΑ: ΘΕΜΑ Α1. Να. Foititikanea.gr ΣΤΗΛΗ. α. β. γ. δ. ε. στ. Κεφαλής. Γρύλος
Γ ΤΑΞΗΣ HMEΡΗΣΙΩΝ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τους αριθμούς 1, 2, 3, 4, 5 από τη στήλη Α και δίπλα ένα από τα γράμματα α, β, γ, δ, ε, στ της στήλης Β που δίνει τη σωστή αντιστοίχιση. Σημειώνεται
Διαβάστε περισσότεραΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ
Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας ΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ Κώστας Κιτσάκης Μηχανολόγος Μηχανικός ΤΕ MSc Διασφάλιση ποιότητας Επιστημονικός Συνεργάτης Άσκηση 1 Στο κιβώτιο ταχυτήτων
Διαβάστε περισσότεραΤα πλεονεκτήματα των οδοντωτών τροχών με ελικοειδή δόντια είναι:
Οδοντώσεις 1. Ποιος είναι ο λειτουργικός σκοπός των οδοντώσεων (σελ. 227) Λειτουργικός σκοπός των οδοντώσεων είναι η μετάδοση κίνησης σε περιπτώσεις ατράκτων με γεωμετρικούς άξονες παράλληλους, τεμνόμενους
Διαβάστε περισσότεραΔιάλεξη 5η Ήλωση πετρωμάτων
Εργαστήριο Τεχνολογίας ιάνοιξης Σηράγγων, ΕΜΠ Διάλεξη 5η Ήλωση πετρωμάτων ομοστατικός Σχεδιασμός και Ανάλυση των Κατασκευών Β12 Σχεδιασμός Υπογείων Έργων Α.Ι. Σοφιανός Ιστορία 1870 Μεταλλωρύχοι ανέπτυξαν
Διαβάστε περισσότερα1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα)
20 1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 1.3.1 Ορισµός- Είδη - Χρήση Σκαρίφηµα καλείται η εικόνα ενός αντικειµένου ή εξαρτήµατος που µεταφέρεται σε χαρτί µε ελεύθερο χέρι (χωρίς όργανα σχεδίασης ή
Διαβάστε περισσότεραΜηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Παραμετρική σχεδίαση Παραμετρικό αντικείμενο (2D σχήμα/3d στερεό) ονομάζουμε το αντικείμενο του οποίου η (γεωμετρική)
Διαβάστε περισσότεραΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ
2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός
Διαβάστε περισσότερα«ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» προορίζονται για αυτούς που
Οι σύντομες αυτές σημειώσεις θέματα στο μάθημα «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» προορίζονται για αυτούς που υπηρετούν τη δημόσια και δωρεάν παιδεία, και τα αγαπητά «παιδιά μου». ΔΡΑΠΕΤΣΩΝΑ 10/2013 ΜΑΡΙΟΣ ΜΟΥΡΑΤΙΔΗΣ
Διαβάστε περισσότεραα. Οι ήλοι κατασκευάζονται από ανθρακούχο χάλυβα, χαλκό ή αλουμίνιο. Σ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 6/04/206 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις
Διαβάστε περισσότερα6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο:
6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε στο
Διαβάστε περισσότεραΦύλλο 3. Δράσεις με το λογισμικό The geometer s Sketchpad. Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II
Φύλλο 3 1 ράσεις με το λογισμικό The geometer s Sketchpad Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II όμως έχει τη δικιά του φιλοσοφία και το δικό του τρόπο συνεργασίας με το
Διαβάστε περισσότεραΣχήμα 22: Αλυσίδες κυλίνδρων
Αλυσοκινήσεις Πλεονεκτήματα ακριβής σχέση μετάδοση λόγω μη ύπαρξης διολίσθησης, η συναρμολόγηση χωρίς αρχική πρόταση επειδή η μετάδοση δεν βασίζεται στην τριβή καθώς επίσης και ο υψηλός βαθμός απόδοσης
Διαβάστε περισσότερα