arxiv: v1 [math.ap] 22 Dec 2018

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv: v1 [math.ap] 22 Dec 2018"

Transcript

1 Pescbg Mose scala cuvatues: blow-up aalyss Adea Malchod ad Mat Maye Scuola Nomale Supeoe, Pazza de Cavale 7, 56 Psa, ITALY axv:89457v [mathap] Dec 8 Decembe 7, 8 Abstact We study fte-eegy blow-ups fo pescbed Mose scala cuvatues both the subctcal ad the ctcal egme Afte geeal cosdeatos o Palas-Smale sequeces we deteme pecse blow up ates fo subctcal solutos: patcula the possblty of towe bubbles s excluded all dmesos I subsequet papes we am to establsh the shapess of ths esult, povg a covese exstece statemet, togethe wth a oe to oe coespodece of blowg-up subctcal solutos ad ctcal pots at fty Ths aalyss wll be the appled to deduce ew exstece esults fo the geometc poblem Key Wods: Cofomal geomety, sub-ctcal appoxmato, blow-up aalyss Cotets Itoducto Vaatoal settg ad pelmaes 6 3 Blow-up aalyss 9 4 Reducto ad v-pat estmates 4 5 The fuctoal ad ts devatves 7 6 Gadet bouds 3 7 Appedx 35 7 Iteactos 35 7 Devatves Lst of costats 5 Itoducto The poblem of pescbg the scala cuvatue of a mafold cofomally has a log hstoy, statg fom [3], see also [3], [3] I case of the oud sphee, ths s ow as Nebeg s poblem Gve a closed mafold M, g of dmeso 3 ad a cofomal metc g = u 4 g fo a postve fucto u > o M, the cofomal chage of the scala cuvatue s gve by R gu u + = Lg u, whee by defto L g u = c g u + R g u, c = 4

2 s the cofomal Laplaca, whle g s the Laplace-Beltam opeato wth espect to g Thus, ode to pescbe a fucto K o M as the scala cuvatue wth espect to g, oe eeds to solve L g u = Ku +, u > potwse o M, see [3] The expoet o the ght-had sde s ctcal wth espect to Sobolev s embeddg, whch maes the poblem patculaly challegg I cotast to the Yamabe poblem, whch amouts to fdg a costat scala cuvatue metc, fo K vayg o M thee ae obstuctos to the exstece fo Fo example Kazda ad Wae poved [3] that o the oud sphee S, g S evey soluto u of must satsfy K, f gs u dµgs = S fo ay estcto f to S of a affe fucto o R + I patcula, sce u s postve, a ecessay codto fo the exstece of solutos s that the fucto K, f gs chages sg Oe of the fst aswes to Nebeg s poblem was gve by J Mose [38] fo two dmesos, whee the coutepat of has a expoetal fom He poved that fo K beg a eve fucto o S a soluto always exsts A elated esult was gve by J Escoba ad R Schoe [], showg exstece of solutos whe K s vaat ude some goup G actg wthout fxed pots, ude sutable flatess assumptos of ode I the same pape some esults wee also foud fo o-sphecal mafolds usg postvty of the mass Othe suffcet codtos fo the exstece case of G-vaat fuctos wee gve by E Hebey ad M Vaugo [4], [5], allowg the possblty of fxed pots Othe exstece esults wee obtaed by A Chag ad P Yag, see [7], [8], fo the case = wthout equg ay symmety of K Oe codto fo whch they obtaed exstece s the followg They assumed that K s a Mose fucto, satsfyg geecally { K = } { K = } = They also supposed that K possesses p local maxma ad q saddle pots wth egatve Laplaca ad p q + The latte codto was used to pove the esult va a Leay-Schaude degee-theoetcal agumet I the same papes othe esults wee gve, equg codtos oly at some pescbed levels of K Typcally K must possess two maxma x ad x, Kx Kx, whch ae coected by some path xt fo whch x saddle pot fo K f Kxt Kx<Kx Kx > t Statemets of ths last d have bee obtaed [] fo = ad [8] fo 3 Aothe exstece esult was gve by A Bah ad JM Coo [5] fo = 3 ad a Mose fucto K satsfyg ad mx,k 3 x { K=} { K<} Hee mx, K deotes the Mose dex of K at x, cf also [] The esult of Bah ad Coo, whch eles o a topologcal agumet, has bee exteded seveal dectos A exteso of codto 3, based o Mose s equaltes, was gve by Schoe ad Zhag [4] fo the case = 3 Fo a Mose fucto K satsfyg ad settg c q = {x M : Kx =, Kx < ad mk, x = 3 q} they equed that ethe c c + c o c c > Note that the fst codto s equvalet to 3 ad the secod oe fo = coespods to the codto p + > q [7] Othe esults of petubatve type ad elyg o fte-dmesoal eductos wee gve by A Chag ad P Yag [9] ad by A Ambosett, J Gaca-Azoeo ad I Peal [], see also [34] The authos cosdeed the case whch K s close to a costat ad satsfes a aalogue of 3, e mx,k x { K=} { K<}

3 I [7] YY L poved exstece of solutos fo evey dmeso, f the fucto K ea each ctcal pot has a Mose-type stuctue, but wth a flatess of ode β, Hs poof eled o a homotopy agumet: cosdeg K t = t K + t, t [, ] the autho used the degee-coutg fomula of [9] fo t small, ad the a efed blow-up aalyss of equato, whe t teds to A dffeet degee fomula ude moe geeal flatess codtos was toduced [5] Othe esults obtaed by dffeet appoaches ca also be foud [7], [9], [] A useful tool fo the above esults s a subctcal appoxmato of, amely c g u + R g u = K u + τ, < τ 4 The advatage of 4, compaed to, s that the lowe expoet maes the poblem compact, so t s ease to costuct solutos Howeve, the teestg pot s passg to the lmt of solutos fo τ ad geeal oe expects some of them to dvege wth zeo wea lmt The appoach [], [4], [7] was to udestad detal the behavou of blowg-up solutos ad the to use degee- o Mose-theoetcal agumets to show that some solutos stay bouded Cosde ow a Mose fucto K o the sphee satsfyg I dmeso = 3 o ude a flatess codto hghe dmesos, t tus out that blowg-up solutos to 4 develop a sgle bubble at ctcal pots of K wth egatve Laplaca Bubbles coespod to solutos of o S wth K ad wee classfed [], see also [], [44], ad afte pope dlato epeset the pofles of dvegg solutos, cf Secto fo pecse fomulas The sgle-bubble pheomeo ca be qualtatvely explaed explotg the vaatoal featues of the poblem, whch admts the Eule-Lagage eegy J = J K gve by c u g + R g u dµ g Ju = M Ku dµg see also egadg 4 Deote by δ a, a bubble ceteed at a S wth dlato paamete The fo dstct ad fxed pots a, a ad lage oe has the expasos Kδ a, +δ a, dµgs Ka +Ka + c S, Kδ a dµ, g S c Ka c 3 S Ka 5 wth costats c >, whee c depeds o a ad a We efe to Secto 5 fo moe accuate esults Tems smla to the above oes appea the expesso of J τ By the latte fomulas ad fo ad = 3 the teacto of the bubbles wth K s domated by the mutual teactos amog bubbles Ths causes multple bubbles to suppess each othe allowg oly oe blow-up pot at a tme, whch has to be close to at ctcal pots of K wth egatve Laplaca due to a Pohozaev detty Ths aalyss was caed ove [8] also o S 4 I ths case the above teactos ae of the same ode ad multple blow-ups occu It was also show thee that multple bubbles caot accumulate at a sgle pot Usg a temology fom [4], [4] such blow-ups ae called solated smple I fou dmesos a dffeet costat o multple blow-up pots eplaces K <, depedg o the least egevalue of a matx costucted out of K ad the locato of the blow-up pots, cf 8 [8] O geeal fou-dmesoal mafolds thee s a exta tem due to the mass of the mafold leadg to smla pheomea, but wth modfed fomulas, see [6] The goal of ths pape s to vestgate the blow-up behavou a opposte egme, whe the dmeso 5 ad the fucto K s Mose I ths case the secod tem 5 domates the fst oe, so t s dastcally dffeet fom stuato of low-dmesos o wth flat cuvatues Howeve we ca stll show that blow-ups ae solated smple, whch s mpotat udestadg the Mose-theoetcal stuctue of the eegy fuctoal Hee s ou ma esult Theoem Let M, g, 5 be a closed mafold of postve Yamabe class ad K : M R a smooth postve Mose fucto satsfyg The postve sequeces of solutos to 4 fo τ m wth ufomly bouded W, -eegy ad zeo wea lmt have oly solated smple blow-ups at ctcal pots of K wth egatve Laplaca, 3

4 The above theoem follows fom Poposto 3, whee a geeal chaactezato of blowg-up Palas- Smale sequeces fo 4 as τ s gve, ad fom Theoem, whee a lowe boud o the om of the gadet of the Eule-Lagage fuctoal J τ fo 4 s poved, see Rema Solutos of 4 ca be foud as sutably omalzed ctcal pots of the scalg-vaat eegy J τ Fo a sequece of ctcal pots u m of J τm, wth τ m as Theoem, thee exst up to subsequeces q N ad dstct pots x,, x q M wth Kx = ad Kx < such that fo some α,m = u m q α,m δ,m,a,m W as m =, M,g Θ Kx 4 + o, a,m x ad,m τm = τ m, whee the multplcatve costat Θ eflects the scalg vaace of J τm, see, ad ca be fxed fo stace by pescbg the cofomal volume, cf Rema 6 I Theoem we wll show much moe pecse estmates, that wll be cucal fo [35] Fo example, f 6, we fd Kx,m = c Kx τ, a,m = c Kx Kx θ, α = Θ p Ka,m up to eos of ode o 3 τ m, whee c, c ae dmesoal costats ad we detfy by a slght abuse of otato a,m wth ts mage cofomal omal coodates at x, cf [6] Hece all the fte dmesoal vaables, e α,m, a,m ad,m ae detemed to a pecso of ode o 3 τ m Rema We ext compae Theoem to some exstg lteatue ad add futhe commets a O S 3 ad S 4 the solated-smpleess of solutos was poved [], [7], [8], [4] fo abtay sequeces of solutos by a efed blow-up aalyss The ufom W, -boud s the deved a- posteo I dmeso 5 the latte boud may ot hold tue geeal - we efe the eade to [], [3], [4], whee some cases t s show that blowg-up solutos fo the puely ctcal equato must have dvegg eegy ad blow-ups of dvegg eeges ad toweg bubbles ae also costucted, cf also [33], [39], [45] Howeve, the fothcomg pape [36] we wll costuct solutos to 4 va m-max o Mose theoy wth the pupose of fdg a o-zeo wea lmt These wll deed satsfy the equed eegy boud Ths wll allow us to obta exstece esults ude less stget codtos compaed to some othes the lteatue, as [8] ad [6] b O mafolds ot cofomally equvalet to S a-po estmates wee poved [9] fo = 3 both ctcal ad subctcal cases Ou aalyss caes ove fo = 4 as well, whee the matx Defto 6, toduced [6], [8] ad also volvg the mass, gves costats o the locato of multple blow-up pots The ma ew aspect of ou esult s the solated smple blow-up behavou dmeso 5, so we chose to state Theoem a smple fom oly fo ths case We efe to Theoem fo a moe pecse veso of the esult: hee we deve deed estmates o solutos wth hgh pecso as τ, as well as estmates that ae ufom ths paamete c I [35] we wll show a covese statemet Gve ay dstct pots p,, p { K = } { K < } ad τ thee exst solutos u to 4 blowg-up at p,, p exactly as descbed above Thece the chaactezato of Theoem s optmal We efe to [7], [8] fo the coutepats o thee- ad fou-sphees I [35] we wll also show a oe-to-oe coespodece of such blowg-up sequeces wth ctcal pots at fty fo poblem, cf [4] d We expect the same cocluso of Theoem should hold tue eplacg the eegy boud wth a Mose dex boud It would also be teestg to udestad the case of o-zeo wea lmts 3,m 4

5 We dscuss ext some heustcs about the poof of Theoem Fst we show a quatzato esult fo Palas-Smale sequeces of solutos to 4 as τ We ae sped ths step fom a esult by M Stuwe [43], whee the same was poved fo τ = : ou case we eed exta wo the lmtg pocess, due to a dffeet dlato covaace of subctcal equatos We the pove that we ae a petubatve egme ad evey soluto to 4 fo τ suffcetly small ca be wtte as a fte sum of hghly peaed bubbles ad a eo tem small W, -om, whch we pove to have a mo effect the expasos Pefomg a caeful aalyss of the teactos of the bubbles amog themselves ad wth K, t s ot dffcult to see that fo 5 blow-ups should occu at ctcal pots of K wth egatve Laplaca oly, cf also Theoem [3], ad we ae left wth excludg multple bubbles toweg at the same lmt pot, whch s the cucal esult ou pape We gve a dea of ths fact some patcula cases, that ae easy to descbe Let J τ be the Eule- Lagage eegy of 4, see Fo a ctcal pot a of K, the followg expaso holds fo J τ o a bubble cocetated at a J τ δ a, a τ Ka, 6 Ka K cf Poposto 5 By elemetay cosdeatos oe checs that fo Ka < the fucto the ght-had sde has a o-degeeate mmum pot at = τ τ, see also Poposto [4] Sce bubbles have a attactve teacto, cf the fst equato 5, eve tems of dlatos ceteg moe bubbles at the pot a would mae all dlato paametes collapse at = τ, see Fgue Fo the same easo, stll by 6, oe would get collapse wth espect to the cete pots of multple bubbles dstbuted alog the ustable dectos fom a ctcal pot of K, sce pots wth lage values of K have smalle eegy, due to 6, see Fgue We cosde the the case of bubbles ceteed at two δ a, δ a, J τ δ a, Fgue : two bubbles wth same cete, dffeet s δ a, δ a, J τ δ a, Fgue : two bubbles alog ustable decto of K, same a δ a, δ a, J τ δ a, Fgue 3: two bubbles alog stable decto of K, same a pots a, a symmetcally located at dstace d fom a ctcal pot p such that K p <, ad alog a stable decto of K, wth the same s Hee pcple the attactve foce amog bubbles could compesate the epulsve teacto fom the ctcal pot p of K, see Fgue 3 Fo ths cofguato oe gets a eegy expaso of the fom c J τ δ a, + δ a, K a τ Ka Ka c d c c 3 d τ + c 4 c d wth c > Fom the aalyss Poposto both ad d oe fds the elatos 3 t tus out that τ, so mposg ctcalty τ + d ad d d These asymptotcs mply that τ +, whch s mpossble fo lage The geeal case s athe volved to study ad wll be teated by a top-dow cascade of estmates Secto 6 The pla of the pape s the followg I Secto we toduce the vaatoal settg of the poblem ad lst some pelmay esults We the study some appoxmate solutos of, hghly cocetated at abtay pots of M Fom these oe ca cay out a educto pocedue of the poblem, whch s doe late the pape I Secto 3 we pove a geeal quatzato esult fo Palas-Smale sequeces of 4 wth ufomly bouded W, -eegy I Secto 4 we educe the poblem to a fte-dmesoal oe, whle Secto 5 we deve some pecse asymptotc expasos of the Eule-Lagage eegy Secto 6 s the devoted to povg sutable bouds o the gadet to exclude towe bubbles ad pove ou ma esult We fally collect the appedx the poofs of some useful techcal estmates as well as a lst of elevat costats appeag 5

6 Acowledgmets AM has bee suppoted by the poect Geometc Vaatoal Poblems ad Fazameto a suppoto della ceca d base fom Scuola Nomale Supeoe ad by MIUR Bado PRIN 5 5KB9WPT He s also membe of GNAMPA as pat of INdAM Vaatoal settg ad pelmaes I ths secto we collect some bacgoud ad pelmay mateal, coceg the vaatoal popetes of the poblem ad some estmates o hghly-cocetated appoxmate solutos of bubble type We cosde a smooth, closed Remaa mafold M = M, g wth volume measue µ g ad scala cuvatue R g Lettg A = {u W, M, g u, u } the Yamabe vaat s defed as c u g Y M, g = f + R g u dµ g A, c u dµg = 4 We wll assume fom ow o that the vaat s postve As a cosequece the cofomal Laplaca L g = c g + R g s a postve ad self-adot opeato Wthout loss of geealty we assume R g > ad deote by G g : M M \ R + the Gee s fucto of L g Cosdeg a cofomal metc g = g u = u 4 g thee holds dµ gu = u dµg ad R = R gu = u + c g u + R g u = u + Lg u Note that c u W, M,g u L g u dµ g = c u g + R g u dµ g C u W, M,g I patcula we may defe ad use u = u L g = u L g u dµ g as a equvalet om o W, Fo p = + τ ad τ we wat to study the scalg-vaat fuctoals c u M g J τ u = + R g u dµ g, Ku p+ dµ g p+ u A Sce the cofomal scala cuvatue R = R u fo g = g u = u 4 g satsfes = u = Rdµ gu = ul g udµ g, we have J τ u = p+ τ p+ τ wth τ = K u p+ dµ g 3 The fst- ad secod-ode devatves of the fuctoal ae gve by J τ uv = [ L g uvdµ g Ku p ] vdµ g ; τ 6

7 J τ uvw = p+ τ [ L g vwdµ g p τ 4 [ L g uvdµ g p+ + τ p+ + τ Ku p vwdµ g ] Ku p wdµ g + p Ku p vdµ g Ku p wdµ g L g uwdµ g Ku p vdµ g ] I patcula J τ s of class C,α loc A ad ufomly Hölde cotuous o each set of the fom Ideed u U ɛ mples U ɛ = {u A ɛ < u, J τ u ɛ } ɛ ɛ ad c ɛ 3 p+ τ = J τ u u Cɛ 3 Thus ufom Hölde cotuty o U ɛ follows fom the stadad potwse estmates { a p b p C p a b p case < p < a p b p C p max{ a p, b p } a b case p 4 We cosde ext some appoxmate solutos to, hghly cocetated at abtay pots of M As we wll see, fo sutable values of these ae also appoxmate solutos of 4 Let us ecall the costucto of cofomal omal coodates fom [6] Gve a M, oe chooses a sutable cofomal metc g a [g ] ad use the stadad geodesc coodates fo ths oe By the smoothess of the expoetal map exp ga a = exp ga wth espect to a we may fd a coodate system ea a such that a exp ga x = d + O x 5 We deote by a the geodesc dstace fom a wth espect to the metc g a ust toduced Wth ths choce the expesso of the Gee s fucto G ga wth pole at a M, deoted by G a = G ga a,, fo the cofomal Laplaca L ga smplfes cosdeably Fom Secto 6 [6] oe may expad G a = a + H a, a = d ga a,, H a = H,a + H s,a fo g a = u 4 a g, 6 4 ω whee ω = S Hee H,a C,α loc, whle the sgula eo tem satsfes fo = 3 a l a fo = 4 H s,a = O a fo = 5 l a fo = 6 a 6 fo 7 Pecsely the leadg tem H s,a fo = 6 s Wa 88c ϕ a, =u a + γ G a We otce that the costat γ s chose so that l, whee W deotes the Weyl teso Let, G a = G ga a,, γ = 4 ω fo > 7 γ G a x = d g a a, x + od g a a, x as x a Evaluatg the cofomal Laplaca o such fuctos shows that they ae appoxmate solutos 7

8 Lemma Thee holds L g ϕ a, = Oϕ + a, Moe pecsely o a geodesc ball B αa fo α > small L g ϕ a, = 4 ϕ + a, c a H a + a a H a ϕ + a, + u a R ga ϕ a, + o a ϕ + whee a = d ga a, Sce R ga = Oa cofomal omal coodates, cf [6], we obta L g ϕ a, = 4 [ c a H a a + H a ax]ϕ + a, + O 3 ϕ a, fo = 3 l ϕ a, fo = 4 ; ϕ a, fo = 5 L g ϕ a, = 4 ϕ + a, = 4 [ + c L g ϕ a, = 4 ϕ + a, = O ϕ a, fo 7 The expasos stated above pesst upo tag ad a Poof A staghtfowad calculato shows that ga + γ G a = γ ϕ a, + u a W a l ]ϕ + a, + O ϕ a, fo = 6; devatves G a g a G a + γ ϕ a, u a G a ga G a, whch s due to G a g a G a = G a g a ad c ga G a = δ a + R ga G a wth δ a deotg the Dac measue at a Ths s equvalet to ga + γ G a = γ ϕ a, u a + Sce L ga = c ga + R ga wth c = 4, we obta L ga ϕ a, u a By cofomal covaace we also get G a =4 ϕ a, + u γ G a a g a + R g a γ c g a + R g a L g ϕ a, = 4 ϕ + a, γ G a g a + u a R ga ϕ a, u a ϕ a, u a ϕ a,, G a patcula L g ϕ a, = Oϕ + a, Expadg G a as G a = 4 ω a + H a, a = d ga a, we fd γ G a g a = a + a H a ga = H a + a a H a a + oa, ad coclude that L g ϕ a, = 4 ϕ + a, c H a + a a H a a ϕ + a, + o a ϕ + a, + u a R ga a,, ϕ a, Clealy these calculatos tasced to the ad a devatves The the clam follows fom the above expaso of the Gee s fucto Afte toducg some otato we state a useful lemma, whch wll be poved the fst appedx Notato Gve a expoet p we wll deote by L p g the set of fuctos of class L p wth espect to the measue dµ g Recall also that fo u W, M, g we set u = ul g udµ g, whle fo a pot a M we deote by a the geodesc dstace fom a wth espect to the metc g a toduced above Fo a set of pots {a } of M we wll deote by K, K, K fo stace Ka, Ka, Ka Fo, l =,, 3 ad >, a M, =,, q let 8

9 ϕ = ϕ a, ad d,, d,, d 3, =,, a ; φ, = ϕ, φ, = ϕ, φ 3, = a ϕ, so φ, = d, ϕ Note that wth the above deftos the φ, s ae ufomly bouded W, M, g Lemma Let θ = τ ad, l =,, 3 ad, =,, q The fo thee holds ufomly as τ φ,, φ,, a φ, Cϕ ; ε, = + + γ G g a, a 8 v θ ϕ 4 τ φ, φ, dµ g = c d + Oτ + +θ + +θ fo up to some eo of ode Oτ + 4 θ ϕ + τ φ, dµ g = b d, ε, = θ, c > ; + ϕ τ + ε +, d, ϕ + dµ g ; 4 ϕ τ φ, φ l, dµ g = O + fo l ad fo =, 3 θ fo 5 φ, dµ g = O τ + l fo = 6 ; 4 4 fo 7 ϕ + τ v v θ ϕ α τ ϕ β dµ g = Oε β, fo, α + β =, α τ > > β ; ϕ ϕ dµ g = Oε, l ε,, ; v,, a ε, = Oε,, dx wth costats b = fo =,, 3 ad R + + dx c = +, c dx = 4 + +, c 3 = R 3 Blow-up aalyss R R dx + + I ths secto we pove a esult elated to a well-ow oe [43] We obta deed smla coclusos, but allowg the expoet the equato to vay alog a sequece of appoxmate solutos Poposto 3 Let u m m W, M, g be a sequece wth u m ad τm = satsfyg J τm u m = um ad J τm u m W, M, g The up to a subsequece thee exst u : M [, smooth, q N ad fo =,, q sequeces M a,m a ad R +,m as m such that u m = u + q = α ϕ a,m,,m + v m wth J u =, v m, τm,m ad Ka α 4 4 ad ε, m as m fo each pa < q 9

10 Poof Settg J = J τm, by ou assumptos we have Ju m = u m L g u m dµ g ad Ju m = L g u m Ku pm m = o W, M, g I patcula u m W, M, g s bouded, hece u m u wealy W, M, g ad stogly L q M, g, q < Notce that u s a ctcal pot of J ad theefoe t s a smooth fucto We may the wte u m = u + u,m wth u,m wealy, ad stogly L q M, g Thus Ju m = u L g u dµ g + u,m L g u,m dµ g + o, whece u,m L g u,m dµ g, ad secodly, due to 4, that Eu,m := L g u,m Ku pm,m = o W, M, g 3 We may assume, >, sce othewse we ae doe We ow clam the cocetato behavo < ε m : sup x M u,m g dµ g ε 3 B x m Ideed we have fo a fxed cut-off fucto [ ] o = Eu,m, u,m η = ηu,ml ηu g,m K ηu,m u pm,m dµ g + o ηu,m K m ηu,m u L pm+,m pm + o µg L pm+ µg suppη Usg Hölde s equalty ad Sobolev s embeddg we obta o ηu,m C u,m pm L pm+ µg suppη + o Thus, f u,m does ot cocetate L pm+ M, g smlaly to 3, the by a coveg agumet u,m g dµ g cotadctg, > By 3 cocetato L pm+ M, g s equvalet to cocetato L -om fo the gadet, whch had to be show Fxg ε > small, we measue the ate of cocetato va { } Λ,m = sup > max u,m g x M dµ g = ε, B x Λ ad choose fo ay,m wth lm,m m,m a,m M : u,m g dµ g B,m a,m = δ < up to a subsequece = sup u,m g dµ g c x M B x,m fo some postve c = cε, δ to be specfed late O a sutably small ball B ρ a,m we the escale w,m =,m u,m exp ga,m,m The fucto w,m s well defed o B ρ,m ad satsfes, wth θ m = τ m, c w,m Ka,m w pm, θm,m = o Wloc R, = R,m

11 Sce u,m dµ g s bouded, so t s B ρ,m w,m dx fo ay ρ > Hece whee w,m w, wealy W, loc R wth w, = σ κ w + κ = lm Ka,m ad σ = lm m m θm,m [, ] Gve a compactly suppoted cut-off η, we calculate w,m w, η K w,m + w,m pm dx θm R,m = w,m w, η w,m w, + σ Kw pm,m w +, dx + o R w,m w, η dx + σ Kη w,m w, pm+ dx + o R R = w,m w, η dx + σ Kη w,m w, pm+ dx + o R R The ma step hee s the equalty the above fomula Passg fom + to p m = + expoet s easy, as w, s fxed Sce w,m w, L p suppη, p < Kη w,m w, w pm,m w pm, dx = Kη w pm+,m wpm+, dx R R = Kη R [,, 33 τ m the, we have s w,m sw, pm+ ds w pm+, + w,m w, pm+ ]dx Theefoe the ma equalty follows fom obsevg that [ ] s w,m sw, pm+ ds w pm+, dx R Kη ds Kη [p m+ w,m sw, w,m sw, pm w, w R ds, wpm+, ]dx = R Kη [p m+ s pm w pm+ p m+, ]dx Hece 33 s ustfed ad we obta as befoe w,m w, η C w,m w, pm L p m+ dx o suppη R Thus w,m w, locally stogly, uless w,m cocetates L pm+, but by ou choce of Λ,m ε = sup x M u,m g dµ g sup x B c,m R w,m dx B Λ,m x B,m Λ,m x ad,m Λ,m, so the L -gadet om does ot cocetate beyod ε ad, sce c R w,m Ka,m w pm, θm,m = o locally stogly Wloc R,,m

12 ethe the L pm+ -om does Thus w,m w, locally stogly I patcula w, dx u,m g dµ g c = cε, δ B B,m a,m But σ = mples w, = by hamocty, so σ, ], cf 33, ad we easly show w, > ad w, = α + a wth α >, a = x a, a R ad > Note that R w, = σ κ w +, mples σ κ α 4 = 4 Moeove by costucto B w,m dx sup x B c,m B x w,m dx, whch tasfes to w, by locally stog covegece Ths mples a = ad By + B + dx = εα = εσ κ lm m θm,m = σ, ] ad < ε we get lm θm m,m u m = u + α ϕ,m + u,m, ϕ,m = ϕ a,m,,m,,m =,m Moeove we ow that u,m wealy W, M, g ad Dlatg bac we may the wte w,m =,m u,m exp ga,m,m locally stogly W, R Sce the tal sequece u m was o-egatve, t follows that u ad the egatve pat of u,m teds to zeo as m W, -om Usg a dlato agumet, the latte popety ad the above fomula, t s easy to show that, f α, β wth α + β =, the ϕ α,m u,m β dµ g as m, 34 ad that also u,m L g ϕ,m dµ g = o Thece as befoe fo u,m J τm u m = u L g u dµ g + α ϕ,m L g ϕ,m dµ g + u,m L g u,m dµ g ad theefoe u,m L g u,m dµ g, Lewse Eu,m = L g u,m Ku pm,,m = o Wloc R sce by expaso of the o-lea tem of J τm u m we fd o =L g u + α ϕ,m + u,m Ku + α ϕ,m + u,m pm =L g u Ku pm + α L g ϕ,m Kα pm ϕpm,m + L g u,m Ku pm,m + o = L g u,m Ku pm,m + o W, M, g The secod equalty follows fom applyg the latte fomulas to ay test fucto W, M, g ad the applyg Sobolev s ad Hölde s equaltes togethe wth 34 We may theefoe teate the afoe gog ad fd fo a fte sum u m = α ϕ,m + v m, wth eegy Ju m u L g u dµ g + α ϕ,m L g ϕ,m dµ g

13 But all α ae ufomly lowe bouded due to σ κ α 4 =, σ = lm m θm,m, ] ad κ = lm Ka,m, m thece the teato has to stop afte ftely-may steps I patcula v m does ot cocetate locally ad cosequetly vashes stogly as m Now tae ay fxed dex ad ecall that w,m =,m u,m exp ga,m,m ad that by costucto,m l,m O the othe had fo < l We had see w,m w, wealy ad locally stogly, whee c w, σ κ w +, = w,m = α + + > u a,m a α,m,m +,m γ G a,m expga,m,m up to some eo of ode o locally W,, ad the latte sum has to vash, whch s equvalet to,m,m o,m,m G a,m a,m Recallg 8, ths shows that ε, m fo all We ae left wth povg,m q,m τm,m Odeg up to a subsequece, let { },m q = l =,, q lm < m l,m The,m l,m fo q < l ad c lm m,m l,m C fo, l q Select a half-ball B + δ a,m wth q ad < δ such that B + δ a,m {a l,m l q, l } = up to a subsequece, whee fo some affe fucto ν,m wth ut gadet we have set B + δ a,m = B δ a,m {ν,m > } a local coodate system The escalg u m o B a,m δ {ν,m >,m } we fd w,m = O the othe had sde, w,m solves,m u m exp ga = α l,m + + o o B c,m {x > } c w,m κ w pm θm,m = o, κ = lm Ka,m o B c,m m,m Recallg that p m = + τ m ad θ m = τ m, ths mples, that up to otatg coodates Thus + θm s ealy costat o B + c,m {x > } θm,m The clam follows, sce lm,m m c fo all l =,, q l,m 3

14 4 Reducto ad v-pat estmates I ths secto we wll cosde a sequece u m as Poposto 3, wth zeo wea lmt We wll ecall some well-ow facts about fte-dmesoal eductos ad deve pelmay eo estmates ad o sutable compoets of the gadet of J τ Fo ε >, q N, u W, M, g ad α,, a R q +, R q +, M q we defe A u q, ε = {α,, a,, ε,, α V q, ε = {u W, M, g A u q, ε }, 4 Ka 4 τ, u α ϕ a, < ε, τ < + ε}; cf, 3 ad 7 Fo both codtos > ε, τ < + ε to hold, we wll always assume that τ ε ad ths s cosstet wth the statemet of Poposto 3 Ude the above codtos o the paametes α, a ad the fuctos q = α ϕ a, fom a smooth mafold W, M, g, whch mples the followg well ow esult, cf [4] Poposto 4 Fo evey ε > thee exsts ε > such that fo u V q, ε wth ε < ε u α ϕã, L g u α ϕã, dµ g f α,ã, A uq,ε admts a uque mmze α, a, A u q, ε depedg smoothly o u ad we set ϕ = ϕ a,, v = u α ϕ, K = Ka 4 The tem v = u α ϕ s othogoal to all ϕ, ϕ, a ϕ, wth espect to the poduct, Lg = L g, L g Fo u V q, ε let H u q, ε = ϕ, ϕ, a ϕ Lg 4 We ext have a estmate o the poecto of the gadet of J τ oto H u Lemma 4 Fo u V q, ε wth τ =, cf 3,ad ν H u q, ε thee holds [ J τ α ϕ ν = O τ θ + K +θ + +θ + Poof Due to the fact that τ = ad ν H u q, ε we have J τ α ϕ ν = α ϕ Kα ϕ p νdµ g, +θ + s ε +,s θ ] ν ad theefoe J τ α ϕ ν Kα ϕ p νdµ g Decomposg teatvely M as { α ϕ > > α } { ϕ α ϕ > α } ϕ, we fd Kα ϕ p νdµ g = Kα ϕ p νdµ g + O α ϕ p α s ϕ s ν dµ g s {α sϕ s α ϕ } Usg Hölde s equalty wth expoets = p + q = + + ad Lemma v appled to the latte eo tem, whee the equalty ϕ s ϕ ca be used to apply t wth β, we get Kα ϕ p νdµ g = Kα ϕ p νdµ g + O s ε +,s θ ν, 4

15 ad by a smple expaso we also obta Note that whece Kα ϕ p νdµ g = θ ϕ + ϕ p B c = + θ Thus up to some O[ K α p + = + Lg τ θ + B c θ ϕ + [ ϕ p νdµ g + O ϕ + τ + θ K +θ + θ ϕ τ + dµg + O + θ + K +θ ϕ p L + g + + Kα ϕ p νdµ g = θ = O θ + +θ s K θ + O + + ε,s θ α + +θ + s θ + dx + O θ + dx + O + θ ε +,s θ + θ ] ν 43 + θ, 44 ] ν we ave at ϕ + νdµ g Fally fom Lemma ad the fact that ν H u q, ε hece νl g ϕ dµ g = we obta fo = 3 ϕ + νdµ g v L g ϕ 4 ϕ + fo = 4 = O 3 fo = 5 v, 45 L + g l 3 3 fo = 6 4 fo 7 so the clam follows Lemma 4 Fo u V q, ε wth τ = ad v s as 4 thee holds v = O τ θ + K +θ + +θ + +θ + s ε +,s θ + J τ u Poof Sce the Hessa of J τ s ufomly Hölde cotuous o bouded sets of W,, we have J τ uv = J τ α ϕ v + J τ α ϕ v + o v = J τ α ϕ v + J τ uv + o v ; [ ] J τ uv = vl g vdµ g p u Ku p v dµ g 8 ul g vdµ g Ku p vdµ g + p + 3 Ku p vdµ g Ku p vdµ g Sce v H u q, ε, by smla expasos we the fd also eplacg p wth + wth a eo o [ ] J τ uv = vl g vdµ g p u Ku p v dµ g [ = vl g vdµ g + α ϕ L g α ] ϕ dµ g Kα ϕ p v dµ g [ K α 4 α ϕ L g ϕ dµ g = vl g vdµ g +, 5 θ ϕ 4 v dµ g ] 46

16 up to some o v Futhemoe by defto of V q, ε thee holds θ = + o ad K α 4 = + o = α ϕ α ϕ + o L g ϕ dµ g Thus [ J τ uv = vl g vdµ g + ϕ 4 v dµ g ] + o v Ths quadatc fom s postve defte fo ε suffcetly small o the subspace v belogs to, cf [4], so v + o C J τ uv C[ J τ α ϕ v + J τ u ] Theefoe the clam follows fom Lemma 4 We ow establsh cacellatos testg the gadet of J τ othogoally to H u q, ε Lemma 43 Fo u V q, ε wth τ = the quatty J τ uφ, expads as J τ α τ ϕ φ, + O θ + K +θ + 4+θ + +θ + s ε +,s θ + J τ u Poof By the mea value theoem ad 46 we have, wth some σ [, ] J τ uφ, J τ α ϕ φ, = J τ α ϕ + σvφ, v [ ] = + O v vl g φ, dµ g p α ϕ + O v Kα ϕ + σv p vφ, dµ g [ 4 + O v α ϕ + σvl g vdµ g Kα ϕ + σv p φ, dµ g ] + α ϕ + σvl g φ, dµ g Kα ϕ + σv p vdµ g + p + 3 α ϕ + O v Kα ϕ + σv p vdµ g Kα ϕ + σv p φ, dµ g Theefoe, sce v H u q, ε, up to some O v we also get J τ uφ, J τ α ϕ φ, = p α ϕ Kα ϕ + σv p vφ, dµ g 4 α ϕ L g φ, dµ g Kα ϕ + σv p vdµ g + p + 3 α ϕ Kα ϕ + σv p vdµ g Kα ϕ + σv p φ, dµ g Decomposg ow M as {α ϕ v } {α ϕ v }, ad usg φ, Cα ϕ Cα ϕ, we fd J τ uφ, J τ α ϕ φ, = p α ϕ Kα ϕ p vφ, dµ g 4 α ϕ L g φ, dµ g Kα ϕ p vdµ g + p + 3 α ϕ Kα ϕ p vdµ g Kα ϕ p φ, dµ g + O v Now, agug as fo 43 ad usg Lemma v, we have Kα ϕ p vdµ g = K α p [ ϕ p vdµ g + O K +θ + +θ + s ε +,s θ ] v ; 6

17 Kα ϕ p φ, vdµ g whece = K α p [ ϕ p φ, vdµ g + O J τ uφ, J τ α ϕ φ, = p α ϕ K α p 4α up to some O K +θ + ϕ p K +θ + φ, vdµ g ϕ L g φ, dµ g K α p ϕ p vdµ g +θ + s ε +,s θ + p + 3 α ϕ K α p ϕ p φ,dµ g K α p ϕ p vdµ g + 4+θ s + ε,s θ J τ uφ, J τ α ϕ φ, = p α ϕ K α p + v Usg 44 ad 45 we ave at ϕ p φ, vdµ g ] v, τ + O θ + K +θ + 4+θ + +θ + s ε +,s θ + v Yet also the fst summad o the ght had sde s of the same ode as the secod oe, agug as fo 44 ad 45 Combg ths wth Lemma 4, we obta the cocluso 5 The fuctoal ad ts devatves Fo u V q, ε ad ε > suffcetly small let α = α, α s = K θ α s, θ = τ 5 Recallg the otato fom the pevous secto we may expad the Eule-Lagage eegy as follows Poposto 5 Fo u = α ϕ + v V q, ε ad ε >, both J τ u ad J τ α ϕ ca be wtte as H fo = 3 H +O l ĉ α K α α p+ ĉ τ ĉ p+ K α ˆb α α α ε, ˆd α fo = 4 α H fo = 5 3 W l fo = 6 4 fo 7 wth postve costats ĉ, ĉ, ĉ, ˆb, ˆd up to eos of the fom Oτ + K s ε +,s + J τ u Poof The above expaso fo J τ α ϕ mples the oe fo J τ u va Lemmata 4 ad 4 expadg J τ u = J τ α ϕ + J τ α ϕ v + O v We ext stat aalyzg J τ α ϕ fom the deomato Decomposg teatvely M as M = {α ϕ > α ϕ } + {α ϕ α ϕ } > > 7

18 we may expad Kα ϕ p+ dµ g = α p+ + O s Kϕ p+ dµ g + p + α p α {α ϕ α sϕ s} α ϕ p α s ϕ s dµ g Kϕ p ϕ dµ g Recallg θ ad the boudedess of α by the defto of V q, ε, usg Lemma ad easog as fo the poof of Lemma 4, the latte tem s of ode O s ε +,, ad also Kϕ p ϕ dµ g =K ϕ p ϕ dµ g + O K a + a ϕ p ϕ dµ g + O B ca θ =K Ideed we fo example have a ϕ p ϕ dµ g = B ca ϕ p ϕ dµ g + O B ca s a ϕ + + wth the latte om that ca be cotolled by + R + + dx C K + 4 ϕ ε +,s ϕ dµ g Cε + Thus Lemma, whee b s defed, yelds Kϕ p ϕ K dµ g = b θ ε, + O τ + K + s 4 + +, ϕ + +, L + µg d = O + ε +,s, 5 ad we ave at Kα ϕ p+ dµ g = = α p+ α p+ Kϕ p+ dµ g + p + dµ g + b Kϕ p+ α + α p α K b θ ε, K α θ ε,, b = b 53 K up to a eo Oτ + s ad deotg by x a geec polyomal of degee the x-vaables, we expad Kϕ p+ dµ g = B ca =K B ca + K Kϕ p+ dµ g + O θ ϕ p+ dµ g + K B ca B ca x ϕ p+ dµ g K + ε +,s Fally, ecallg ou otato Secto xϕ p+ dµ g B ca x 3 ϕ p+ dµ g + O 4 + wth a exta eo of ode O l f = 4 Fo the fst tem o the ght-had sde up to some 4 Oτ + we may pass tegatg wth espect to cofomal omal coodates Ideed 4 ϕ p+ dµ g = u τ a ϕ θ dµ ga = ϕ θ dµ ga + Oτ a u a u ϕ θ dµ ga a u a B ca B ca B ca B ca 54 8

19 ad the latte tem s of ode O τ +θ ϕ p+ dµ g = = B c up to some Oτ Clealy + θ dx = θ lettg Moeove B c B c +4 θ Fom 7 we fd B ca + θ + = θ = c θ c = Ha + dx + θ up to some O + 4 B c R B c R B c + a + a H a θ H a dx, + dx + = θ θ dx + + θ θ + c τ θ R + O τ + 4 R θ dµ ga dx + + O θ τ + 4 l + dx + + O + O + O dx + ad c = l + R + dx 55 Ha + dx C θ θ θ H a + + dx = whece up to some Oτ + 4 B c B c θ + θ ad wth a exta eo of ode O l f = 4, ad 4 B c + + θ H a + + dx = d θ H +θ + H +θ + O H 3+θ W l 4+θ l 4+θ fo = 3 fo = 4 fo = 5 l fo = 6 dx 6 fo 7 H + H x + O H + H x + O l H + O W l + O l dx, O 6, d = R dx Lewse by adal symmety ad, sce we may assume dµ ga, cf [3], we fd B x3 ca ϕ p+ dµ ga = O ; 4 K B x ca ϕ p+ dµ g = K + dx +θ + R + O τ ; 9

20 3 B xϕp+ ca dµ g = O 4 wth a exta eo of ode O l 4 Kϕ p+ dµ g = c K K τ θ + c θ + f = 4 Collectg all tems we ave at + c K +θ + d K H +θ H +θ + O H 3+θ W l 4+θ l 4+θ, c = R dx + 57 up to a eo Oτ Kα ϕ p+ dµ g =, ad thus obta K c θ α p+ + d + c K θ K θ α α τ + c K H H +O l H 3 W l 4 +θ α + b α + 58 K α θ ε, up to some Oτ + s J τ α ϕ = c K + 4 α α ϕ L g ϕ dµ g + K α ϕ p+ p+ K +θ α α d Next fo usg Lemma we get ϕ L g ϕ 4 dµ g = + ε +,s Cosequetly up to the same eo = α α ϕ L g ϕ dµ g K θ ϕ + c K θ H H +O l Fo example to chec the eo tem, we may estmate a ϕ + ϕ dµ g B ca H 3 W l 4 α p+ p+ ϕ dµ g + O 4 a ϕ + + L + Bca α α + c b ϕ + ϕ K θ α α α + α K α θ + ε +, 4 L 3+, τ ε, 59 + whch s of ode O ε, whece thas to Lemma, ad lewse fo eg 7 + ϕ ϕ dµ = o ε, g ϕ ϕ dµ g ϕ ϕ L g Thus Lemma shows that ϕ L g ϕ dµ g = b ε, + O 4 + s = Oε, l ε,, + ε +,s, b = 4 b 5

21 Fally fom 7 ad Lemma we fd ϕ L g ϕ 4 dµ g = up to some eo tems of ode O 3 ϕ L g ϕ 4 dµ g = ϕ ϕ, 4 dµ g c l, 4 dµ g d B c H + H x H + H x + H + H x W l, 4, 4, whece H H + O H 3 W l 4 l 4, d = c R dx +, up to O 4 + Recallg 57, we obta ϕ L g ϕ 4 dµ g = c + 4 d d H H + O H 3 W l 4 l 4 5 up to some Oτ α α up to a eo of ode O τ + 4 p J τ α ϕ = 4 c p+ up to some Oτ + b = As d = d, cf 56, we smply get ϕ L g ϕ dµ g =4 c α + b α α ε, 5 α K α p+ θ p+ K d + 4 K θ + c α α + + s ε +,s Pluggg ths to 59, we obta K θ α α H H +O l H 3 W l 4 b, b = 4 b, α = τ c K +θ K b θ + s ε +,s Recallg α, α α α + α α α = c b α α c α K θ α, ε, ad settg p p+ ĉ = 4 c, ĉ = c, ĉ = c, ˆd = d, c c c ˆb = b 53 c

22 we may ewte ths as J τ u = J τ α ϕ = ĉ α α p+ p+ ĉ ˆd K θ K θ α α α α τ ĉ H H +O l H 3 W l 4 K +θ α α ˆb K θ α + α α α α α ε, The the clam follows fom Lemma 5 We ext state thee lemmas wth some expasos fo the devatves of the fuctoals wth espect to the paametes volved ecall ou otato fom Secto The poofs ae gve appedx B Lemma 5 Fo u V q, ε ad ε > suffcetly small the thee quattes J τ uφ,, J τ α ϕ φ,, α J τ α ϕ ca be wtte as α α `c α α p+ + `b l K θ α p K `c K α α l α ε,l α ε, α wth postve costats `c, `c, `b, `d up to a eo of ode K α K α H α H α fo = 3 H `d α H α + O l fo = 4 4 H α 3 H α fo = 5 3 W l α 4 W l α fo = 6 4 fo 7 O τ + K + s ε +,s + J τ u 54 I patcula fo all α α p+ K θ α p = + O τ + s + + ε,s + J τ u Lemma 5 Fo u V q, ε ad ε > suffcetly small the thee quattes J τ uφ,, J τ α ϕ φ, ad α J τ α ϕ ca be wtte as α α c τ + c K K b α ε, + α d wth postve costats c, c, d, b up to some eo of the fom H H fo = 3 l + O fo = 4 4 H fo = 5 3 W l fo = 6 4 fo 7, O τ + K + s ε +,s + J τ u 55

23 Lemma 53 Fo u V q, ε ad ε > suffcetly small the thee quattes J τ uφ 3,, J τ α ϕ φ 3, ad a α J τ α ϕ ca be wtte as α α K K č 3 + č 4 K K 3 + ˇb 3 wth postve costats č 3, č 4, ˇb 3 up to some eo of the fom α α a ε,, O τ + K + s ε +,s + J τ u 56 6 Gadet bouds Theoem wll gve sutable lowe om-bouds o the gadet of J τ, yeldg Theoem as a coollay We ecall that o S 3 ad S 4 the esult was poved [], [7], [8], [4] moe geealty Defto 6 Let H be as 6 We call a postve Mose fucto K o M o-degeeate K of degee q N case = 4, f { K = } { c K + c 3H = } = ad f fo evey q K ad evey subset {x,, x } { K = } { c K + c 3H < } the matces M x,,x Kx c Hx Kx + c G 3 Kx c x,x G 4 c x,x γ Kx Kx 4 γ Kx Kx G c x,x 4 γ Kx Kx = G c x,x 4 γ Kx Kx Kx c Hx Kx + c 3 Kx c 4 G x,x γ Kx Kx have o-vashg least egevalues, whee c = 3ω 4, c 3 = 4 3ω 4 = c 4 We say that K s o-degeeate, f t s o-degeeate of all degees case 5, f { K = } { K = } =, e holds Rema 6 No-degeeacy case = 4 mples the exstece of a least egevalue M x,,x x x,,x = x,,x x x,,x wth x,,x ad such that x,,x s smple ad has a postve egevecto, e x x,,x = x x,,x,, x x,,x wth x l x,,x > fo all l Theoem Let M x,,x be as Defto 6, ad suppose that { } K s o-degeeate of degee q fo = 4 K s o-degeeate fo 5 The fo ε > suffcetly small thee exsts c > such that fo ay u V q, ε wth τ = thee holds J τ u c τ + s K + + α α p+ K θ α p + ε,s, cf 5, uless thee s a volato of at least oe of the fou codtos 3

24 τ > ; { { K = } K { c thee exsts x x K + c } 3H < } fo = 4, ad da { K = } { K < } fo 5, x = O ; α = Θ K + K 8 K 6 H K 6 H K p + o fo = 4, K ; α = Θ θ K p + o fo 5 { } Mx,,x q > ad = σ+o v τ fo = 4, K c τ = c K + o fo 5 fo all, =,, q, whee σ = σ,, σ q case = 4 s the uque soluto of c σ Kx σ q Kx q = M x,,x q σ σ q wth σ >, whle Θ s gve Rema 6 I the latte case thee holds q = τ a = exp gx ā ad settg we stll have up to a eo o the lowe boud 3 Ju τ + Kx Kx + [ Hx + Kx G g x, x ] Kx γ + ā + 3 Kx Kx K 3 x Kx Kx x G g x, x γ + case = 4 ad Ju α Θ p θ Ka + 8 τ + Kx 9 Kx Kx Kx + 5 9π [Hx 3 + Kx Kx 6 Hx G g x, x ] γ 3 + ā + č4 Kx Kx č α Θ p θ Ka Kx 9 Kx + 86 Hx π 3 Kx Kx 6 Hx Kx Kx Kx Kx + 86 π Kx Hx Kx 3 case = 5 ad J τ u τ + c Kx c Kx + ā + č4 Kx Kx θ + α Θ p č 3 Ka 3 dx +, case 6 The costats appeag above ae defed by c = R c = c + + l + dx, c = c R 4 R + + dx

25 ad č 3 = 4 R + dx, č 4 = R + dx The dffeeces the above expessos fo = 5 ad 6 s caused by a dffeet decay of bubble fuctos causg stoge mutual teactos lowe dmeso Rema 6 Ude o-degeeacy codtos, Theoem has the followg mmedate mplcatos I case τ = thee ae o solutos of Ju = J u = V q, ε, cf Theoem 4 [3] I case τ > evey soluto J τ u = V q, ε satsfes q τ ad has solated smple blow-ups occug close to { { K = } { c K K + c 3H < } fo = 4 { K = } { K < } fo 5 3 The α, ad a s ae detemed to a pecso oτ 3 + O J τ u Ideed, fo eg = 6 τ + c Kx c Kx detemes up to the latte eo fom τ ad x, whece a s detemed as well by ā + č4 Kx Kx č 3 fom ad x, ad fally up to the multplcatve costat Θ also α s detemed by α Θ p θ Ka fom, a ad τ, ecallg θ = + τ ad p = τ As fo the multplcatve costat we have = τ = Kα ϕ + v p+ dµ g = Kα ϕ p+ = 3 Ka θ α p+ up to some oτ 3, cf 45, Lemma 4, Lemma ad 58, whece Kx c + c τ + c Kx = Θ p α Kx c + c τ + c Kx = Θ p+ θ p Ka c + c τ + c Kx Kx up to the same eo ad so the multplcatve costat Θ s detemed as well Poof of Theoem Fst we ote that τ = mples, that all the α do ot ted to fty ad least oe of them does ot appoach zeo Hece by defto of V q, ε all the α ae ufomly bouded away fom zeo ad fty Secodly, f fo some dex =,, q we have α α p+ K θ α p τ + s K + + ε,s, 5

26 the the clam follows fom Lemma 5, whece we may hecefoth assume that fo all =,, q α α p+ K θ α p = + O τ + K + + ε,s 6 s Thus we have to show J τ u τ + q = ad agug by cotadcto we may assume that J τ u τ + q = K K s ε,s 6 + s ε,s The by Lemmata 5 ad 53 we have a J τ uφ 3, = α Juφ, = α α α č 3 K K + ˇb 3 c τ + c K K α α a ε, ; b α ε, α up to some eos of the fom O + Oτ + K 3 s + 4 H d 8, we have + ε +,s, whee we have to add fo to c K K case = 4 Odeg dces so that q q ad ecallg ad theefoe ε, = ε, = ε, + O γ G g a, a + γ G g a, a + ε +, case < o d g a, a o 63 Fom a ad above we fd ufomly bouded vecto felds A, Λ o V q, ε such that A J τ ua K + O 3 + ε, + O τ + K + s 4 + ε +,s ; K α Λ J τ uλ c τ + c K + c 4 ε, + O α 3 + O τ + K + s 4 + ε +,s wth c 4 = b, ad combg X = Λ + ɛa wth some ɛ > small ad fxed such that we eep a postve coeffcet fot of ε,, we get C B = J τ ux c K K τ + c +ɛ K + ε, +O 3 +Oτ + K + s 4,s> +ε +,s Lewse fom a ad we fd ufomly bouded vecto felds A, Λ defed o V q, ε such that A J τ ua K + O 3 + ε, + O τ + K + s 4 + ε +,s ; 6

27 K α Λ J τ uλ c τ + c K + c 4 ε, + O α < 3 + ε, + O τ + K + s 4 ad combg them as X = Λ + ɛa wth ɛ > small we obta + ε +,s B = J τ ux c K K τ + c + ɛ K + ε, + O 3 + ε, + O τ + K < + s 4 Theefoe combg B ad B so that the coeffcet of ε, s postve C B + ɛb = + ε +,s [ ɛ c K τ + c + ɛ + K K + ] ε, + O + O τ 3 + K + s 4,s> Iteatvely, fo all =,, q we ca fd ufomly bouded vecto felds A, Λ such that A J τ ua K + O 3 + ε, + O τ + K + s 4 + ε +,s ; + ε +,s K α Λ J τ uλ c τ + c K + c 4 ε, + O α 3 + ε, + O τ + K < + > s 4 + ε +,s ; C ɛ B = = [ ɛ c K τ + c + ɛ + K K + ] ε, + O + O τ 3 + K + s 4 + ε +,s, whee we have to add c 3 H to c K K case = 4, whee c 3 = d 64 I patcula C q ɛ B = = [ ɛ c K τ + c + ɛ + K K + ] ε, + O τ + K + s 4 + ε +,s The, f ethe q τ + q = K + s ε,s o q τ + q = K + ε,s, s we obvously have 6 fom C q Thus we may assume q τ + q = K + ε,s, 65 s whece we may smplfy the above fomulas to A J τ ua K + O ε, + o ; q K α Λ J τ uλ c τ + c K + c 4 < α ε, + O > ε, + o ; q 7

28 C ɛ B = = [ ɛ c K τ + c + ɛ + K K + ] ε, + o, q addg c 3 H to c K K fo = 4 We fst cosde the pa q, q Suppose q = o q To pove 6 we the may assume fom C q ad 65 that also τ + s ε,s = o q, sce As the coeffcet of q ad theefoe, stll by 65, q ε, = = q s ε,s = s ε,s Λ q s o zeo by o-degeeacy, 6 follows So we may assume q q, K q q, K q q So, f a q s close to a q, these pots ae close to the same ctcal pot of K, whch, as K s Mose, mples da q, a q q q Ths howeve cotadcts the fact that by Poposto 3 ε q,q q q d a q, a q Theefoe fo the pa q, q we may assume K q, K q q q, ad da q, a q > c I patcula case 5 we have ε q,q = o q, wheeas case = 4 q ε q,q = G g a q, a q γ q q + O 4 q We tu to cosde the tple q, q, q Suppose that q assume fom C q ad 65 that τ + ε,s = o q s q = o q To get 6 we the may as well But the clealy case 5 we obta 6 fom Λ q o Λ q, sce ε q,q = o q s aleady ow I case = 4 we have to ague moe subtly Fom we fd Juφ,q = α q α K q c K q q + c 3 H q q α q G g a q, a q + c 4 α q γ q q ad Juφ,q = α q α K q H q α q G g a q, a q c K q + c 3 q + c 4 q α q γ q q 8

29 up to a eo of ode o q, cf 63 Obvously 6 the follows f ethe K q H q c K q + c 3 q q K q H q > o c K q + c 3 q > q We may thus assume both summads to be egatve Recallg 6, we the obta βq φ J τ u,q = β q φ,q up to a eo o q lettg q c K q Kq q + c 3 H q K q c 4 G a q,a q γ K q K q c 4 G a q,a q γ K q K q K α β = α fo = q, q, c K q K q + c 3 H q K q q q ad thus J τ u K q, sce othewse a q, a q close to x q, x q { K = } { c K + c 3H < } ad c M q,q = Kx q Kx q + c 3 Hx q Kx q c 4 G x q,x q γ Kx q Kx q c 4 G x q,x q γ Kx q Kx q c Kx q Kx q + c 3 Hx q Kx q would have afte a blow-up fo τ a vashg egevalue wth stctly postve egevecto, whch by Rema 6 s mpossble So 6 aga follows We may thus assume ad theefoe by 65 q q q K q q, K q q, K q q So, f a q s close to ethe a q o a q, these pots ae close to the same ctcal pot of K, whece ε q,q o ε q, as befoe, cotadctg Poposto 3 Thus fo q, q, q we may assume ad K q,, K q, K q q q q da q, a q, da q, a q, da q, a q > c aalogously to the pevous case of the pa q, I patcula case 5 wheeas case = 4 up to a eo O 4 q ε q,q, ε q,q, ε q,q = o, q q ε q,q = G g a q, a q γ q q, ε q,q = G g a q, a q γ q q, ε q,q = G g a q, a q γ q q Iteatvely, we the may assume fo all l =,, q K l ad da, a l > c 9

30 I patcula ε,l = o fo 5 ad ε,l = Gg a,a l q l K Λ J τ uλ c τ + c K + o q case 5 ad thus J τ u c K τ + c K up to some o q Theefoe 6 holds uless c τ + c K K Juφ, = α α c τ + c K K fo = 4 But the + c 3 H = o q, whle ow fo = 4 + c 4 α G g a, a α γ up to some o q, cf 63, fo all =,, q Obvously 6 the follows, f fo some =,, q c K K + c 3 H >, whece we may assume all these summads to be egatve, povg Fom ad 6 we the have τ K Juβ φ, = c + c K up to some o lettg as befoe β = α q c τ K q K K α + c 3 H K Theefoe + c 4 c τ K Ju dag,, M a,,a q q G g a, a γ K K q up to the same eo Ths mples that 6 holds tue, uless we ca solve c τ K c τ q K q = M a,,a q q + o q 66 ad we may aleady assume, by, that a s close to x { K = } { c K K + c 3H < } I patcula 6 follows case τ = by the o-degeeacy codto o K, povg I case τ >, wtg σ = τ, we fd passg to the lmt τ, that thee has to exst a soluto to c σ Kx σ q Kx q = M x,,x q I patcula, testg the above elato wth x = x x,,x q, cf Rema 6, we fd c x σ K = σ σ q x σ, 67 3

31 whee = x,,x q s the least egevalue of M x,,x q Thus ecessaly M x,,x q > Sce F σ = M x,,x q σ σ q σ σ q + c σ K s a sum of covex fuctos, thee exsts a uque ctcal pot of F satsfyg 67 Hece we have compaablty / τ le case 5 Thus v follows upo checg costats fo = 4, e c = + = ω4 ad R c = + l + + dx = 3ω 4 ; c R c = + dx = 3ω + 4 ; c R 3 c 3 = d = = 4 3ω + 4 ; c R 4 c 4 = b = = 4 3ω 4, c R + + cf 74 fom the coespodg Lemma 5 We tu ext to I case 5 we may ow assume whch by Lemma 5 mples Note that α p c τ + c K K Now 6 follows, uless α p = o ad ε,l = o fo l, J τ u α α p+ K θ α p + o = Θ p θ K s modulo scalg the uque ad o-degeeate maxmum of α α α = α,, α q α p+ = p+ K α p+ θ p+ = Θ p θ K + o ad thee holds J τ u α θ Θ p K + o I case = 4 we may ewte Lemma 5 up to some o wth costat gve below as 68 J τ uφ, = α α `c α α p+ K `c K K K θ α p + `d H K + `b + α K α `c K K + `d G g a, a γ K K H K + `b G g a, a l γ K K l l l 69 usg 6 ad θ τ τ = + O l Moeove, up to a eo o thee holds α = α α α K α K = α 3 αk α α K K = K,

32 ad due to 66 ad c K K + c 3 c K K H K + c 4 + c 3 H K l + c 4 G g a, a l γ K K l l = M a,,a q G g a, a γ K K = M a,,a q q q e q = c = c up to some o We may theefoe cacel out the teacto tems 69 ad obta τ K τ K J τ uφ, = α α `c α + α p+ K θ α p K `c `b c K c 4 K `b `c c K c 4 K K + `d `b c 3 c 4 + `d `b c 3 H c 4 K H K 6 Checg costats fo = 4, e wth c = R dx + = ω4 `c = 8 dx R + = 6 3ω 4, `c = 8 + = 4 3ω 4 ; c R `d = 8 + = 4 3ω + 4, `b = 8 + = 44 3ω 4, c R cf 79 fom the coespodg Lemma 5, we the fd J τ u α K α p α p+ + K 8 K 6 H Note that settg θ E = 8 K K 6 H K c K K K R H K 6 H K K K, + o thee holds E = O, o-degeeate maxmum of E K =, ad α p = Θ p θ K + E s modulo scalg the uque ad ad satsfes α = α,, α q α α p+ K +E,τ p+ = α, K θ +Eαp+ p+ α α p+ due to θ K p = K K θ α p =Θ p = θ α α p+ K p + θ K p + p+ p [ θ K + E = + E ] p + E K [ θ θ K + E ] p+ p p θ K p E + E θ = + E + o K p E 3 + O l Thus 6 follows uless, up to some o, J τ u α Θ p θ + K 8 K K 6 H K K 6 H K K 6 3

33 We have theefoe poved -v, whch wll be used fo showg the secod statemet of the poposto I ths case the eo tems Lemmata 5, 5 ad 53 ae of type o 3 + O J τ u Ths follows mmedately case 5, whle the tems ε +,s 3 case = 4, fo whch howeve the udelyg estmates ca be mpoved to deve a quadatc eo ε,s, cf [37] Let us fst teat the lowe bouds asg fom Lemma 53 I case 5 we fd fom the latte lemma K K Ka Kx J τ u č 3 + č 4 K K 3 č 3 + č 4 3 up to some o 3 ad theefoe, wtg a = exp gx ā, that J τ u ā + č4 Kx Kx + o č 3 3 Smlaly case = 4 we fd up to some o 3 K K J τ u č 3 + č 4 K K 3 + ˇb α a G g a, a 3 α γ Fom we have α = Θ θ p + O, whch by θ = τ ad τ due to v becomes α = Θ K + O l Thus, stll up to some o 3 J τ u Ka + č4 Kx č ˇb 3 K 3 x x G g x, x č 3 Kx γ K ā + č4 Kx Kx č ˇb 3 č 3 3 K 3 x Kx Kx x G g x, x γ, ad checg costats fom Lemma 53, cf 7, we have 4 dx dx č 3 = R + = 3ω 4, č 4 = + = ω 4, ˇb 8 dx 3 = = 4ω We coclude that, up to some o 3 R ā + 3 Kx Kx + 8 K3 x J τ u 3 Kx Kx x Gg x,x γ fo = 4 6 ā + č4 č 3 Kx Kx fo 5 By ths, e ā = O, ad α = J τ u c τ + c Kx Kx 3 Θ K + O l we the fe fom Lemma 5 that up to some o 3 + b Kx Kx wth costats, cf above, gve fo = 4, 5 espectvely by c c = R + + dx R + + l c 3 c = d c = 4 b 3 c = c4 c = + dx =, 9 ; R dx R + + l + R dx + + R + + l + 33 R G g x, x γ 9π ; dx =, 5 9π, dx =, 5 + d Hx

34 we coclude τ + J τ u τ + 9 Kx Kx Kx Kx + [ Hx + 5 9π [ Hx 3 τ + c c By smla easog, usg ā = O ad α = α K α p α p+ θ J τ u α K α p α p+ θ Kx G g x,x Kx Kx G g x,x Kx γ 3 + γ ] fo = 4 + ] fo = 5 63 fo 6 K K + 8 K K 6 H 9 K K Θ K + O l we fally have, up to some o H π 3 α K α p α p+ θ K K 6 H K fo = 4 K K K + 86 H π K 3 fo = 5 K fo 6 Ths follows case 6 mmedately fom Lemma 5 ad fo = 4 by epeatg the agumets leadg to 69 ad 6, whle the case = 5 follows by agug as case = 4 usg 63 to cacel out the teacto tems whe passg fom 69 to 6 The agug as fo the passage fom 6 to 6 we fally obta that up to some o 3 α Θ p J τ u α Θ p θ K + 8 K K 6 H θ K 9 K K + 86 H π 3 α Θ p θ K K 6 H K fo = 4 K K K + 86 H π K 3 fo = 5 64 K K fo 6 Thus the secod statemet of the theoem follows fom combg 6, 63 ad 64 I [35] the ext esult wll be eeded Lemma 6 Fo evey u V q, ε thee holds J τ u τ + s K α α p+ K θ α p + ε +,s + v Poof Recallg 4 we ca fd β, β = O ad ν H u p, ε, ν = such that J τ u β, J τ uφ, + β J τ uν, J τ uφ, + J τ uν Fom Lemmata 5, 5 ad 53 we the fd J τ uφ, τ +, q = K α α p+ K θ α p + ε,s + J τ u, s wheeas fom Lemma 4 we have J τ uν = J τ α ϕ ν + O v = Oτ + Fom ths the clam follows K s ε +,s + v 34

35 7 Appedx 7 Iteactos Poof of Lemma follows usg staghtfowadly the expesso of φ, α Case = We have φ, = ϕ fo =, ad thus fo c > small ϕ τ dµ g = u τ B ca a + γ G a O B c a oe has u τ a = + Oτ x a, ad by 7 3 fo = 3 γ G 4 fo = 4 a = + O 5 fo = 5 6 l fo = 6, 6 fo 7 θ dµ + O ga θ whece passg to omal coodates at a fo = 3 ϕ τ θ +θ dx dµ g = + θ + O fo = 4 +θ fo = 5 l 3+θ B c fo = 6 4+θ fo 7 4+θ β γ up to some eo O τ +θ, whece the clam follows wth c = R dx + Case = The poof wos aalogously to the oe of case = above Case = 3 We have φ, = u γ a Ga a + γg a ϕ + a ua ϕ, whece γ a G a x = x + O, 3, 4, 5 l, 5 fo = 3,, 6 ad 7 Moeove u a = + O a, mples a u a = O a Thus ϕ 4 τ φ, dµ g = R θ dx + + θ + O +θ θ fo = 3 θ fo = 4 + O 3 θ fo = 5 l fo = 6 4+θ 4 θ fo 7 Fom ths the clam follows We ust pove the case = ad stat showg that θ ϕ + τ ϕ dµ g = θ ϕ τ ϕ + dµ g 7 up to some O τ + θ 4 + +ε +,, so we may evaluate ethe of these tegals Clealy ϕ + τ ϕ dµ g = θ ϕ + τ B ca ϕ dµ g 35

36 up to a eo O up to O + θ, whece usg Lemma we fd ϕ + τ ϕ dµ g = θ B ca + ε +, Ideed we clealy have +, ad the dffeece fom L g ϕ to 4 ϕ + B ca α a ϕ β ϕ dµ g = B ca ϕ τ ϕ L g ϕ 4 dµ g = O ε +, ca be estmated by Lemma va quattes of the type α a ϕ + β ϕ + ϕ dµ g = O ε +, α ϕ + β, L +, thas to case v Passg bac to tegatg o the whole mafold M we fd, estmatg also mxed poducts of gadets of ϕ ad ϕ, θ + ϕ τ ϕ dµ g = + Oτ θ + O θ By dect calculato g ϕ τ = Oτϕ 4 θ ϕ + τ ϕ dµ g = θ ϕ g ϕ τ ϕ dµ g + O τ, whece B ca ϕ τ L g ϕ + + ε, ϕ τ L gϕ 4 dµ g + Oτ + Now applyg Lemma as befoe, but dffeetated fom, 7 follows Let R, = O τ ε +, deote a quatty such ode We ow assume the o-exclusve alteatve 4 dµ g + ε +, ε, ε, d a, a 7 Fo c > small ad fxed we have by the expesso 7 θ ϕ + τ ϕ dµ g = θ B ca + γ G a + θ u a u +τ a + γ G a whece passg to g a -omal coodates ad ecallg 7 we fd γ G a γ G a + dµ ga + R,, θ ϕ + τ ϕ dµ g = B c u a a + + θ γ G x a exp ga γ G a exp ga x + + γ G x a exp ga dµga 73 up to the eo R, Ideed fo eg 7 7 tells us that o B c + γ G a + θ = + θ O = θ

37 cofomal omal coodates, whece by Hölde s equalty ad Lemma B ca a ϕ + τ Due to 7 we have that ethe ϕ dµ ga ϕ + ε, γ G ad fo ɛ > suffcetly small may expad o { } x A = ɛ γ G a a the tegad 73 as + γ G x a exp ga = + γ G a + + γ G a a a x + γ G a a + γ G a a τ, L + + a, a o ε, ε +,, ε+, = O +θ { } x ɛ B c γ G a exp ga x γ G a exp ga x + γ G a a γ G a a + γ G γ G a a γ G a a + a a x + γ G a a Usg adal symmety we the get, wth b = θ ϕ + ϕ dµ g = R b u a a + γ G a + dx + + O x + γ G a a a = b, up to eos of the fom R, ad I A c, whee I A c + + θ + γ G x a exp ga A c I case ε,, we obvously have I A c C + θ = oε +, γ G a a γ G a a + dµ ga Othewse we may assume A c, thus da, a, ad wte A c B B, whee { B = ɛ γ G a x } { E γ G a a ad B = E γ G a a x } c a fo a suffcetly lage costat E > We the may estmate I B = dµ + + θ B + γ G ga x a exp ga C + + γ G a a + θ { } x E γ Ga a + γ G a exp ga x dµ ga 37

Prescribing Morse scalar curvatures: subcritical blowing-up solutions

Prescribing Morse scalar curvatures: subcritical blowing-up solutions Prescrbg Morse scalar curvatures: subcrtcal blowg-up solutos Adrea Malchod ad Mart Mayer Scuola Normale Superore, Pazza de Cavaler 7, 506 Psa, ITALY adrea.malchod@ss.t, mart.mayer@ss.t arxv:8.0946v [math.ap]

Διαβάστε περισσότερα

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some

Διαβάστε περισσότερα

Examples of Cost and Production Functions

Examples of Cost and Production Functions Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Optimal stopping under nonlinear expectation

Optimal stopping under nonlinear expectation Avalable ole at www.scecedrect.com SceceDrect Stochastc Processes ad ther Applcatos 124 (2014) 3277 3311 www.elsever.com/locate/spa Optmal stoppg uder olear expectato Ibrahm Ekre a, Nzar Touz b, Jafeg

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Markov Processes and Applications

Markov Processes and Applications Markov rocesses ad Applcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Applcatos Queug theory erformace aalyss ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) Dscrete-Tme

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N. Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple

Διαβάστε περισσότερα

Technical Appendix (Not for publication) Generic and Brand Advertising Strategies in a Dynamic Duopoly

Technical Appendix (Not for publication) Generic and Brand Advertising Strategies in a Dynamic Duopoly Tehnal Appendx (Not fo publaton Gene and Band Advetsng Stateges n a Dynam Duopoly Ths Tehnal Appendx povdes supplementay nfomaton to the pape Gene and Band Advetsng Stateges n a Dynam Duopoly. It s dvded

Διαβάστε περισσότερα

Some Theorems on Multiple. A-Function Transform

Some Theorems on Multiple. A-Function Transform Int. J. Contemp. Math. Scences, Vol. 7, 202, no. 20, 995-004 Some Theoems on Multple A-Functon Tansfom Pathma J SCSVMV Deemed Unvesty,Kanchpuam, Tamlnadu, Inda & Dept.of Mathematcs, Manpal Insttute of

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

Perturbation Series in Light-Cone Diagrams of Green Function of String Field

Perturbation Series in Light-Cone Diagrams of Green Function of String Field Petuto Sees ht-coe Dms of ee Fucto of St Fel Am-l Te-So Km Chol-M So- m Detmet of Eey Scece Km l Su Uvesty Pyoy DPR Koe E-y Km l Su Uvesty Pyoy DPR Koe Detmet of Physcs Km l Su Uvesty Pyoy DPR Koe Astct

Διαβάστε περισσότερα

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field It J otem Mat Sceces Vo 7 0 o 9 99-98 O Hyersurface of Seca Fser Saces Admttg Metrc Lke Tesor Fed H Wosoug Deartmet of Matematcs Isamc Azad Uversty Babo Brac Ira md_vosog@yaoocom Abstract I te reset work

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Chapter 15 Identifying Failure & Repair Distributions

Chapter 15 Identifying Failure & Repair Distributions Chape 5 Idefyg Falue & Repa Dsbuos Paamee Esmao maxmum lkelhood esmao C. Ebelg, Io o Relably & Maaably Chape 5 Egeeg, d ed. Wavelad Pess, Ic. Copygh 00 Maxmum Lkelhood Esmao (MLE) Fd esmaes fo he dsbuo

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231) List MF9 List of fomulae ad statistical tables Cambidge Iteatioal AS & A Level Mathematics (9709) ad Futhe Mathematics (93) Fo use fom 00 i all papes fo the above syllabuses. CST39 *50870970* PURE MATHEMATICS

Διαβάστε περισσότερα

Time Invariant Regressor in Nonlinear Panel Model with Fixed Effects 1

Time Invariant Regressor in Nonlinear Panel Model with Fixed Effects 1 me Ivarat Regressor Nolear Pael Model wt Fxed ffects Jyog Ha UCLA February 26, 23 I am grateful to Da Ackerberg ad Jerry Hausma for elpful commets. Abstract s paper geeralzes Hausma ad aylor s (98) tuto,

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Markov Processes and Applications

Markov Processes and Applications Markov Processes ad Alcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Alcatos Queug theory Performace aalyss Dscrete-Tme Markov Chas Books - Itroducto to Stochastc Processes (Erha Clar), Cha. 5,

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Exercise, May 23, 2016: Inflation stabilization with noisy data 1 Monetay Policy Henik Jensen Depatment of Economics Univesity of Copenhagen Execise May 23 2016: Inflation stabilization with noisy data 1 Suggested answes We have the basic model x t E t x t+1 σ 1 ît E

Διαβάστε περισσότερα

17 Monotonicity Formula And Basic Consequences

17 Monotonicity Formula And Basic Consequences Lectues o Vaifols Leo Sio Zhag Zui 7 Mootoicity Foula A Basic Cosequeces I this sectio we assue that U is oe i R, V v( M,θ) has the geealize ea cuvatue H i U ( see 6.5), a we wite µ fo µ V ( H θ as i 5.).

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

Universal Levenshtein Automata. Building and Properties

Universal Levenshtein Automata. Building and Properties Sofa Uversty St. Klmet Ohrdsk Faculty of Mathematcs ad Iformatcs Departmet of Mathematcal Logc ad Applcatos Uversal Leveshte Automata. Buldg ad Propertes A thess submtted for the degree of Master of Computer

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

The Laplacian in Spherical Polar Coordinates

The Laplacian in Spherical Polar Coordinates Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu

Διαβάστε περισσότερα

On Quasi - f -Power Increasing Sequences

On Quasi - f -Power Increasing Sequences Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008

Διαβάστε περισσότερα

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling

The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling he followng ae appendes A, B1 and B2 of ou pape, Integated Poess Modelng and Podut Desgn of Bodesel Manufatung, that appeas n the Industal and Engneeng Chemsty Reseah, Deembe (2009). Appendx A. An Illustaton

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

(b) (c) (d) When, where

(b) (c) (d) When, where . Ug Dc delt fucto the ppopte coodte, expe the followg chge dtbuto thee-dmeol chge dete ρ(x). () I phecl coodte, chge ufomly dtbuted ove phecl hell of du R. (b) I cyldcl coodte, chgeλpe ut legth ufomly

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

1 Additional lemmas. Supplementary Material APPENDIX. that N 1 N } E } E { N } E + O(N 3 ), Proof. The results follow by straightforward calculation.

1 Additional lemmas. Supplementary Material APPENDIX. that N 1 N } E } E { N } E + O(N 3 ), Proof. The results follow by straightforward calculation. 1 Additional lemmas Supplementay Mateial APPENDIX Lemma A1. Let (T 1,1, T 2,1, T 3,1, T 4,1 ),..., (T 1,N, T 2,N, T 3,N, T 4,N ) be independent andom vectos of length 4 such that E(T,i ) = 0 (i = 1,...,

Διαβάστε περισσότερα

Identities of Generalized Fibonacci-Like Sequence

Identities of Generalized Fibonacci-Like Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol., No. 5, 7-75 Available olie at http://pubs.sciepub.com/tjat//5/ Sciece ad Educatio Publishig DOI:.69/tjat--5- Idetities of Geealized Fiboacci-Lie Sequece

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ Γιουνανλής Παναγιώτης Επιβλέπων: Γ.Βουγιατζής Επίκουρος Καθηγητής

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

physicsandmathstutor.com

physicsandmathstutor.com physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o

Διαβάστε περισσότερα

Three-Dimensional Experimental Kinematics

Three-Dimensional Experimental Kinematics Notes_5_3 o 8 Three-Dmesoal Epermetal Kematcs Dgte locatos o ladmarks { r } o bod or pots to at gve tme t All pots must be o same bod Use ladmark weghtg actor = pot k s avalable at tme t. Use = pot k ot

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

Minimum density power divergence estimator for diffusion processes

Minimum density power divergence estimator for diffusion processes A Ist Stat Math 3) 65:3 36 DOI.7/s463--366-9 Mmum desty power dvergece estmator for dffuso processes Sagyeol Lee Jumo Sog Receved: 3 March 7 / Revsed: Aprl / ublshed ole: July The Isttute of Statstcal

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Solutions Ph 236a Week 2

Solutions Ph 236a Week 2 Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Differential Equations (Mathematics)

Differential Equations (Mathematics) H I SHIVAJI UNIVERSITY, KOLHAPUR CENTRE FOR DISTANCE EDUCATION Diffeetial Equatios (Mathematics) Fo K M. Sc. Pat-I J Copyight Pescibed fo Regista, Shivaji Uivesity, Kolhapu. (Mahaashta) Fist Editio 8 Secod

Διαβάστε περισσότερα

Article Multivariate Extended Gamma Distribution

Article Multivariate Extended Gamma Distribution axoms Artcle Multvarate Exteded Gamma Dstrbuto Dhaya P. Joseph Departmet of Statstcs, Kurakose Elas College, Maaam, Kottayam, Kerala 686561, Ida; dhayapj@gmal.com; Tel.: +91-9400-733-065 Academc Edtor:

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

r = x 2 + y 2 and h = z y = r sin sin ϕ

r = x 2 + y 2 and h = z y = r sin sin ϕ Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Product of two generalized pseudo-differential operators involving fractional Fourier transform

Product of two generalized pseudo-differential operators involving fractional Fourier transform J. Pseudo-Diffe. Ope. Appl. 2011 2:355 365 DOI 10.1007/s11868-011-0034-5 Poduct of two genealized pseudo-diffeential opeatos involving factional Fouie tansfom Akhilesh Pasad Manish Kuma eceived: 21 Febuay

Διαβάστε περισσότερα

On Zero-Sum Stochastic Differential Games

On Zero-Sum Stochastic Differential Games O Zeo-Sum Sochac Dffeeal Game Eha Bayaka, Sog Yao Abac We geealze he eul of Flemg ad Sougad 13 o zeo-um ochac dffeeal game o he cae whe he cool ae ubouded. We do h by povg a dyamc pogammg pcple ug a coveg

Διαβάστε περισσότερα

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1 Lecue 6 Goals: Deemine e opimal esold, file, signals fo a binay communicaions poblem VI- Minimum Aveage Eo Pobabiliy Poblem: Find e opimum file, esold and signals o minimize e aveage eo pobabiliy. s s

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα