ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ
|
|
- Ἰεφθάε Σαμαράς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ Δ. Σαγρής, Σ. Μήτση, Κ.-Δ. Μπουζάκης, Γκ. Μανσούρ Εργαστήριο Εργαλειομηχανών και Διαμορφωτικής Μηχανολογίας, Τμήμα Μηχανολόγων Μηχανικών, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Ελλάδα ΠΕΡΙΛΗΨΗ Η εργασία παρουσιάζει μια μεθοδολογία γεωμετρικού σχεδιασμού χωρικού βραχίονα τριών βαθμών ελευθερίας για προδιαγραμμένες θέσεις του άκρου και αποφυγή θέσεων ιδιομορφίας. Ο προτεινόμενος υβριδικός αλγόριθμος επίλυσης αυτού του προβλήματος συνδυάζει έναν γενετικό αλγόριθμο, μια μέθοδο αναρρίχησης με κλίση (gradient) και μια μέθοδο ελέγχου των ορίων των μεταβλητών. Η προτεινόμενη μέθοδος εφαρμόζεται σε χωρικό βραχίονα RRR τριών βαθμών ελευθερίας με τρεις αρθρώσεις περιστροφής, με τρία προκαθορισμένα σημεία κατεργασίας. Λέξεις κλειδιά: Ρομπότ, γεωμετρικός σχεδιασμός, γενετικός αλγόριθμος, βελτιστοποίηση. 1. ΕΙΣΑΓΩΓΗ Σε πολλές βιομηχανικές εφαρμογές η απόδοση ενός ρομποτικού βραχίονα μπορεί να βελτιωθεί αισθητά με τον κατάλληλο προσδιορισμό των παραμέτρων σχεδίασής του, λαμβάνοντας υπόψη διάφορα κριτήρια. Οι μεθοδολογίες γεωμετρικού σχεδιασμού μπορούν να είναι αναλυτικές ή/και προσεγγιστικές-υπολογιστικές. Οι αναλυτικές μέθοδοι (Mavroidis, 2001), (Pamanes et al, 2000) έχουν το πλεονέκτημα να εντοπίζουν όλες τις δυνατές λύσεις, αλλά το πρόβλημα του γεωμετρικού σχεδιασμού μπορεί να επιλυθεί μόνο για λίγους χωρικούς μηχανισμούς. Οι προσεγγιστικές-υπολογιστικές μέθοδοι, οι οποίες περιλαμβάνουν μια μέθοδο βελτιστοποίησης, χρησιμοποιούνται σε προβλήματα γεωμετρικού σχεδιασμού ρομπότ οποιασδήποτε γεωμετρίας όπου απαιτούνται διάφορες προδιαγραφές, προσδιορίζουν όμως μόνο μια δυνατή λύση. Μία υβριδική μέθοδος για τον βέλτιστο σχεδιασμό ενός χωρικού βραχίονα δύο βαθμών ελευθερίας με καθορισμένες θέσεις του άκρου παρουσιάζεται στην εργασία (Sagris, 200). Ένας συνδυασμός αναλυτικής μεθόδου και μεθόδου βελτιστοποίησης χρησιμοποιείται στην εργασία (Perez et al, 2000) για τον σχεδιασμό ενός χωρικού βραχίονα RR με ορισμένη τροχιά του άκρου. Στην παρούσα εργασία, η οποία είναι συνέχεια της εργασίας (Sagris, 200), χρησιμοποιείται μία υβριδική μέθοδος για την βέλτιστο σχεδιασμό χωρικών ρομπότ λαμβάνοντας υπόψη τις προδιαγραμμένες θέσεις του άκρου και την αποφυγή των θέσεων ιδιομορφίας. 2. ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ ΠΡΟΒΛΗΜΑΤΟΣ Στην παρούσα εργασία ο βραχίονας θεωρείται ως μια ανοικτή χωρική κινηματική αλυσίδα με τρεις αρθρώσεις περιστροφής (Σχήμα 1). Ορίζεται ένα σύστημα αναφοράς Pi σε κάθε μέλος (i=0,1 3) καθώς και ένα σύστημα στο άκρο του εργαλείου P. Επίσης ορίζεται ένα σταθερό σύστημα συντεταγμένων PS ως προς το οποίο καθορίζονται τα προδιαγεγραμμένα σημεία εργασίας. Η σχετική θέση μεταξύ δύο
2 διαδοχικών συστημάτων περιγράφεται με την χρήση των x ομογενών μητρώων μετασχηματισμού και των παραμέτρων Denavit-Hartenberg (Denavit and Hartenberg, 1955). Στον πίνακα του σχήματος 1 παρατίθενται οι παράμετροι Denavit-Hartenberg του συγκεκριμένου βραχίονα. Σχήμα 1: 3-DOF βραχίονας και οι παράμετροι Denavit-Hartenberg Χρησιμοποιώντας τα ομογενή μητρώα μετασχηματισμού, η τοποθέτηση του συστήματος του εργαλείου P σε σχέση με το απόλυτο σύστημα συντεταγμένων P S δίνεται από την σχέση: A = A A A A A (1) S S όπου το μητρώο σύστημα i-1. Στην μητρωική εξίσωση (1), τα στοιχεία του μητρώου i Ai 1 περιγράφει την τοποθέτηση του συστήματος i ως προς το A S είναι γνωστά, λόγω του ότι ορίζουν την θέση και τον προσανατολισμό του συστήματος του εργαλείου P σε σχέση με το απόλυτο σύστημα συντεταγμένων P S για κάθε προκαθορισμένη τοποθέτηση του άκρου. Το δεξί μέρος της εξίσωσης (1) περιλαμβάνει όλες τις άγνωστες παραμέτρους οι οποίες είναι οι παράμετροι Denavit-Hartenberg θ i, α i, a i και d i (i=0,1,2,3). Συγκεκριμένα το μητρώο A περιλαμβάνει μόνο τις παραμέτρους θ και d. 3 Για κάθε προκαθορισμένη τοποθέτηση του εργαλείου χρησιμοποιούνται διαφορετικές τιμές των γωνιών θ 1, θ 2 και θ 3. Έτσι για μια προκαθορισμένη θέση του άκρου κατεργασίας απαιτούνται 18 άγνωστες παράμετροι, ενώ για δυο και τρεις θέσεις 21 και 2 παράμετροι αντίστοιχα. Για τον προσδιορισμό αυτών των παραμέτρων ορίζεται η αντικειμενική συνάρτηση (F) που λαμβάνει υπόψη την απόκλιση τοποθέτησης του άκρου με χρήση του διανύσματος θέσης του (F 1 ) και την αποφυγή θέσεων ιδιομορφίας με χρήση του μέτρου ευχρηστίας (F 2 ): ( ) F= F +α F = p p +α n 2 n Sr Spr 2 k w (2) k= 1 k= 1 k
3 όπου n είναι το πλήθος των προκαθορισμένων σημείων, (x,y,z) του υπολογισμένου σημείου P ως προς το σύστημα αναφοράς S, p Sr είναι το διάνυσμα θέσης p Spr είναι το διάνυσμα θέσης (x,y,z) του προκαθορισμένου σημείου P ως προς το σύστημα αναφοράς S, w k είναι το μέτρο ευχρηστίας (Yoshikawa, 1985) του σχηματισμού k του μηχανισμού και «α» είναι ο συντελεστής βαρύτητας του δεύτερου μέρους της αντικειμενικής συνάρτησης. Από την ελαχιστοποίηση της αντικειμενικής συνάρτησης προκύπτουν οι βέλτιστες τιμές των αρχικά αγνώστων παραμέτρων. Κατά την διάρκεια της διαδικασίας βελτιστοποίησης τα αρχικά καθορισμένα όρια των αγνώστων αυτών μεταβλητών περιγράφονται από τη σχέση: x i min< x i< x i max, i=1,2, m (3) όπου m είναι το πλήθος των μεταβλητών και όριο αντίστοιχα της μεταβλητής x imin και x imax είναι το κάτω και άνω x. i Οι περιορισμοί αυτοί λαμβάνουν υπόψη τα όρια των μεταβλητών των γεωμετρικών χαρακτηριστικών σχεδιασμού του βραχίονα καθώς και τη γεωμετρία του χώρου εργασίας του. 3. ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΑΛΓΟΡΙΘΜΟΣ Το μαθηματικό μοντέλο επιλύεται με μια υβριδική μέθοδο που συνδυάζει έναν γενετικό αλγόριθμο (GA) (Coley 1999), έναν αλγόριθμο βελτιστοποίησης quasi- Newton (QNA) (IMSL, 1997) και μια μέθοδο ελέγχου των ορίων των μεταβλητών (CHM) (Σχήμα 2). Δεδομένα εισόδου του αλγορίθμου αποτελούν το πλήθος και το είδος των αρθρώσεων, το πλήθος και τα αρχικά όρια των ανεξάρτητων μεταβλητών και οι παράμετροι του αλγορίθμου. Με βάση την εξίσωση (2) ορίζεται η αντικειμενική συνάρτηση, η οποία χρησιμοποιείται στα ακόλουθα βήματα του αλγορίθμου, τα οποία αποτελούν έναν τριπλό βρόγχο. Στο 1 ο βήμα του προτεινόμενου αλγορίθμου, δημιουργούνται τυχαία αρχικοί πληθυσμοί ατόμων για να ορίσουν τις τιμές των μεταβλητών, οι οποίες χρησιμοποιούνται για να υπολογιστεί η τιμή της αντικειμενικής συνάρτησης. Μετά από κάποιο πλήθος γενεών εξέλιξης, με χρήση μεθόδων διασταύρωσης, μετάλλαξης και ελιτισμού, η ελάχιστη υπολογισμένη τιμή της αντικειμενικής συνάρτησης επιλέγεται ως τελική τιμή του γενετικού αλγορίθμου. Αυτές οι βέλτιστες τιμές των ανεξαρτήτων μεταβλητών εισάγονται στο 2 ο βήμα στον QNA αλγόριθμο ως διάνυσμα αρχικής εκτίμησης μεταβλητών. Ο αλγόριθμος QNA τροποποιεί τις τιμές των μεταβλητών σε αυτό το διάνυσμα χρησιμοποιώντας μια μέθοδο κλίσης πεπερασμένων διαφορών με τρόπο που η αντικειμενική συνάρτηση να ελαχιστοποιείται. Με κάποιες επαναλήψεις αυτού του βήματος που οδηγούν σε τοπικά ελάχιστα, και συνδυάζοντας τις επαναλήψεις του 1ου βήματος, η αντικειμενική συνάρτηση οδηγείται στην προσέγγιση του γενικού ελαχίστου. Οι επιτευχθείσες βέλτιστες τιμές των μεταβλητών που προέκυψαν από τον συνδυασμό των δύο πρώτων βημάτων χρησιμοποιούνται στο 3 ο βήμα για τον περιορισμό των ορίων των μεταβλητών. Η βέλτιστη τιμή κάθε μεταβλητής στο i-1 βήμα ορίζεται ως το κέντρο του εύρους στο επόμενο βήμα i. Αυτό το εύρος μειώνεται κατά ένα ποσοστό που ορίζεται από τον χρήστη. Με τα νέα αυτά εύρη των μεταβλητών επαναλαμβάνεται η διαδικασία των δύο πρώτων βημάτων, με σκοπό τον προσδιορισμό του γενικού ελάχιστου της αντικειμενικής συνάρτησης.
4 Σχήμα 2: Διάγραμμα ροής αλγορίθμου Η ελάχιστη υπολογισμένη τιμή της αντικειμενικής συνάρτησης καθορίζει και τις τιμές των ανεξαρτήτων μεταβλητών που επιλέγονται στο τρίτο βήμα, οι οποίες αντιστοιχούν ταυτόχρονα και στις βέλτιστες τιμές των μεταβλητών του προτεινόμενου αλγόριθμου. Αυτές οι μεταβλητές προσδιορίζουν την βέλτιστη τοποθέτηση της βάσης του βραχίονα, τα γεωμετρικά του χαρακτηριστικά και για τα τέσσερα μέλη, καθώς και τις δομές του ρομπότ μέσω των μεταβλητών των γωνιών των αρθρώσεων για όλες τις προκαθορισμένες θέσεις του άκρου.. ΑΡΙΘΜΗΤΙΚΗ ΕΦΑΡΜΟΓΗ Η προτεινόμενη μεθοδολογία εφαρμόζεται σε χωρικό βραχίονα RRR με τρεις βαθμούς ελευθερίας και τρεις αρθρώσεις περιστροφής όταν προδιαγράφονται τρεις θέσεις του άκρου. Τα δεδομένα εισόδου που χρησιμοποιούνται στον αλγόριθμο για την εφαρμογή που παρουσιάζεται ακολούθως είναι τα όρια των μεταβλητών, οι παράμετροι του αλγορίθμου (βήματα GA=26, βήματα QNA=300, βήματα CHM=2) και οι προκαθορισμένες θέσεις του άκρου κατεργασίας. Οι παράμετροι, ιδιαίτερα αυτές του γενετικού αλγορίθμου, έχουν επιλεγεί σαν βέλτιστες μετά από πολλούς ελέγχους: πληθυσμός γονέων=50, πιθανότητα διασταύρωσης=70% και πιθανότητα μετάλλαξης=8%. Τα αρχικά εφαρμοζόμενα όρια των μεταβλητών είναι: 0<θ i <360 o (i=0,1,2,3,), 0<α i <360 o (i=0,1,2,3), 0<a i <1m (i=0,1,2,3), 0<d i <1m (i=0,1,2,3,), ενώ ο
5 συντελεστής βαρύτητας «α» είναι Οι τρεις προκαθορισμένες θέσεις του συστήματος του άκρου του εργαλείου (T 1, T 2, T 3 ) σε σχέση με το απόλυτο Καρτεσιανό σύστημα αναφοράς P S είναι σε m: p = , p = [ ] T, S T 1 S T 3 [ ] T [ ] T p = S T 2 Εφαρμόζοντας την προτεινόμενη μεθοδολογία με τις προαναφερθείσες συνθήκες επιτυγχάνεται ο υπολογισμός της ελαχιστοποιημένης τιμής της αντικειμενικής συνάρτησης και συνεπώς της τοποθέτησης της βάσης, της γεωμετρίας και των σχηματισμών του βραχίονα που τοποθετούν το άκρο κατεργασίας στις προκαθορισμένες θέσεις, εξασφαλίζοντας ταυτόχρονα καλή ευχρηστία. Οι υπολογισμένες βέλτιστες τιμές των μεταβλητών, όπως και οι τιμές του μέτρου ευχρηστίας παρατίθενται στον πίνακα 1. Τοποθέτηση βάσης 1 ου μέλους 2 ου μέλους 3 ου μέλους ου μέλους Εισάγοντας αυτές τις τιμές στην εξίσωση (1), υπολογίζονται τα διανύσματα p Sri που περιγράφουν την υπολογισμένη θέση του άκρου. Η σύγκριση των στοιχείων των διανυσμάτων p και των αντίστοιχων των προκαθορισμένων θέσεων p, δείχνει ότι Sri η μέγιστη απόκλιση τοποθέτησης είναι μικρότερη από 0. mm και για τις τρεις θέσεις του άκρου, η οποία θεωρείται αποδεκτή λαμβάνοντας υπόψη ότι πρόκειται για διαδικασία σχεδιασμού βραχίονα. Επιπλέον, και για τους τρεις σχηματισμούς του βραχίονα οι τιμές του μέτρου ευχρηστίας w (βλ. πίνακα 1), είναι μακριά από το μηδέν, επιτυγχάνοντας την αποφυγή θέσεων ιδιομορφίας. Στο σχήμα 3 παρουσιάζονται γραφικά η βέλτιστη τοποθέτηση της βάσης και οι σχηματισμοί του βραχίονα για τις τρεις προκαθορισμένες θέσεις του άκρου κατεργασίας. 5. ΣΥΜΠΕΡΑΣΜΑΤΑ Μεταβλητή Τιμή 1 θ 0 ( o ) α 0 ( o ) a 0 (m) d 0 (m) α 1 ( o ) a 1 (m) d 1 (m) α 2 ( o ) a 2 (m) d 2 (m) α 3 ( o ) a 3 (m) d 3 (m) θ ( o ) d (m) η δομή βραχίονα 2 η δομή βραχίονα 3 η δομή βραχίονα Πίνακας 1: Βέλτιστες τιμές μεταβλητών Μεταβλητή Τιμή 16 θ 1 ( o ) θ 2 ( o ) θ 3 ( o ) w 1 = θ 1 ( o ) θ 2 ( o ) θ 3 ( o ) w 2 = θ 1 ( o ) θ 2 ( o ) θ 3 ( o ) w 3 =1.25 Στην παρούσα εργασία παρουσιάσθηκε ένας υβριδικός αλγόριθμος για τον προσδιορισμό της βέλτιστης θέσης της βάσης, των γεωμετρικών χαρακτηριστικών καθώς και των γωνιών των αρθρώσεων ενός βραχίονα 3 βαθμών ελευθερίας με αρθρώσεις περιστροφής (RRR) και τρεις προκαθορισμένες θέσεις του άκρου. Η Spri
6 Σχήμα 3: Επιτευχθείσα τοποθέτηση και σχηματισμοί του ρομπότ για τρεις προκαθορισμένες θέσεις αντικειμενική συνάρτηση λαμβάνει υπόψη τις αποκλίσεις τοποθετήσεων του άκρου του εργαλείου και την αποφυγή θέσεων ιδιομορφίας. Η προτεινόμενη μεθοδολογία έχει το πλεονέκτημα της δυνατότητας χρήσης της στο γεωμετρικό σχεδιασμό ρομπότ οποιασδήποτε γεωμετρίας (τύπου και πλήθους αρθρώσεων), όπου απαιτούνται διάφορες προδιαγραφές. 6. ΒΙΒΛΙΟΓΡΑΦΙΑ Coley, D. (1999), An Introduction to Genetic Algorithms for Scientists and Engineers, World Scientific Press, New York. Denavit, J., Hartenberg, R.S. (1955), A Kinematic Notation for Lower Pair Mechanisms Based on Matrices, Transactions of the ASME, Journal of Applied Mechanics, E22, pp IMSL (1997), Fortran Subroutines for Mathematical Applications, Visual Numerics. Mavroidis, C., Lee, E., Alam, M. (2001), A New Polynomial Solution to the Geometric Design Problem of the Spatial R-R Robot Manipulators Using the Denavit- Hartenberg Parameters, Transactions of the ASME, Journal of Mechanical Design, Vol. 123, pp Pamanes, J.A., Montes, J.P, Cuan, E., Rodriguez, F.C. (2000), Optimal Placement and Synthesis of a 3R Manipulator, International Symposium on Robotics and Automation (ISRA 2000), Monterrey, Mexico. Perez, A., McCarthy, M. J. (2000), Dimensional Synthesis of Spatial RR Robots, Advances in Robot Kinematics (J. Lenarcic, M.M. Stanisic, eds.), Kluwer Academic Publ., Netherlands, pp Sagris, D., Mitsi, S., Bouzakis, K.-D., Mansour, G. (200), Geometric Design Optimization of Spatial RR Robot Manipulator Using a Hybrid Algorithm, Acta Technica Napocensis, Series: Applied Mathematics and Mechanics, No 7, pp Yoshikawa, T. (1985), Μanipulability of robotic mechanisms, International Journal of Robotics Research, Vol., No.2, pp.3-9.
ΜΙΑ ΜΕΘΟΔΟΣ ΕΠΙΛΥΣΗΣ ΤΗΣ ΕΥΘΕΙΑΣ ΚΙΝΗΜΑΤΙΚΗΣ ΤΩΝ ΕΠΙΠΕΔΩΝ ΠΑΡΑΛΛΗΛΩΝ ΡΟΜΠΟΤ 3-RRP KAI 3-PRP
ΜΙΑ ΜΕΘΟΔΟΣ ΕΠΙΛΥΣΗΣ ΤΗΣ ΕΥΘΕΙΑΣ ΚΙΝΗΜΑΤΙΚΗΣ ΤΩΝ ΕΠΙΠΕΔΩΝ ΠΑΡΑΛΛΗΛΩΝ ΡΟΜΠΟΤ 3-RRP KAI 3-PRP Σ. Μήτση 1, Κ.-Δ. Μπουζάκης 1, Γκ. Μανσούρ 1, I. Popescu 1 Εργαστήριο Εργαλειομηχανών και Διαμορφωτικής Μηχανολογίας,
ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΑΣΚΗΣΕΙΣ. Π. Ασβεστάς Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Πανεπιστήμιο Δυτικής Αττικής
ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΑΣΚΗΣΕΙΣ Π. Ασβεστάς Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Πανεπιστήμιο Δυτικής Αττικής E-mail: pasv@uniwa.gr ΑΣΚΗΣΗ 1 1. Έστω δύο 3Δ καρτεσιανά συστήματα συντεταγμένων,
ΣΧΕΔΙΑΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΔΙΑΔΡΟΜΗΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΤΗΝ ΒΟΗΘΕΙΑ ΕΥΡΙΣΤΙΚΩΝ ΚΑΙ ΣΤΟΧΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΕΡΓΑΛΕΙΟΜΗΧΑΝΩΝ & ΔΙΑΜΟΡΦΩΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: ΣΧΕΔΙΑΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΔΙΑΔΡΟΜΗΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΤΗΝ
ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΡΓΑΛΕΙΟΜΗΧΑΝΩΝ ΔΙΑΜΟΡΦΩΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΤΟΠΟΘΕΤΗΣΗΣ
ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ
ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ Ηλίας Κ. Ξυδιάς 1, Ανδρέας Χ. Νεάρχου 2 1 Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου, Σύρος
ΔΕΙΚΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΑΝΑΤΟΜΙΩΝ ΜΕΤΑΜΟΡΦΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΑΥΤΟΥ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ANFIS
ΔΕΙΚΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΑΝΑΤΟΜΙΩΝ ΜΕΤΑΜΟΡΦΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΑΥΤΟΥ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ANFIS Χ.Δ. Βάλσαμος α, Β.Χ. Μουλιανίτης β, Ν.Α. Ασπράγκαθος α α Τμήμα Μηχανολόγων Μηχανικών και Αεροναυπηγών,
3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Θέματα Εξετάσεων Ασκήσεις στο Mάθημα: "ΡΟΜΠΟΤΙΚΗ Ι: ΑΝΑΛΥΣΗ, ΕΛΕΓΧΟΣ, ΕΡΓΑΣΤΗΡΙΟ" 1 η Σειρά Θεμάτων Θέμα 1-1 Έστω ρομποτικός
Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς
Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς Ηλίας Κ. Ξυδιάς, Φίλιππος Ν. Αζαριάδης Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου,
ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - Π. ΑΣΒΕΣΤΑΣ E MAIL: pasv@uniwa.gr Εφαρμογές ρομποτικής στην Ιατρική Κλασσική χειρουργική Ορθοπεδικές επεμβάσεις Νευροχειρουργική Ακτινοθεραπεία Αποκατάσταση φυσιοθεραπεία 2 Βασικοί
ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΘΕΣΗΣ ΠΡΟΣΔΕΣΗΣ ΜΗ ΕΠΑΝΔΡΩΜΕΝΟΥ ΥΠΟΒΡΥΧΙΟΥ ΟΧΗΜΑΤΟΣ ΜΕ ΧΡΗΣΗ ΓΕΝΕΤΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ
ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΘΕΣΗΣ ΠΡΟΣΔΕΣΗΣ ΜΗ ΕΠΑΝΔΡΩΜΕΝΟΥ ΥΠΟΒΡΥΧΙΟΥ ΟΧΗΜΑΤΟΣ ΜΕ ΧΡΗΣΗ ΓΕΝΕΤΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ Παναγιώτης Σωτηρόπουλος, Νίκος Ασπράγκαθος, Φοίβος Ανδρίτσος panagiotis.sotiropoulos@jrc.ec.europa.eu
ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ
ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ Χ.Δ. Βάλσαμος α, Β.Χ. Μουλιανίτης β, Ν.Α. Ασπράγκαθος α α Τμήμα Μηχανολόγων Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ
Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Καθηγητής Δρ.Δ.Σαγρής ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Κλασικές Τεχνικές Βελτιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 2 η /2017 Μαθηματική Βελτιστοποίηση Η «Μαθηματική
ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ
Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Καθηγητής Δρ.Δ.Σαγρής ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ
Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:
ΑΝΩΤΑΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΡΓΑΛΕΙΟΜΗΧΑΝΩΝ & ΔΙΑΜΟΡΦΩΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ OFF-LINE ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΙΟΜΗΧΑΝΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΕΞΙ
υναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων
υναµική των Ροµποτικών Βραχιόνων Ροµποτική Αρχιτεκτονική: η υναµική u Ροµποτική υναµική q, q& Ροµποτική Κινηµατική Περιβάλλον Θέση, Προσανατολισµός & και αλληλε ίδραση Η δυναµική ασχολείται µε την εξαγωγή
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Παραμετρική σχεδίαση Παραμετρικό αντικείμενο (2D σχήμα/3d στερεό) ονομάζουμε το αντικείμενο του οποίου η (γεωμετρική)
Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:
ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:
Εισαγωγή στην Ρομποτική
Τμήμα Μηχανολογίας Τ.Ε.Ι. Κρήτης Εισαγωγή στην Ρομποτική 1 Γενική περιγραφή ρομποτικού βραχίονα σύνδεσμοι αρθρώσεις αρπάγη Περιστροφική Πρισματική Βάση ρομποτικού βραχίονα 3 Βασικές ρομποτικές αρθρώσεις
z = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
Χαράλαμπος Δ.Γ. Βάλσαμος. Μηχανολόγος και Αεροναυπηγός Μηχανικός
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Χαράλαμπος Δ.Γ. Βάλσαμος Μηχανολόγος και Αεροναυπηγός Μηχανικός Δ/νση Εργασίας: Τμήμα Μηχανολόγων και Αεροναυπηγών Μηχανικών, Πανεπιστήμιο Πατρών, Πάτρα. ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Τηλ.:2610997212,
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης
Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον.
ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον. Μέθοδοι που απαιτούν
ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ
ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - Β. - Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 06. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται
Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.
ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 2012. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΕΞΑΣΦΑΛΙΣΗ ΠΡΟΚΑΘΟΡΙΣΜΕΝΗΣ ΕΠΙΔΟΣΗΣ ΣΤΟ ΣΦΑΛΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΤΡΟΧΙΑΣ ΣΤΙΣ ΑΡΘΡΩΣΕΙΣ.
ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΕΞΑΣΦΑΛΙΣΗ ΠΡΟΚΑΘΟΡΙΣΜΕΝΗΣ ΕΠΙΔΟΣΗΣ ΣΤΟ ΣΦΑΛΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΤΡΟΧΙΑΣ ΣΤΙΣ ΑΡΘΡΩΣΕΙΣ. Όλγα Ζωίδη, Ζωή Δουλγέρη Εργαστήριο Αυτοματοποίησης και Ρομποτικής Τμήμα
Θέση και Προσανατολισμός
Κεφάλαιο 2 Θέση και Προσανατολισμός 2-1 Εισαγωγή Προκειμένου να μπορεί ένα ρομπότ να εκτελέσει κάποιο έργο, πρέπει να διαθέτει τρόπο να περιγράφει τα εξής: Τη θέση και προσανατολισμό του τελικού στοιχείου
Συστήματα συντεταγμένων
Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς
ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ
Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 04-05 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - 5. - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 04-05 opyight ΕΜΠ - Σχολή
Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος
Δυναµική των Ροµποτικών Βραχιόνων Κ. Κυριακόπουλος Ροµποτική Αρχιτεκτονική: η Δυναµική Περιβάλλον u Ροµποτική Δυναµική q,!q Ροµποτική Κινηµατική Θέση, Προσανατολισµός και αλληλεπίδραση Η δυναµική ασχολείται
ΕΞΕΛΙΞΗ ΥΒΡΙΔΙΚΗΣ ΜΕΘΟΔΟΥ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΒΙΟΜΗΧΑΝΙΚΟΥ ΒΡΑΧΙΟΝΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ Εργαστήριο Εργαλειομηχανών και Διαμορφωτικής Μηχανολογίας Διευθυντής: Καθ. Κ.-Δ. Μπουζάκης ΕΞΕΛΙΞΗ
ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ
ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Συµπληρωµατικές Σηµειώσεις Προχωρηµένο Επίπεδο Επεξεργασίας Εικόνας Σύνθεση Οπτικού Μωσαϊκού ρ. Γ. Χ. Καρράς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Τοµέας Μηχανολογικών
Ρομποτικά Συστήματα Ελέγχου: Διαφορική Κινηματική Ανάλυση
Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» Ρομποτικά Συστήματα Ελέγχου: Διαφορική Κινηματική Ανάλυση Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ. Μηχ/κών
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επίλυση ασκήσεων - Αλγόριθμοι αναζήτησης - Επαναληπτική κάθοδος ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΡΑΞΗΣ Θα επιλυθούν
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 5: Τεχνικές Κλιμάκωσης, Γεωμετρία Γραμμικού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Έλεγχος Αλληλεπίδρασης με το. Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control)
Έλεγχος Αλληλεπίδρασης με το Περιβάλλον Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control) Έλεγχος Εμπέδησης (Impeance Control) Αλληλεπίδραση με το περιβάλλον Η αλληλεπίδραση με το περιβάλλον
Λογισμικό για Μαθηματικά
Λογισμικό για Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 6 Αυγούστου 2012 Λογισμικό 2 Λογισμικό Με τον όρο λογισμικό υπολογιστών, ή λογισμικό (software), ορίζεται η συλλογή από προγράμματα
4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό
Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο
Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση η : Αρχές εκτίμησης παραμέτρων Μέρος ο Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΜΕΘΟΔΟΣ ΥΠΟΦΟΡΕΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Διατύπωση
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
Σειρά: Επεξεργασία Δεδομένων Εκδοση/Ημ.νία: #3.1/ Συγγραφέας: Μίχος Θεόδωρος, Φυσικός
Σειρά: Επεξεργασία Δεδομένων Εκδοση/Ημ.νία: #3.1/018-0-15 Συγγραφέας: Μίχος Θεόδωρος, Φυσικός 1. Μέθοδος Ελαχίστων Τετραγώνων Μια από τις πρώτες δουλειές που μαθαίνει ένας φοιτητής θετικών επιστημών μόλις
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΥΑΓΓΕΛΙΑΣ Π. ΛΟΥΚΟΓΕΩΡΓΑΚΗ Διπλωματούχου Πολιτικού Μηχανικού ΟΛΟΚΛΗΡΩΜΕΝΟ
Επίλυση γεωµετρικών περιορισµών σε µικρά µόρια µε αλγεβρικές µεθόδους
Επίλυση γεωµετρικών περιορισµών σε µικρά µόρια µε αλγεβρικές µεθόδους Επαµεινώνδας. Φριτζίλας Μ Ε Βιοπληροφορικής Τµήµα Βιολογίας ΕΚΠΑ 17 Φεβρουαρίου 2005 Τί σηµαίνει ο τίτλος ; γεωµετρικός περιορισµός:
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αλγόριθμοι κλίσης - Gradient tools in MATLAB - Επίλυση ΝCM και CM ΑΛΓΟΡΙΘΜΟΙ ΚΛΙΣΗΣ Κατευθυντική αναζήτηση επί
Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής
Οµάδα Ασκήσεων #1-Λύσεις
Οµάδα Ασκήσεων #-Λύσεις Πρόβληµα # (α) (β) Τουλάχιστον Β.Ε. (Βαθµοί Ελευθερίας) χρειάζονται για αυθαίρετη τοποθέτηση στο χώρο (x,y,z) και επιπλέον Β.Ε. απαιτούνται για αυθαίρετο προσανατολισµό (στη δεδοµένη
Περιγραφή αλγορίθµων. ιαγράµµατα ροής
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Εισαγωγή στην Πληροφορική Ρωµύλος Κορακίτης Αστροφυσικός Αναπλ. Καθηγητής ΕΜΠ romylos@survey.ntua.gr Περιγραφή αλγορίθµων Η έννοια του αλγορίθµου
Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.
Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Ένα από τα γνωστότερα παραδείγματα των ΕΑ είναι ο Γενετικός
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ - Θεμελιώδεις έννοιες - Επισκόπηση ύλης - Χρήσιμες πληροφορίες ΤΑΥΤΟΤΗΤΑ ΜΑΘΗΜΑΤΟΣ Μάθημα επιλογής
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
Ε ανάληψη. Α ληροφόρητη αναζήτηση
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,
3.6 Ευθεία και Αντίστροφη υναµική
3.6 Ευθεία και Αντίστροφη υναµική Στη δυναµική µας απασχολούν δύο ειδών προβλήµατα, το ευθύ δυναµικό πρόβληµα και το αντίστροφο δυναµικό πρόβληµα. Το αντίστροφο πρόβληµα αφορά στον προσδιορισµό των ροπών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Η Μέθοδος της Διαφορικής Εξέλιξης στη Μονοκριτηριακή και Πολυκριτηριακή Αεροδυναμική Βελτιστοποίηση,
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ
ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο
Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά
ΤΕΙ Κεντρικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταπτυχιακό Πρόγραμμα Τηλεπικοινωνιών & Πληροφορικής Μάθημα : 204a Υπολογιστική Ευφυία Μηχανική Μάθηση Καθηγητής : Σπύρος Καζαρλής Ενότηα : Εξελικτική
min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Τεχνικές Κλιμάκωσης (1) Αδυναμία επίλυσης Γ.Π. μεγάλης κλίμακας Ύπαρξη στοιχείων περιστροφής
Σημειώσεις του μαθήματος Μητρωϊκή Στατική
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #9: Αναλογικά Συστήματα Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν
ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας
ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας Σχεδιασμός αντικειμένων, διεργασιών, δραστηριοτήτων (π.χ. τεχνικά έργα, έπιπλα, σκεύη κτλ) ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΜΕΛΕΤΗ (conceptual design) ΠΡΟΜΕΛΕΤΗ
Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI)
Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Ηµέθοδος MODIεπιτρέπει τον υπολογισµό των οριακών µεταβολών στο συνολικό κόστος µεταφοράς για κάθε µη επιλεγείσα διαδροµή µε αλγεβρικό τρόπο, χωρίς τη διαδικασία
Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες
ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΡΟΜΠΟΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΧΑΜΗΛΟΥ ΚΟΣΤΟΥΣ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΡΟΜΠΟΤΙΚΗΣ
ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΡΟΜΠΟΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΧΑΜΗΛΟΥ ΚΟΣΤΟΥΣ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΡΟΜΠΟΤΙΚΗΣ Θωµ. Σακάρος,. Τσόντος, ρ. Γ. Φουσκιτάκης, ρ. Λ. οϊτσίδης Τµήµα Ηλεκτρονικής, Τεχνολογικό Εκπαιδευτικό
Μαθηματικά και Φυσική με Υπολογιστές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Σύνθετοι αναλυτικοί - αριθμητικοί υπολογισμοί Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)
Γραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 22: Ανάπτυξη Κώδικα σε Matlab για την επίλυση Γραμμικών Προβλημάτων με τον Αναθεωρημένο Αλγόριθμο Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού
Ανάπτυξη του Τεχνικού Κειμένου Η Αρχική Σύνταξη
Ανάπτυξη του Τεχνικού Κειμένου Η Αρχική Σύνταξη Ενότητες και υποενότητες Εισαγωγή - Δομικές μηχανές - Τύποι, ταξινομήσεις και χρήσεις Γενική θεωρία δομικών μηχανών Χαρακτηριστικά υλικών Αντιστάσεις κίνησης
Research on real-time inverse kinematics algorithms for 6R robots
25 6 2008 2 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 : 000 852(2008)06 037 05 6R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Λογισμός ΙΙ Χρήστος Θ. Αναστασίου Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων
Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης
Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex
Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07
Δρ. Ηλίας Ξυδιάς E-mail: xidias@aegean.gr Τηλ.: 22810-97134, 694-9191282
Η. Ξυδιάς: Βιογραφικό Σημείωμα (Μάιος 12) i Δρ. Ηλίας Ξυδιάς E-mail: xidias@aegean.gr Τηλ.: 22810-97134, 694-9191282 Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων 84100 Ερμούπολη,
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών
Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 10: Το πρόβλημα μεταφοράς: μαθηματικό μοντέλο και μεθοδολογία επίλυσης Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ειδικά θέματα Πληροφορικής Κινηματογραφίας
Ειδικά θέματα Πληροφορικής Κινηματογραφίας Real Time Design and Animation of Fractal Plants and Trees Peter E. Oppenheimer New York Institute of Technology Computer Graphics Lab Δανάη Τσούνη dpsd06051
ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ
ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη
Φίλτρα Kalman. Αναλυτικές μέθοδοι στη Γεωπληροφορική. ιατύπωση του βασικού προβλήματος. προβλήματος. μοντέλο. Πρωτεύων μοντέλο
Φίλτρα Kalman Εξαγωγή των εξισώσεων τους με βάση το κριτήριο ελαχιστοποίησης της Μεθόδου των Ελαχίστων Τετραγώνων. Αναλυτικές Μέθοδοι στη Γεωπληροφορική Μεταπτυχιακό Πρόγραμμα ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ιατύπωση του
Σχεδίαση τροχιάς. (α) (β) (γ) (δ) Σχήµα 2.5
Σχεδίαση τροχιάς Η πιο απλή κίνηση ενός βραχίονα είναι από σηµείο σε σηµείο. Με την µέθοδο αυτή το ροµπότ κινείται από µία αρχική θέση σε µία τελική θέση χωρίς να µας ενδιαφέρει η ενδιάµεση διαδροµή που
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αναλυτικές τεχνικές - Ειδικά θέματα θεωρίας - Λύση ασκήσεων πράξης ΑΝΑΛΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Τι μάθαμε μέχρι τώρα: Να επιλύουμε
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
ΕΝΟΤΗΤΑ 11: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΗΜΕΘΟΔΟΣ ΓΕΩΜΕΤΡΙΚΟΥ
3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ
3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν