Prescribing Morse scalar curvatures: subcritical blowing-up solutions

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Prescribing Morse scalar curvatures: subcritical blowing-up solutions"

Transcript

1 Prescrbg Morse scalar curvatures: subcrtcal blowg-up solutos Adrea Malchod ad Mart Mayer Scuola Normale Superore, Pazza de Cavaler 7, 506 Psa, ITALY arxv:8.0946v [math.ap] Dec 08 December 7, 08 Abstract Prescrbg coformally the scalar curvature of a Remaa mafold as a gve fucto cossts solvg a ellptc PDE volvg the crtcal Sobolev expoet. Oe way of attackg ths problem cosst usg subcrtcal approxmatos for the equato, gag compactess propertes. Together wth the results [30], we completely descrbe the blow-up pheomeo case of uformly bouded eergy ad zero weak lmt postve Yamabe class. I partcular, for dmeso greater or equal to fve, Morse fuctos ad wth o-zero Laplaca at each crtcal pot, we show that subsets of crtcal pots wth egatve Laplaca are oe-to-oe correspodece wth such subcrtcal blowg-up solutos. ey Words: Coformal geometry, sub-crtcal approxmato, blow-up aalyss. Cotets Itroducto Prelmares 4 3 Exstece of subcrtcal solutos 6 4 The secod varato 5 Appedx: some techcal estmates 5. Lst of costats Itroducto Cosder a compact mafold M, g 0 wth 3 ad a coformal metrc g = u 4 g0, u > 0: wth ths otato the scalar curvature trasforms the followg way see [4] R gu u + 4 = Lg0 u := c g0 u + R g0 u c =, wth g0 the Laplace-Beltram operator of g 0. L g0 s called the coformal Laplaca ad trasforms accordg to the law L g u φ = u + Lg0 φ.

2 I the 70 s, azda ad Warer cosdered [8] the problem of prescrbg the scalar curvature of mafolds va coformal deformato of the metrc, see also [6], [7]. By the above trasformato law, f oe wshes to prescrbe R g as a gve fucto x the would eed to solve L g0 u = xu + o M, g 0.. There are rather easy obstructos to the solvablty of.: for example, f the sg of s costat, t has to cocde wth that of the frst egevalue of L g0. Depedg o the latter sg, whch s coformally varat, a coformal class of metrcs s sad to be of egatve, zero or postve Yamabe class. We wll dscuss for smplcty the case of fucto wth costat sg, despte the lterature there are may terestg papers dealg wth chagg-sg fuctos. I [8], azda ad Warer proved some exstece results for zero or egatve Yamabe classes usg the sub- ad super-soluto method. For postve Yamabe class stead, they foud a ow well-kow obstructo to exstece o the sphere, amely that f u solves., the oe must have, f gs u dµgs = 0,. S ad hece, for coformal curvatures, the fucto, f gs must chage sg. Later o, some exstece results were foud uder codtos that would mply topologcal rchess of the sub-levels of, cotrary to the above example. I two dmesos, where. s replaced by a equato expoetal form, J. Moser showed that the problem s solvable o the stadard sphere f s atpodally symmetrc. I hgher dmesos, exstece results uder the acto of symmetry groups were prove [0] ad [], []. A geeral dffculty studyg. s the lack of compactess due to the presece of the crtcal expoet. A typcal pheomeo ecoutered here s that of bubblg. Bubbles are solutos of. o S wth : these arse as profles of geeral dvergg solutos ad were classfed [], see also [3], [36]. From the varatoal pot of vew, bubbles geerate dvergg Palas-Smale sequeces for the Euler-Lagrage eergy of., gve by J = J : c u g 0 + R g0 u dµ g0 Ju = M M u dµg0 From a formal expaso of J o a fte sum of bubbles, see e.g. the troducto [30], oe sees a role of the dmeso the stregth of the mutual teracto amog bubbles, whch s weaker as creases: a cosequece of ths fact s that three dmesos oly oe bubble ca form. Explotg ths fact, after some work o S by A. Chag ad P. Yag [6], [7], A. Bahr ad J.M. Coro proved a exstece result [6] o S 3 assumg that s a Morse fucto satsfyg the followg two propertes. { = 0} { = 0} = ;.3 mx,,.4 {x M : x=0, x<0} where mx, stads for the Morse dex of at x, see also [] ad [35] for more geeral related results. The above exstece statemet was exteded to arbtrary dmesos [4] for fuctos satsfyg a sutable flatess codto, ad [8], [], [9] for fuctos close to a postve costat the C -sese. I four dmesos, see [7] ad [5], t was show that eve f multple bubbles ca form, they caot be too close to each-other; such pheomeo s usually refereed to as solated smple blow-up. Results of dfferet kd were also prove [9] for = ad [9] [8], [0]: see also Chapter 6 [4]. Two ma approaches have bee used to uderstad the blow-up pheomeo: sub-crtcal approxmatos or the costructo of pseudo-gradet flows. I ths paper we focus o the former, whle the other oe wll be the subect of [3], where a oe-to-oe correspodece of blowg-up solutos wth bouded eergy ad zero weak lmt ad crtcal pots at fty s show. Cosder the problem c g0 u + R g0 u = x u + τ, 0 < τ,.5

3 whch, up to a proper dlato, s the Euler-Lagrage equato for the fuctoal c u M g J τ u = 0 + R g0 u dµ g0, u A..6 M up+ dµ g0 p+ Beg ow the expoet lower tha crtcal, solutos ca be easly foud, eve though oe could lose uform estmates as τ teds to zero. I [], [35], [4], the sgle-bubblg behavour for dvergg solutos of.5 was proved. The, by degree- or Morse-theoretcal argumets t was show that uder.4 there must be famles of solutos that stay uformly bouded, therefore covergg to solutos of.. For ths argumet to work, oe crucal step was to completely characterze blowg-up solutos of.5, showg that three dmesos sgle blow-ups occur at ay crtcal pot of wth egatve laplaca ad that they are uque. O four-dmesoal spheres, a smlar property was proved [5] for multple blow-ups see also [7], assumg a sutable codto related to the mult-bubble teractos. For Morse fuctos, f 5 the stuato s more volved, ad blow-ups mght be possbly of fte eergy, see e.g. [3], [4], [5], [37]. I [30] t was however proved that f a sequece of blowg-up solutos has uformly-bouded W, -eergy ad zero weak lmt, the blow-ups are stll solated smple. Although the result s smlar to the case of dmesos three ad four, the pheomeo s somehow opposte sce t s drve by the fucto rather tha from the mutual bubble teractos. Both assumptos, zero weak lmt ad bouded eergy, are deed atural: f the former fals the problem. would have a soluto; the secod oe stead s usually foud whe usg m-max or Morse-theoretcal argumets, as t wll be doe [3]. However, dfferetly from = 3, 4, [30] o restrcto s prove o the umber or locato of blow-up pots, provded they occur at crtcal pots of wth egatve Laplaca. The goal of ths paper s to show that the characterzato of the above blow-ups [30] s sharp, amely that they ca occur at arbtrary subsets of { = 0} { < 0}. Furthermore, we prove uqueess of such solutos, ther o-degeeracy ad determe ther Morse dex. Our ma result s the followg oe, that follows from Proposto 3., Corollary 4. ad Theorem [30]. Theorem. Let M, g be a compact mafold of dmeso 5 wth postve Yamabe class, ad let : M R be a postve Morse fucto satsfyg.3. Let x,..., x q be dstct crtcal pots of wth egatve Laplaca. The, as τ 0, there exsts a uque soluto u τ,x,...,x q developg a smple bubble at each pot x ad covergg weakly to zero W, M, g as τ 0. Moreover, up to scalg by costats, u τ,x,...,x q s o-degeerate for J τ ad mj τ, u τ,x,...,x q = q + q = m, x. Furthermore, all blow-ups wth uformly bouded eergy ad zero weak lmt are of the above type. As t wll be show [3], for 5 there caot be a drect couterpart of.4, whch s a dexcoutg codto. However, exstece results of dfferet type wll be derved there. Remark.. A more precse expresso for u τ,x,...,x q s gve by the followg formula α,m = u m q α,m δ,m,a,m W 0 as m,, = M,g 0 Θ x 4 + o, a,m x ad,m τm = τ m. Here the multplcatve costat Θ depeds o the blowg-up solutos but t s depedet of. For ths ad more precse formulas we refer to Secto 3 ad Theorem the Appedx. If = 4, the same coclusos hold replacg a < 0 for all wth v of Theorem [30]. Eve though upo scalg the above solutos u τ,x,...,x q are o-degeerate, they Hessa of J τ there has q = m, x egevalues approachg zero as τ 0, see Secto 4. Theorem gves a oe-to-oe correspodece of zero weak lmt subcrtcal blow-up solutos to subsets of crtcal pots of wth egatve Laplaca, whle [3] ths correspodece wll be show wth zero weak lmt,.e. pure crtcal pots at fty, accordg to the termology [5], see also [33] 3

4 The proof of Theorem reles o the estmates [30] ad a fte-dmesoal reducto, see e.g. [], wth a careful asymptotc aalyss. I dmeso four, ths approach was used Secto of [5]: here we show that hgher dmesos blow-up mght occur at arbtrary crtcal pots of wth egatve Laplaca, whch affects the global structure of the solutos of problem.. Va careful expasos, we also determe the Hessa of the Euler-Lagrage fuctoal ad the Morse dex of these solutos, whch we prove to be o-degeerate. The solutos we cosder here le a set V q, ε the fuctoal space W, M, g 0 whch cotas a mafold of approxmate solutos for.5, q = α ϕ a,, whch s trasversally o-degeerate see Secto for the otato used here. Ths allows to solve.5 orthogoally to ths mafold va a proper trasversal correcto to the approxmate solutos, see Defto 3. ad Lemma 3., ad reduce to the study of the taget compoet. By Theorem from [30] we ca reduce ourselves to a smaller set V q, ε, see 3., where more precse estmates hold for the gradet of J τ. These allow us to use a orthogoal correcto v small sze, solve also for the taget compoet ad to estmate the secod dfferetal of J τ at q = α ϕ a, + v, see Secto 4. Fally, ths allows tur to compute the Morse dex of the solutos u τ,x,...,x q ad to prove ther uqueess. I ths step we show that, eve though the correcto v s of the same order of the small egevalues of the Hessa of J τ, some cacellato occurs the estmate of the Morse dex. The pla of the paper s the followg: Secto we collect some prelmary materal cocerg approxmate solutos ad the fte-dmesoal reducto of the problem, whch s the worked-out detal Secto 3. I Secto 4 we study the Hessa of the Euler-Lagrage fuctoal J τ V q, ε, fdg a proper base wth respect to whch the Hessa early dagoalzes. Fally, we collect a Appedx some useful ad techcal estmates from [30] ad a table of costats. Ackowledgmets. A.M. has bee supported by the proect Geometrc Varatoal Problems ad Fazameto a supporto della rcerca d base from Scuola Normale Superore ad by MIUR Bado PRIN 05 05B9WPT 00. He s also member of GNAMPA as part of INdAM. Prelmares I ths secto we collect some backgroud ad prelmary materal, cocerg the varatoal propertes of the problem ad some estmates o hghly-cocetrated approxmate solutos of bubble type. We cosder a smooth, closed remaa mafold M = M, g 0 wth volume measure µ g0 ad scalar curvature R g0. Lettg A = {u W, M, g 0 u 0, u 0, } the Yamabe varat s defed as Y M, g 0 = f A c u g 0 + R g0 u dµ g0 u dµg0 ; c = 4, ad t turs out to deped oly o the coformal class of g 0. We wll assume from ow o that the varat s postve, amely that M, g 0 s of postve Yamabe class. As a cosequece, the coformal Laplaca L g0 = c g0 + R g0 s a postve ad self-adot operator. Wthout loss of geeralty we assume R g0 > 0 ad deote by G g0 : M M \ R + the Gree s fucto of L g0. Cosderg a coformal metrc g = g u = u 4 g0, there holds dµ gu = u dµg0 ad R = R gu = u + c g0 u + R g0 u = u + Lg0 u. Note that c u W, M,g 0 u L g0 u dµ g0 = c u g 0 + R g0 u dµ g0 C u W, M,g 0. I partcular we may defe u = u L g0 := u L g0 u dµ g0 4

5 ad use as a equvalet orm o W, M, g 0. Settg R = R u for g = g u = u 4 g0, we have r = r u = Rdµ gu = ul g0 udµ g0,. ad hece J τ u = r k p+ τ wth k τ = u p+ dµ g0.. The frst- ad secod-order dervatves of the fuctoal J τ are gve by J τ uv = [ L k g0 uvdµ g0 r u p ] vdµ g0 ;.3 p+ k τ τ J τ uvw = k p+ τ [ L g0 vwdµ g0 p r k τ 4 [ L g0 uvdµ g0 k p+ + τ k p+ + τ u p vwdµ g0 ] u p wdµ g0 + p + 3r + u p vdµ g0 u p wdµ g0. L g0 uwdµ g0 u p vdµ g0 ] I partcular, J τ s of class C,α loc A ad, for ε > 0, uformly Hölder cotuous o each set of the form U ε = {u A ε < u, J τ u ε }. To uderstad the blow-up pheomeo, t s coveet to cosder some hghly cocetrated approxmate solutos to.. Let us frst recall the costructo of coformal ormal coordates from [3]: gve a M, these are defed as geodesc ormal coordates for a sutable coformal metrc g a [g 0 ]. Let r a be the geodesc dstace from a wth respect to the metrc g a : wth ths choce, the expresso of the Gree s fucto G ga for the coformal Laplaca L ga wth pole at a M, deoted by G a = G ga a,, smplfes cosderably. I Secto 6 of [3] oe ca fd the expaso G a = Here H r,a C,α loc.4 ra + H a, r a = d ga a,, H a = H r,a + H s,a for g a = u 4 a g ω, whle the sgular error term s of the type: r a for = 5 H s,a = O l r a for = 6. ra 6 for 7 The leadg term H s,a for = 6 s Wa 88c ϕ a, = u a + γ G a We otce that the costat γ s chose so that l r, wth W the Weyl tesor. For > 0 large defe, G a = G ga a,, γ = 4 ω..6 γ G a x = d g a a, x + od g a a, x as x a. Such fuctos are approxmate solutos of., see Lemma 5., ad for sutable values of depedg o τ these are also approxmate solutos of.5, see Lemma 5.7 for a mult-bubble verso. Notato. For p, L p g 0 wll stad for the famly of fuctos of class L p wth respect to the measure dµ g0. Recall also that for u W, M, g 0 we have set r u = ul g0 udµ g0, whle for a M we deote by r a the geodesc dstace from a wth respect to the coformal metrc g a troduced before. For a fte set of pots {a } of M we wll deote by,, W, the quattes a, a, Wa, etc.. For k, l =,, 3 ad > 0, a M, =,..., q, let 5

6 ϕ = ϕ a, ad d,, d,, d 3, =,, a ; φ, = ϕ, φ, = ϕ, φ 3, = a ϕ, so φ k, = d k, ϕ. Wth these deftos, the φ k, s are uformly bouded W, M, g 0 for every value of the s. We ext recall a stadard fte-dmesoal reducto for fuctos that are close W, to a fte sum of bubbles. It s useful to defe the followg quatty ε, := + + γ G g 0 a, a..7 Gve ε > 0, q N, u W, M, g 0 ad α,, a R q +, R q +, M q, we set 4 A u q, ε = {α,, a,, ε,, rα a 4 k τ, u α ϕ a, < ε, τ < + ε}; V q, ε = {u W, M, g 0 A u q, ε }, see.,. ad.6. For A u q, ε to be o-empty, we wll always assume that τ ε. Uder the above codtos o the parameters α, a ad, the fuctos q = α ϕ a, costtute a smooth mafold W, M, g 0, whch mples the followg well kow result see e.g. [5]. Proposto.. Gve ε 0 > 0 there exsts ε > 0 such that for u V q, ε wth ε < ε, the problem u α ϕã, L g0 u α ϕã, dµ g0 f α,ã, A uq,ε 0 admts a uque mmzer α, a, A u q, ε 0 ad we set Moreover, α, a, depeds smoothly o u. ϕ = ϕ a,, v = u α ϕ, = a..8 The term v = u α ϕ s orthogoal to all ϕ, ϕ, a ϕ, wth respect to the product Fally, for u V q, ε let, Lg0 = L g0, L g0. H u = H u q, ε = ϕ, ϕ, a ϕ Lg Exstece of subcrtcal solutos Theorem, from [30], descrbes detal the behavour as τ 0 of blowg-up solutos to.5 wth uformly bouded eergy ad zero weak lmt V q, ε, provdg postve lower bouds o J τ a sutable subset of the fuctoal space. I vew of ths, we ca restrct our atteto to ceters a,..., a q close to dstct crtcal pots x,..., x q of wth egatve Laplaca: more precsely, for 6 we ca assume the followg codtos for = 5 they are slghtly modfed: see the above-metoed statemet α Θ p θ a < ɛ ; 3 ā + c x x + c x x τ ɛ, 3 ɛ 3 ; 6

7 for = τ ad some x { = 0} { < 0} wth x x,. Here, Θ > 0 uformly bouded ad bouded away from zero depeds o the fucto V q, ε, determed Remark 6. of [30]. We ext defe the followg refed egbourhood of potetal subcrtcal blowg-up solutos as V q, ε = {u V q, ε, ad above hold true.} 3. From Lemmata 5.4, 5.5 ad 5.6 t follows that recallg. there exsts ɛ > 0, tedg to zero as ε 0, such that J τ u ɛ 3 for u V q, ε \ V q, ε wth k τ =, so ths ustfes to look for solutos V q, ε oly. For α ϕ V q, ε wth c < α < C, we have the expaso J τ α ϕ + v = J τ α ϕ + J τ α ϕ v + J τ α ϕ v + O v Recall the uform postvty of J τ α ϕ o H u q, ε see.9 ad [5], whch ustfes the followg Defto 3.. For α ϕ V q, ε we defe v as the uque soluto of the mmzato problem J τ α ϕ + v = m J τ α ϕ + v. 3.3 v H α ϕ, v <ε Lemma 3.. Let v be as the above defto. The oe has the followg propertes for α ϕ V q, ε there holds v τ; f u V q, ε s such that J τ u = 0, the α ϕ V q, ε ad u = α ϕ + v. Moreover, for α ϕ V q, ε oe has that J τ α ϕ + v = O ɛ, where ɛ 0 as ε Proof. Let us deote by Π Hα ϕ the proecto oto H α ϕ : we eed to solve Π Hα ϕ J τ α ϕ + v = 0. Sce J τ s vertble o ths subspace, we ca wrte Π Hα ϕ J τ α ϕ + v = 0 as v = H α ϕ J τ α ϕ [ J τ α ϕ + J τ α ϕ + v J τ α ϕ J τ α ϕ v ]. We kow from Lemma 5.7 that for α ϕ V q, ε oe has J τ α ϕ. Sce by Hölder s cotuty the quatty wth roud brackets the last formula s of order o v, we ca use a cotracto argumet a ball of sze to get the exstece of a soluto to Π Hα ϕ J τ α ϕ + v = 0, wth the estmate. By the defto of v ad the above cotracto argumet we have that J τ α ϕ v = J τ α ϕ + o o φ k, Lg Testg thus J τ α ϕ o φ k,, we fd from Lemmata 5.4, 5.5 ad 5.6, aga for α ϕ V q, ε J τ α ϕ φ k, ɛ 3. It s easy to see from.4 ad Lemma 5. that J τ φ k, = o, ad sce v we have that J τ α ϕ vφ k, = o,

8 More geeral, oe fds also that Jα ϕ + θ v vφ k, = o 3 for ay θ 0,. To see ths, sce v φ k, Lg 0, recallg.4 t s suffcet to show that α ϕ + θ v p vϕ dµ g0 α ϕ p vϕ dµ g0 = O 3. Ths, tur, ca be verfed by dvdg the doma of tegrato to { v α ϕ } ad ts complemetary set, usg Hölder s equalty ad the fact that v. Cosequetly J τ α ϕ + v = J τ α ϕ + v φk, = J τ α ϕ φk, +o ɛ = O 3 3, where ɛ teds to zero as ε does. Fally, f a soluto J τ u = 0 exsts o V q, ε, the we may wrte But the u = α ϕ + v + ṽ wth ṽ Lg0 φ k,. 0 = J τ α ϕ + v + ṽṽ = J τ α ϕ + vṽ + J τ α ϕ + vṽṽ + o ṽ, whece ecessarly ṽ = 0 by uform postvty of J τ α ϕ o φ k, Lg 0. Thus J τ u = 0 wth u V q, ε = u = α ϕ + v where v = v α,a, s the uque soluto to 3.3, for whch α ϕ + v V q, ε. Remark 3.. For α ϕ V q, ε ad ν W, M, g 0 wth ν = t ca be show that k τ p+ α ϕ 8 J τ α ϕ ν = α τ + α τ α B εa B εa B εa ϕ + l + r c ϕ + + c c ϕ νdµ g0 c c r c ϕ + c c ϕ + + c ϕ νdµ g0 c c c k,l x k x l r ϕ + νdµ g0 + o, referrg to the table at the ed of the paper for the defto of the costats. As a cosequece of these formulas, oe ca prove that v s deed of order ad ot smaller, as well as determe the leadg order ts expaso. Ayway, due to some cacellato propertes, ths wll ot substatally affect the egevalues of the Hessa of J τ at α ϕ + v, estmated the ext secto. Let us ow set d,, d,, d 3, =,, a, for =,..., q. Lemma 3.. For u = α ϕ + v V q, ε there holds v, d l, v = O. Proof. The boud o v follows from Lemma 3.. Dfferetatg φ k,, v Lg0 = 0 we obta φ k,, d l, v Lg0 = d l, φ k,, v Lg0 = O v, 8

9 whece deotg by Π φk, the orthogoal proecto oto Π φk, we have Π φk, v due to v. Moreover, sce J τ α ϕ + vv = 0 for every smoothly-varyg vector feld v φ k, Lg 0 of ut orm we have 0 =d l, J τ α ϕ + vv = J τ α ϕ + vd l, α ϕ + vv + J τ α ϕ + vd l, v ad we ca estmate the last summad above as J τ α ϕ + vd l, v = J τ α ϕ + vπ φk, d l, v = O J τ α ϕ + v v, sce φ k,, d l, v = d l, φ k,, v = O v. Thece, J τ α ϕ + v = O mples J τ α ϕ + vvd l, v = J τ α ϕ + vvd l, α ϕ + O. The the clam would follow from Π φk, d l, v, whch we had see before, ad the uform postvty of J τ α ϕ o φ k, Lg 0, provded we show J τ α ϕ + vφ l, v =O, 3.7 cf. 4. ad 4.7 for weaker statemets. Let us prove 3.7 for l =. We ext clam that J τ α ϕ + vϕ v = J τ α ϕ ϕ v + O. From.4, sce v φ k, Lg 0, t s suffcet to show that we must show see the proof of Lemma 3. α ϕ + v p vϕ dµ g0 α ϕ p vϕ dµ g0 = O. Aga, ths ca be see cosderg the set { v α ϕ } ad ts complemetary, usg Hölder s equalty ad v. Thus, from the above clam ad.4 we fd, due to the orthogoaltes φ k,, v Lg0 = 0, J τ α p r α ϕ ϕ v = ϕ α ϕ k τ p ϕ vdµ g0 p+ k τ α ϕ α ϕ 4 L k τ p+ + g0 α ϕ ϕ dµ g0 α ϕ p vdµ g0 α ϕ + p + 3r α ϕ α ϕ k τ p+ + p ϕ dµ g0 α ϕ p vdµ g0. By defto of V q, ε we have τ α ϕ J τ α ϕ ϕ v 4 + L c 0 α g0 α ϕ ϕ dµ g0,τ α c 0 α,τ ad recallg 5. ad 5.5 we may smplfy ths to α α,τ α ϕ 4 ϕ vdµ g0 α ϕ + vdµg0 α ϕ + ϕ dµ g0 up to error O. Moreover, from 5.3 ad 5.4 we have L g0 α ϕ ϕ dµ g0 = 4 c 0 α + O α ϕ + vdµg0 9

10 ad sce da, a, we fd by expadg ad usg Lemma 5. α ϕ 4 ϕ vdµ g0 = α 4 ϕ + vdµ g0 ; α ϕ + vdµg0 = α + ϕ + vdµ g0 ; α ϕ + ϕ dµ g0 = α + ϕ dµ g0 ; α ϕ + vdµg0 = α + ϕ + vdµ g0, up to errors of order O. Therefore, sce J τ α ϕ ϕ v α α,τ = O due to 3., we obta α α,τ α α α,τ α 4 + α ϕ + ϕ + vdµ g0 vdµ g0 α + ϕ + vdµ g0 up to a error O. Therefore usg aga 3. we have J τ α ϕ ϕ v + ϕ + vdµ g0 α α α ϕ + vdµ g α α α ϕ + vdµ g0 up to the same error. Thus, J τ α ϕ ϕ v = O usg 5.6, obtag 3.7 for l =. For l =, 3 oe ca reaso aalogously. Theorem follows from the ext proposto, based o the aalyss of Secto 4, ad Corollary 4.. Proposto 3.. Let 5 ad let : M R be a postve Morse fucto satsfyg.3. The, for every subset {x,..., x q } of { = 0} { < 0}, as τ 0 there exsts a uque u = α ϕ a, + v V q, ε wth u L g0 =, da, x = o ad J τ u = 0. Proof. Due to 3.4, we have J ɛ 3 o V q, ε ad J ˆɛ 3 o V q, ε as log as c < α < C. Thus, by Lemma 3., t s suffcet to look for crtcal pots the set C := {ũα,, a := α ϕ + vα,, a V q, ε ũ L g0 = }, whch s a smooth 3 + -dmesoal mafold W, M, g 0. Vce-versa, we clam that a crtcal pot of J τ C s deed a crtcal pot of J τ. I fact, by Lagrage multpler s rule, the gradet of J τ at a costraed crtcal pot ũ 0 must be orthogoal to C. Sce J τ s dlato-varat, ts gradet o C must be taget to the ut sphere the Lg0 orm. O the other had, by costructo of v, the gradet of J τ at ũ 0 s taget to C := {α ϕ V q, ε u L g0 = } at the pot u 0 such that ũ 0 = u 0 + v 0 wth obvous otato. By the estmate o the dervatves of v Lemma 3., Tũ0 C s early parallel to Tu0 C, whch mples that J τ ũ 0 = 0, as desred. It remas to prove exstece ad uqueess of crtcal pots of J τ C. For the exstece part, oe ca use the expasos Lemmas 5.4, 5.5 ad 5.6, together wth the defto of V q, ε to show that J τ s o-vashg o the boudary of C. For example see the defto of V q, ε, suppose = c x x τ + ε ; = τ. 0

11 From Lemma 5.5 oe deduces that there exsts ɛ > 0, tedg to zero as ε 0, such that From Lemmas 3. ad 3. oe has also that J τ α ϕ > ɛ 3. J τ uα,, a > ɛ 3, wth a smlar reversed equalty, wth opposte sg, f = c x x ε τ. Aalogous estmates ca be derved for the α ad a dervatves, yeldg that the degree of J τ o C s well-defed ad o-zero. Ths shows the exstece of a crtcal pot for J τ C, whch s freely crtcal for J τ by the above dscusso. Sce by costructo the egatve part of the above solutos s small W, orm, t s possble to show from Sobolev s equalty that t has to vash detcally, so full postvty follows the from the maxmum prcple. Uqueess follows from Lemma 3. ad Proposto 4., mplyg the strct covexty or cocavty of J τ C wth respect to all parameters α s, s ad the coordates of the pots a, provded they are chose so that x s dagoal. 4 The secod varato Let V q, ε be the ope set defed 3.: the am of ths secto s to fd there a early dagoal form of the secod dfferetal of J τ. Let us recall our otato from Secto, ad partcular that of the orthogoal space H u.9. Proposto 4.. For α ϕ + v V q, ε, cosder the decomposto W, M, g 0 = H α ϕ ϕ q ϕ q a ϕ q =: V X α X X a. The there exsts a bass B of W, M, g 0, wth elemets the subspaces of the above decomposto, such that the coeffcets of the the secod dfferetal of J τ wth respect to B have the form [ J τ α k ϕ k + v] B = V A q, Λ o, where: V + represets the coeffcets of a symmetrc, postve-defte operator o V wth egevalues uformly bouded away from zero; A q,0 has q egatve egevalues uformly bouded away from zero ad oe-dmesoal kerel; Λ + s postve-defte, wth egevalues uformly bouded away from zero; v stads for the dagoal matrx =,...,q. Remark 4.. The bass elemets B correspodg to the frst two blocks have orms of order, whle the oes correspodg to the last two blocks have orm of order. We made ths choce to guaratee the off-dagoal terms the above matrx to be of order o. Proof of Proposto 4.. We wsh to aalyse.4 for u = α ϕ + v V q, ε. Recall that W, M, g 0 = φ k, k, H α ϕ,

12 see Secto. We the choose a bass {ν 0, ν, ν,...} for H α ϕ whch s orthoormal wth respect to, Lg 0 ad for... q τ defe B = { φ k,, ν } := { ϕ, ϕ, a ϕ, ν }; k =,, 3, =,..., q. It s ot hard to see that, wth ths choce, the coeffcets [ J τ α k ϕ k + v] B are all of order O, ad our goal s to make ther estmates more precse, cosderg dfferet matrx blocks. Frst block. The fact that J τ α ϕ s uformly postve-defte o H α ϕ s well-kow, see e.g. [5]. The postvty of J τ α ϕ + ε v o the same subspace follows from the Hölder cotuty of the secod dfferetal ad the fact that v = O. Frst two blocks. Testg the secod dfferetal wth ν ad φ, = ϕ we get J τ α ϕ + v ν φ, = o 4. usg the orthogoalty ν, φ, Lg0 = 0, Lemma 5. ad the fact that v. Moreover, from.4 ad the fact that φ, s of order, we fd J τ α k ϕ k + v φ 6 c, φ, = 0 α,τ up to a error of order o. Let us compare the above expresso to δ k,l + α kα l α = A dx,; c 0 = R + r, 4. fα = α α ; α := wth frst- ad secod-order dervatves gve by q α, = α := q = α, α fα = α α fα = δ, α α α α α = α + α α α + + α α α α α α 4 + α 4 α + α α α α α α α + α + α + α +. α 4 ; α 4 α 4 The fucto f s scalg varat ad restrcted to {α = } attas ts maxmum at α satsfyg where we have α α α 4 = for all =,..., q, 4 α α fα = α δ, + α α α. 4.3 Comparg 4. ad 4.3 we coclude, wth obvous otato V + 0 J τ ν φ J τ ν φ 3 [ J τ α k ϕ k + v] B = 0 A q,0 J τ φ φ J τ φ φ3 J τ φ ν J τ φ φ J τ φ φ J τ φ φ3 + o. J τ φ3 ν J τ φ3 φ J τ φ3, φ J τ φ3 φ3

13 Terms off x blocks. Let us cosder ext the teracto of ν wth φ k, = φ k, for k =, 3. Sce v = O, ν = O, ϕ k, φ k, Lg0 = O ad ν, φ k, Lg0 = 0 we smply fd for.4 J τ α l ϕ l + v ν φ,k = J τ α l ϕ l ν φ,k = pr α ϕ k p+ + τ α l ϕ l p ν φ,k dµ g0, 4.4 up to a error of order o. Ideed, by.4, the crucal estmates eeded to verfy 4.4 are α l ϕ l p ν dµ g0 = o = α l ϕ l p φk, dµ g These however follow easly by expaso ad teracto estmates usg ϕ l, φ k, Lg0 = O, ν, φ k, Lg0 = 0, L g0 ϕ l = 4 ϕ + l + o W, M, g 0 ad Lemma 5.3. For the remag tegral 4.4, we the have α l ϕ l p ν φ,k dµ g0 = α l ϕ l p ν φ,k dµ g0 + o = {ϕ > l αl ϕ l }α l ϕ l p ν φ,k dµ g0 + O ϕ p l ϕ p+ + o L p l = α p ϕ p ν φ,k dµ g0 + O ϕ p l ϕ + ϕ l ϕ p p+ + o L p {ϕ > l αl ϕ l } l 4.6 ad therefore, usg Lemma 5. wth p = + τ α l ϕ l p ν φ,k dµ g0 = α p ϕ p ν φ,k dµ g0 + o. The, sce ν = O, τ = O ad ε r,s = O, we fd α l ϕ l p ν φ,k dµ g0 = α 4 ν φ,k dµ g0 + o = o, where the last equalty follows from Lemma 5. ad φ k,, ν Lg0 = 0. Thus J τ α l ϕ l + v ν φk, = o for k =, By exactly the same argumets wth φ, = O as for 4.5 there holds J τ α l ϕ l + v φ, φk, = J τ α l ϕ l + v φ, φ k, = J τ α l ϕ l ϕ φ k, = o for k =, 3. Thus we arrve at V [ J τ α l ϕ l + v] B = 0 A q, J τ φ φ J τ φ φ3 + o 0 0 J τ φ3 φ J τ φ3, φ. 3 3

14 Last x block. We are left wth the estmate of J τ α k ϕ k + v φ k, φl, = J τ α k ϕ k + vφ k, φ l, for k, l =, 3. Usg the fact that φ k, L g0 α m ϕ m + vdµ g0 = o = φ k, α m ϕ m + v p dµ g0 for k =, 3, whch follows from v = O, Lemma 5. ad Lemma 5., we fd for.4 J τ α m ϕ m + vφ k, φ l, [ = φ k τ k, L g0 φ l, p r ] α m ϕ m + v p φ k, φ l, dµ g0 p+ k τ =: I =: I k τ p+ k τ I = I p+ c 0 α I + o,τ. 4.8 I the latter formula, recallg. ad the defto of V q, ε, we have used the fact that k τ p+ = c 0 α,τ + o ad that both I, I are of order. Let us frst compute I, for whch we clearly have I = p r α m ϕ m p r αm ϕ φ k, φ l, dµ g0 + pp m+ v α m ϕ m p φ k, φ l, vdµ g0 k τ k τ up to a error o, as v = O, ad therefore stll up to a error o I =p r α m ϕ m p φ k, φ l, dµ g0 k τ α α m ϕ m 6 φk, φ l, vdµ g0. α,τ As due to da, a for, the teractos terms ε,.7 are of order = o, we fd r δ, α p I =p k τ ϕ p φ k, φ l, dµ g0 α α,τ δ, α 6 ϕ 6 φ k, φ l, vdµ g0 up to a error o. Usg 3., up to the same error we may smplfy ths to I =p r δ, α p k τ δ,α ϕ p φ k, φ l, dµ g δ, ϕ 6 φ k, φ l, vdµ g0 for some ε > 0 small ad fxed. Moreover, by orthogoalty ad 5. B εa x φ k, φ l, dµ g0 r α ϕ + v k τ α ϕ + v = r α ϕ k τ α ϕ = 4 α α p+,θ c c 0 c c c c 0 τ + o, 4

15 whece by 3. ad the fact that p = + τ we arrve at I =4 + [ + + c c c τ] θ δ, c 0 c c δ, x φ k, φ l, dµ g0 B εa δ,α ϕ 6 φ k, φ l, vdµ g0. ϕ p φ k, φ l, dµ g0 Let us compute the last tegral above, whch s of order O, as t s v. There holds 4 ϕ 6 φ k, φ l, vdµ g0 = =d k, d k, φ l, vdµ g0 φ l, vdµ g0 d k, φ l, vdµ g0 Due to orthogoalty, the frst tegral above s of order o ad deotg by φ l, d k, vdµ g0. ŵ = Π φk, Lg 0 w for w W, M, g the orthogoal proecto oto φ k, Lg 0 we have, up to a error o d k, φ l, vdµ g0 = d k, φ l, vdµ g0 due to the orthogoaltes v, φ k, Lg0 = 0 ad the fact that v = O. Hece, usg the same otato as 4.9, we arrve at I =4 + [ + + c c c τ] θ δ, ϕ p φ k, φ l, dµ g0 c 0 c c δ, x φ k, φ l, dµ g0 B ca 4 + δ,α d k, φ l, vdµ g0 + φ l, d k, vdµ g0. Due to the fact that v = O we have, stll up to a o J τ α m 8 L g0 ϕ m v = c 0 α p+,τ 4 v + m m ad we recall from 3.5 that J τ α m ϕ m v = J τ α m ϕ m +o o φ l, Lg 0. From ths we deduce, aga by smalless of teractos terms ε, v, + d k, φ l, vdµ g0 = c 0α p+,τ 8 J τ α m ϕ m d k, φ l, + v, d k, φ l, Lg0 4 ad, by orthogoalty ad Lemma 5., there holds up to a error o v, d k, φ l, Lg0 = d k, v, φ l, Lg0 = 4 d k, vd l, ϕ + dµg0 = 4 + d k, vφ l, dµ g0. 5

16 We therefore coclude that, up to a error o, I =4 + [ + + c c c τ] θ δ, c 0 c c δ, x φ k, φ l, dµ g0 B εa 4 δ, α c 0 α p+,τ 8 J τ α m ϕ m d k, φ l,, ϕ p φ k, φ l, dµ g0 at whch pot v has bee elmated from the ma terms the expaso. By Lemma 3. we the have J τ α m ϕ m φk, = o, so we may pass from d k, φ l, to d k, φ l, the above formulas ad, as J τ α m ϕ m = O, we obta c 0 α p+,τ 8 J τ α m ϕ m d k, φ l, = α m τ ϕ + m l + mr c ϕ + m + c + α m τ α m B εa m B εa m B εa m c m m m ϕ m d k, φ l, dµ g0 c c mr c ϕ + m c c ϕ + m + c m m m ϕ m d k, φ l, dµ g0 c c c m x m r ϕ + m d k, φ l, dµ g0. m m Stll by the fact that ε, = o we therefore arrve at I =4 + [ + + c c c τ] θ δ, c 0 c c δ, x φ k, φ l, dµ g0 4 δ, τ + τ B εa B εa B εa B εa ϕ p φ k, φ l, dµ g0 ϕ + l + r c ϕ + + c c ϕ d k, φ l, dµ g0 c c r c ϕ + c c ϕ + + c ϕ d k, φ l, dµ g0 c c c x r ϕ + d k, φ l, dµ g0, 6

17 up to some o. By oddess, we may smplfy ths to I =4 + [ + + c c c τ] θ δ, δ k,l c 0 c c δ,δ k,l x φ k, φ k, dµ g0 4 δ, δ k,l τ + τ B εa B εa B εa B εa ϕ p φ k, φ k, dµ g0 ϕ + l + r c ϕ + + c c ϕ d k, φ k, dµ g0 c c r c ϕ + c c ϕ + + c ϕ d k, φ k, dµ g0 c c c x r ϕ + d k, φ k, dµ g0 By Lemma 5. t follows that, up to some o, for k =, ϕ d k, φ k, dµ g0 = L g0 ϕ d k, φ k, dµ g0 = ϕ, d k, ϕ Lg0 = d k, ϕ, d k, ϕ Lg0 d k, ϕ, d k, ϕ Lg0 =d k, φ,, φ k, Lg0 φ k, Lg0 = o, as φ,, φ k, Lg0 ad φ k, L g0 are almost costat a ad. So we smplfy to I 4 = δ,δ k,l + τ B εa B εa [ + + c c c τ] θ δ, δ k,l c 0 c c 0 x φ k, φ k, dµ g0 δ, δ k,l τ c r c c c c c ϕ + d k, φ k, dµ g0 ϕ p φ k, φ k, dµ g0 l + r c B εa B εa Next, for the frst summad above we fd that, up to a error o θ ϕ p φ k, φ k, dµ g0 = φ k, φ k, dµ g0 + θ ϕ τ = + d k, ϕ + φ k, dµ g0 + B εa = 4 + φ k,, φ k, Lg0 + θ B εa B εa c ϕ + d k, φ k, dµ g0 x r ϕ + d k, φ k, dµ g0. + r θ φ k, φ k, dµ g0 l + r φ k, φ k, dµ g0 φ k, φ k, dµ g0 7

18 usg Lemma 5. ad properly expadg. Recallg 4.8, we thus coclude k τ p+ 8 J τ α m ϕ m + vφ k, φ l, = =δ, δ k,l + + c c 0 c c c c 0 τ τ B εa B εa l + r c L g0 4 φ k,φ l, dµ g0 φ k, φ k, dµ g0 + τ c ϕ + B εa d k, φ k, dµ g0 + τ x r ϕ + d k, φ k, dµ g0 + I 4 l + r φk, φ k, dµ g0 B εa B εa ad partcular for =,..., q, ad =,..., we have, up to a error o c r c c c c c V [ J τ α k 0 ϕ k + v] B = A q, J τ ϕ ϕ J τ a ϕ + x φ k, φ k, dµ g0 ϕ a ϕ. d k, φ k, dµ g0 4.0 Last dagoal terms. Cocerg -dervatves, we frst otce that mxed dervatves dfferet s are of order, whch s a o sce 5. Therefore t s suffcet to compute secod dervatves wth respect to the same. Ths correspods to k τ p+ 8 J τ α m ϕ m + v ϕ = + + c c c τ c 0 c c 0 + τ τ B εa B εa B εa l + r ϕ dµ g0 l + r c c ϕ + ϕ dµ g0 + τ x r ϕ + ϕ dµ g0 + B εa B εa φ k, φ k, dµ g0 c r c c c c c ϕ + x ϕ dµ g0. ϕ dµ g0 The secod-last summad vashes ad ϕ p φ k, φ k, dµ g0 = c k + o, cf. Lemma 5., whece k τ p+ 8 J τ α m ϕ m + v ϕ = c + + c c c τ c 0 c c 0 + τ + τ B εa B εa l + r ϕ dµ g0 τ c r c c c c c ϕ + B εa ϕ dµ g0 + l + r c B εa c ϕ + r ϕ dµ g0. ϕ dµ g0 Moreover, ϕ + ϕ dµ g0 = ϕ + ϕ dµ g0 + ϕ dµ g0 = + c + o, 8

19 ad + B εa r ϕ dµ g0 = = B εa B εa r ϕ ϕ + dµ g0 r ϕ ϕ + B εa dµ g0 r ϕ + ϕ dµ g0. Thus, recallg 3., partcular c τ + c = o, we arrve at k τ p+ 8 J τ α m ϕ m + v ϕ = c τ + τ τ B εa l + r B εa + ϕ ϕ dµ g0 + c c B εa τ 3 l + r ϕ dµ g0 B εa ad for the last tegral above we fd passg to tegrato over R r ϕ ϕ + dµ g0 = r δ 0, δ + 0, dx R = up to some error of order o. Cosequetly, r ϕ ϕ + dµ g0, r δ 0, dx = R r + r dx = 8 k τ p+ 8 J τ α m ϕ m + v ϕ = c + c c 6 τ c c + τ B εa l + r ϕ dµ g0 τ B εa Fally, we calculate passg to tegrato over R ad up to a o + l + r ϕ dµ g0 B εa l + r + ϕ c ϕ dµ g0. = l + r δ 0, δ + 0, dx = l + r δ 0, δ + R R R r + r δ 0, δ + 0, dx l + r δ 0, δ + 0, dx, R where the frst summad above vashes by rescalg, ad we are reduced to 0, dx k τ p+ 8 J τ α m ϕ m + v ϕ = c + c c R 6 τ + τ r c c + r δ 0, δ + 0, dx, where, up to some o, r + r δ 0, δ + 0, dx = R R r r + r dx = + ĉ 3, ĉ 3 = R r r + r dx By a explct computato all the above costats ca be explctly evaluated, we coclude that up to a error o k τ p+ 8 J τ α m ϕ m + v ϕ = c + c c 6 c c 9 ĉ 3 τ = Γ 8Γ + τ.

20 Thece we arrve at wth =,..., q ad =,..., V [ J τ α k 0 ϕ k + v] B = A q, Λ J a τ ϕ a ϕ up to o, where Λ + > 0 s as the statemet. We are left wth the computato of the terms for stace we cosder k τ p+ 8 J τ α m ϕ m + v a ϕ = + + c c 0 c c c c 0 τ τ B εa B εa l + r c k τ p+ 8 J τ α m ϕ m + v a a ϕ dµ g0 + τ c a ϕ dµ g0 + τ ϕ + x r ϕ + a ϕ dµ g0 + At ths pot some smplfcatos occur. From the relato c τ + c we obta cacellato of the terms volvg ad c a ϕ dµ g0 = c 3 + o; = o r c B εa ϕ a ϕ, B εa B εa l + r a c r c c c c c ϕ + ϕ dµ g0 a ϕ dµ g0 x a ϕ dµ g0.. Usg as well the relatos ϕ + a ϕ dµ g0 = + c 3 + o together wth c c 0 c c c c0 c3 = c c c c c c c, due to the fact that c 0 = c ad c = c 3, to obta k τ p+ 8 J τ α m ϕ m + v a ϕ = c 3 τ + τ B εa B εa l + r a x ϕ + a ϕ dµ g0 + ϕ dµ g0 τ B εa B εa l + r x a ϕ dµ g0. a ϕ dµ g0 + ϕ Moreover we have, passg to tegrato over R, up to a error o + l + r a ϕ dµ g0 = l + r a δ + a 0, R δ 0, dx B εa + x a = R + δ 0, r δ 0, dx l + r + δ 0, a δ 0, dx R 0

21 ad fd for the frst summad x R + We therefore are left wth + δ r 0, a k τ p+ 8 J τ α m ϕ m + v a ϕ = x ϕ + a ϕ dµ g0 + B εa δ 0, dx = δ 4 0, a δ 0, dx = c 3 R. B εa Fally, passg to tegrato over R, up to some o there holds + x l a ϕ a dµ g0 = δ + a 0, δ 0, dx B εa = δ,l R x δ + 0, a R x l x a ϕ dµ g0. δ 0, dx x a l δ + 0, R a δ 0, dx, ad smlarly for =,...,. Dagoalzg the Hessa we have x = l= l x l ad x δ + a 0, R δ 0, dx = δ x R r 0, R + dx = r + r dx, + ad smlarly for =,...,, so we coclude that k τ p+ 8 J τ α m ϕ m + v a Smlarly, oe ca show aalogous formula for ay couple of dces The proof s thereby complete. k τ p+ 8 J τ α m ϕ m + v a k ϕ a l ϕ = c. ϕ = c k,l. From Proposto 4. we deduce that the kerel of J τ s exactly oe-dmesoal. The presece of a kerel s uavodable due to the scalg varace of J τ, but ths degeeracy turs out to be mmal. We ca therefore restrct ourselves to some homogeeous costrat. Corollary 4.. of.5 V q, ε. The Let I τ = J τ [ Lg0 =] or I τ = J τ [ kτ =], ad let ũ be ormalzato of a soluto u mi τ, ũ = q + q m, a. 5 Appedx: some techcal estmates I ths appedx, recallg our otato, we collect some useful statemets ad formulas proved [30]. Lemma 5.. There holds L g0 ϕ a, = Oϕ + a,. More precsely o a geodesc ball B αa for α > 0 small L g0 ϕ a, = 4 ϕ + a, c ra H a + r a ra H a ϕ + a, = + R g a u a ϕ a, + or a ϕ + where r a = d ga a,. Sce R ga = Ora coformal ormal coordates, cf. [3], we obta a,,

22 L g0 ϕ a, = 4 [ c r a H a a + H a ax]ϕ + a, + O ϕ a, for = 5; L g0 ϕ a, = 4 ϕ + a, = 4 [ + c L g0 ϕ a, = 4 ϕ + a, = O ϕ a, for 7, W a l r]ϕ + a, + O ϕ a, for = 6; where W a = Wa. The expasos stated above persst upo takg ad a dervatves. Lemma 5.. Let θ = τ ad k, l =,, 3 ad, =,..., q. The, for ε, as.7, there holds uformly as 0 τ 0 φ k,, φ k,, a φ k, Cϕ ; θ ϕ 4 τ φ k, φ k, dµ g0 = c k d + Oτ + +θ, c k > 0; for up to some error of order Oτ + + ε + 4, θ ϕ + τ φ k, dµ g0 = b k d k, ε, = ϕ τ d k, ϕ + dµ g0 ; v θ 4 ϕ τ φ k, φ l, dµ g0 = O for k l ad for k =, 3 θ for = 5 φ k, dµ g0 = O τ + l for = 6 ; 4 4 for 7 ϕ + τ v v θ ϕ α τ ϕ β dµ g 0 = Oε β, for, α + β =, α τ > > β ; ϕ ϕ dµ g0 = Oε, l ε,, ; v,, a ε, = Oε,,. wth costats b k = R c = R dx +r + dx + r, c = for k =,, 3 ad 4 R r dx + r +, c 3 = Lemma 5.3. For u V q, ε wth k τ =, cf..,ad ν H u q, ε there holds [ J τ α ϕ ν = O r τ θ r + r r +θ r + r +θ + r r s ε + r,s θ r R r dx + r +. ] ν. Lemma 5.4. For u V q, ε ad ε > 0 suffcetly small the three quattes J τ uφ,, J τ α ϕ φ,, α J τ α ϕ ca be wrtte as α α,τ `c 0 α α p+,τ + `b k l θ α p `c α k α l α ε k,l α ε, α k k k k `d αk α H 3 W l 4 α k H k k α for = 5 3 k α k W k l k k α for = 6 4 k 0 for 7

23 up to a error of order O τ + r r s + r 4 r + ε + r,s + J τ u, wth postve costats `c 0, `c, `b, `d `b = b c, `c = c 0 c, `d = d 0 c, `c 0 = 8 c I partcular for all α α p+,τ θ α p = + O τ + r s r + ε r,s + J τ u. Lemma 5.5. For u V q, ε ad ε > 0 suffcetly small the three quattes J τ uφ,, J τ α ϕ φ, ad α J τ α ϕ ca be wrtte as α α,τ c τ + c b α ε, + α d wth postve costats c, c, d, b up to some error O τ + r s H 3 W l 4 r r for = 5 for = 6, 0 for r + ε + r,s + J τ u. Lemma 5.6. For u V q, ε ad ε > 0 suffcetly small the three quattes J τ uφ 3,, J τ α ϕ φ 3, ad a α J τ α ϕ ca be wrtte as α α,τ č 3 + č ˇb 3 wth postve costats č 3, č 4, ˇb 3 up to some error O τ + r s Lemma 5.7. For every u V q, ε there holds α r r α a + 4 r ε,, + ε + r,s + J τ u. J τ u τ + r s r r + r + α α p+,τ r θ α p r r + ε + r,s + v. Theorem. Suppose that 5, : M R s postve, Morse ad satsfes.3. The for ε > 0 suffcetly small there exsts c > 0 such that for ay u V q, ε wth k τ = there holds Ju c τ + r s r r + r + α α p+,τ r θ r αr p + εr,s, uless there s a volato of at least oe of the four codtos τ > 0; there exsts x x { = 0} { < 0} ad da, x = O ; v α = Θ θ p + o ; c τ = c k k + o k k where Θ s a postve costat, uformly bouded ad bouded away from zero, that depeds o u see Remark 6. [30]. I the latter case there holds... q = τ ad settg a = exp gx ā, 3

24 we stll have up to a error o the lower boud 3 Ju τ + x 9 x + 5 9π [Hx 3 + x G g0 x, x ] x γ 3 + ā + č4 x x č α Θ p θ a x 90 x + 86 Hx π 3 k x k x k k k + 86 π x k Hx k x k 3 k case = 5 ad Ju τ + c x c x + ā + č4 x x θ + α Θ p č 3 a 3 case 6. The costats appearg above are defed by c 0 = R dx +r, r c = c + r + l + r dx, c r r = 0 c + r R 0 R 4 R r č 3 = R + r dx, č 4 = + r dx.; 4 dx 4 b = ; d = r + r c R 0 + r + c R + r dx dx; From the proof of Proposto 5. ad Sectos 4,5 ad 6 [30] we wll eed the followg estmates up to a error of order O τ + r + 4 r r s ε + r,s there holds b = b α ϕ p+ dµ g0 = + d θ α c 0 θ α p+ H 3 W l c θ + b α α + τ + c +θ α α θ ε, ; d = R r dx + r + ; 5. recallg.7, oe has ϕ L g0 ϕ dµ g0 = b ε, + O r s 4 r + ε + r,s, b = 4 b ; 5.3 up to a error Oτ +, there holds 4 v up to a error of order O τ + r 4 r α α ϕ L g0 ϕ 4 dµ g 0 = c 0 ; r s ε + r,s. oe has ϕ L g0 ϕ dµ g0 =4 c 0 α + b α α ε,

25 v If ϕ s as.6, the ϕ + νdµ g0 v L g0 ϕ 4 ϕ + v up to a error Oτ + oe has 4 ϕ p+ dµ g0 = c 0 τ θ + c θ + c +θ L + g 0 + d 3 for = 5 = O l for = 6 v ; for 7 H 3+θ W l 4+θ 0, c = R r dx + r ; 5.7 v up to a error or order Oτ + r s J τ α ϕ = c α α ϕ L g0 ϕ dµ g0 α ϕ p+ p+ +θ α α,τ d r r + 4 r + ε + r,s there holds = α α ϕ L g0 ϕ dµ g0 θ c 0 α p+ θ p+ H 3 W l 4 0 α α,τ b c θ α + α α θ,τ α α,τ τ ε,.; 5.8 v f ε, s as.7, the ε, = ε, + O 4 + ε +, case < or d g0 a, a o. 5.9 Fally, we derve oe last techcal estmate. Recallg., from 5.5 we have, up to a error o, r α ϕ =α α L g0 ϕ ϕ dµ g0 = 4 c 0 α = 4 c 0 α 5.0 dx wth c 0 = R +r. From 5. stead, stll up to a error o, we get α ϕ p+ dµ g0 = c 0 θ α p+ + c θ α τ + c +θ α = c 0 α p+,θ + α θ c τ + c wth costats gve by Therefore c = r α ϕ k τ α ϕ = 4 α α p+,θ ad we coclude aga from 3. that l + r R + r dx, ad c = 4 r α ϕ k τ α ϕ = 4 α α α p+,θ α p+,θ α θ R r + r dx. 5. c τ + c c 0 c 0 + o c c c τ + o. 5. c 0 c c 0 5

26 5. Lst of costats For the reader s coveece, we dsplay the equatos where some dmesoal costats appear. Refereces ˆ ` ˇ c c Lemma Theorem c Lemma Theorem c 3 Lemma Theorem c 4 Theorem d Theorem b Lemma b Lemma 5. Theorem b 3 Lemma 5. [] Ambrosett A., Garca Azorero J., Peral A., Perturbato of u + u N+ N = 0, the Scalar Curvature Problem R N ad related topcs, Joural of Fuctoal Aalyss, , [] Ambrosett A., Malchod A., Perturbato Methods ad Semlear Ellptc Problems o R, Brkhäuser, 006. [3] Aub T., Equatos dfferetélles o léares et Problème de Yamabe cocerat la courbure scalare, J. Math. Pures et Appl , [4] Aub T., Some Nolear Problems Dfferetal Geometry, Sprger-Verlag, 998. [5] Bahr A., Crtcal pots at fty some varatoal problems, Research Notes Mathematcs, 8, Logma-Ptma, Lodo, 989. [6] Bahr A., Coro J.M., The Scalar-Curvature problem o the stadard three-dmesoal sphere, Joural of Fuctoal Aalyss, 95 99, [7] Be Ayed M., Che Y., Chtou H., Hammam M., O the prescrbed scalar curvature problem o 4-mafolds, Duke Mathematcal Joural, , [8] Be Ayed M., Chtou H., Hammam M., The scalar-curvature problem o hgher-dmesoal spheres. Duke Math. J , o., [9] Bach G., The scalar curvature equato o R ad o S, Adv. Dff. Eq. 996, [0] Bach G., Egell H., A varatoal approach to the equato u + u + = 0 R, Arch. Rat. Mech. Aal. 993, [] Caffarell L., Gdas B., Spruck J., Asymptotc symmetry ad local behavor of semlear ellptc equatos wth crtcal Sobolev growth. Comm. Pure Appl. Math , o. 3, [] Chag S. A., Gursky M. J., Yag P., The scalar curvature equato o - ad 3- spheres, Calc. Var. 993, [3] Che C.C., L C.S., Estmates of the coformal scalar curvature equato va the method of movg plaes. Comm. Pure Appl. Math , o. 0, [4] Che C.C., L C.S., Estmate of the coformal scalar curvature equato va the method of movg plaes. II. J. Dff. Geom , o., [5] Che C.C., L C.S., Blowg up wth fte eergy of coformal metrcs o S N. Comm. Partal Dfferetal Equatos 4 999, o. 5-6,

27 [6] Chag S. A., Yag P., Prescrbg Gaussa curvature o S, Acta Math , [7] Chag S. A., Yag P., Coformal deformato of metrcs o S, J. Dff. Geom , [8] Chag S. A., Yag P., A perturbato result prescrbg scalar curvature o S, Duke Math. J , [9] Che W. X., Dg W., Scalar curvature o S, Tras. Amer. Math. Soc , [0] Escobar J., Schoe R., Coformal metrcs wth prescrbed scalar curvature, Ivetoes Mathematcae, , [] Hebey E., Chagemets de métrques coformes sur la sphère - Le problème de Nreberg, Bull. Sc. Math , 5-4. [] Hebey E., Vaugo M., Le probleme de Yamabe equvarat. [The equvarat Yamabe problem] Bull. Sc. Math , o., [3] Lee J., Parker T., The Yamabe problem. Bull. Amer. Math. Soc. N.S , o., [4] L Y.Y., Prescrbg scalar curvature o S ad related topcs, Part I, J. Dff. Equat , [5] L Y.Y., Prescrbg scalar curvature o S ad related topcs, Part II, Exstece ad compactess, Comm. Pure Appl. Math , [6] azda J.L., Warer F., azda, Jerry L.; Warer, F. W. Curvature fuctos for compact - mafolds. A. of Math , [7] azda J.L., Warer F., Exstece ad coformal deformato of metrcs wth prescrbed Gaussa ad scalar curvature, A. of Math , [8] azda J.L., Warer F., azda, Jerry L.; Warer, F. W. Scalar curvature ad coformal deformato of Remaa structure. J. Dfferetal Geometry 0 975, [9] Malchod A., The Scalar Curvature problem o S : a approach va Morse Theory, Calc. Var., 00. [30] Malchod A., Mayer M., Prescrbg Morse scalar curvature: blow-up aalyss, preprt. [3] Malchod A., Mayer M., Prescrbg Morse scalar curvatures: pchg ad Morse Theory, to appear. [3] Mayer M., Prescrbg Morse scalar curvatures: crtcal pots at fty, to appear. [33] Mayer M., A scalar curvature flow low dmesos. Calc. Var. Partal Dfferetal Equatos 56 07, o., Art. 4, 4 pp. [34] Moser J., O a olear problem dfferetal geometry, Dyamcal Systems M. Pexoto ed., Academc Press, New York, 973, [35] Schoe R., Zhag D., Prescrbed scalar curvature o the -sphere, Calculus of Varatos ad Partal Dfferetal Equatos, 4 996, -5. [36] Talet G., Best costat Sobolev Iequalty, A. Mat. Pura Appl [37] We J., Ya S., Iftely may solutos for the prescrbed scalar curvature problem o S N. J. Fuct. Aal , o. 9,

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Examples of Cost and Production Functions

Examples of Cost and Production Functions Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost

Διαβάστε περισσότερα

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N. Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple

Διαβάστε περισσότερα

arxiv: v1 [math.ap] 22 Dec 2018

arxiv: v1 [math.ap] 22 Dec 2018 Pescbg Mose scala cuvatues: blow-up aalyss Adea Malchod ad Mat Maye Scuola Nomale Supeoe, Pazza de Cavale 7, 56 Psa, ITALY adeamalchod@sst, matmaye@sst axv:89457v [mathap] Dec 8 Decembe 7, 8 Abstact We

Διαβάστε περισσότερα

Optimal stopping under nonlinear expectation

Optimal stopping under nonlinear expectation Avalable ole at www.scecedrect.com SceceDrect Stochastc Processes ad ther Applcatos 124 (2014) 3277 3311 www.elsever.com/locate/spa Optmal stoppg uder olear expectato Ibrahm Ekre a, Nzar Touz b, Jafeg

Διαβάστε περισσότερα

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty

Διαβάστε περισσότερα

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field It J otem Mat Sceces Vo 7 0 o 9 99-98 O Hyersurface of Seca Fser Saces Admttg Metrc Lke Tesor Fed H Wosoug Deartmet of Matematcs Isamc Azad Uversty Babo Brac Ira md_vosog@yaoocom Abstract I te reset work

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Markov Processes and Applications

Markov Processes and Applications Markov rocesses ad Applcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Applcatos Queug theory erformace aalyss ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) Dscrete-Tme

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Time Invariant Regressor in Nonlinear Panel Model with Fixed Effects 1

Time Invariant Regressor in Nonlinear Panel Model with Fixed Effects 1 me Ivarat Regressor Nolear Pael Model wt Fxed ffects Jyog Ha UCLA February 26, 23 I am grateful to Da Ackerberg ad Jerry Hausma for elpful commets. Abstract s paper geeralzes Hausma ad aylor s (98) tuto,

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Article Multivariate Extended Gamma Distribution

Article Multivariate Extended Gamma Distribution axoms Artcle Multvarate Exteded Gamma Dstrbuto Dhaya P. Joseph Departmet of Statstcs, Kurakose Elas College, Maaam, Kottayam, Kerala 686561, Ida; dhayapj@gmal.com; Tel.: +91-9400-733-065 Academc Edtor:

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Universal Levenshtein Automata. Building and Properties

Universal Levenshtein Automata. Building and Properties Sofa Uversty St. Klmet Ohrdsk Faculty of Mathematcs ad Iformatcs Departmet of Mathematcal Logc ad Applcatos Uversal Leveshte Automata. Buldg ad Propertes A thess submtted for the degree of Master of Computer

Διαβάστε περισσότερα

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Three-Dimensional Experimental Kinematics

Three-Dimensional Experimental Kinematics Notes_5_3 o 8 Three-Dmesoal Epermetal Kematcs Dgte locatos o ladmarks { r } o bod or pots to at gve tme t All pots must be o same bod Use ladmark weghtg actor = pot k s avalable at tme t. Use = pot k ot

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION

NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION SARAJEVO JOURNAL OF MATHEMATICS Vol1 (5), No, (016), 05 15 DOI: 105644/SJM107 NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION WENCHANG CHU AND NADIA N LI Abstract By meas of two ad three term relatos

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Boundary-Fitted Coordinates!

Boundary-Fitted Coordinates! Computatoal Flud Damcs I Computatoal Flud Damcs I http://users.wp.edu/~gretar/me.html! Computatoal Methods or Domas wth! Comple Boudares-I! Grétar Trggvaso! Sprg 00! For most egeerg problems t s ecessar

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution

Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution Iteratoal Joural of Computer Applcatos (975 8887) Volume 5 No. September 5 Studes o Propertes ad Estmato Problems for odfed Exteso of Expoetal Dstrbuto.A. El-Damcese athematcs Departmet Faculty of Scece

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Markov Processes and Applications

Markov Processes and Applications Markov Processes ad Alcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Alcatos Queug theory Performace aalyss Dscrete-Tme Markov Chas Books - Itroducto to Stochastc Processes (Erha Clar), Cha. 5,

Διαβάστε περισσότερα

Minimum density power divergence estimator for diffusion processes

Minimum density power divergence estimator for diffusion processes A Ist Stat Math 3) 65:3 36 DOI.7/s463--366-9 Mmum desty power dvergece estmator for dffuso processes Sagyeol Lee Jumo Sog Receved: 3 March 7 / Revsed: Aprl / ublshed ole: July The Isttute of Statstcal

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα