Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών
|
|
- Κυριακή Αντωνιάδης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου /5 Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Ν:6 ο Οι απαρχές των Μαθηματικών Τα μαθηματικά είναι η επιστήμη εκείνη η οποία εμφανίζεται με τα πρώτα βήματα του ανθρώπου πάνω στη γη και αποτελεί το μέσο επίλυσης των διαφόρων προβλημάτων από τα πιο απλά μέχρι και τα πλέον σύνθετα. Από την παρατήρηση οδηγούμαστε στη σύγκριση και από τη σύγκριση στην αξιολόγηση και τέλος από την αξιολόγηση φθάνουμε στην απόφαση. Η διαδρομή αυτή δηλαδή από την παρατήρηση μέχρι και την απόφαση είναι μακρά και επίπονη. Ο άνθρωπος προσπαθώντας κάθε φορά να αξιοποιήσει καλύτερα τις συνθήκες κάτω από τις οποίες ζούσε, έφθασε έως τα σήμερα να έχει αναπτύξει τον σημερινό πολιτισμό. Έναν πολιτισμό, ο οποίος κατά ένα μεγάλο μέρος στηρίζεται στα Μαθηματικά. Όλοι οι λαοί που έζησαν πριν από την εποχή του Πυθαγόρα (6ος π.χ. αιώνας) έχουν αναπτύξει μαθηματικές ιδέες αρκετά σημαντικές και πολύτιμες για την παραπέρα πορεία. Όμως οι πληροφορίες που έχουμε είναι λιγοστές και γιαυτό πολύτιμες. Οι σπουδαιότερες πηγές για τα Μαθηματικά των λαών αυτών είναι οι παρακάτω: 1. Η πινακίδα του Σενκερέχ Είναι ένα κειμήλιο που χρονολογείται στην περίοδο π.Χ. και περιέχει πληροφορίες σχετικά με τις γνώσεις των λαών που κατοικούσαν στις όχθες του Ευφράτη. Το κείμενο αυτό είναι γραμμένο σε σφηνοειδή γραφή και περιέχει μεταξύ άλλων το αριθμητικό σύστημα των Βαβυλωνίων, που είχε βάσεις το 10 και το 60. Στο κείμενο αυτό υπάρχουν τα τετράγωνα των αριθμών 1,2,,60 και οι κύβοι των αριθμών 1,2,,30. Μέσα από τους πίνακες αυτούς διευκολύνονταν οι ιερείς που ασχολούνταν με αστρολογικές μελέτες να πραγματοποιήσουν τις αντίστροφες πράξεις εξαγωγής της τετραγωνικής και κυβικής ρίζας.
2 Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου /5 Ο πάπυρος του Rhind Τις πληροφορίες σχετικά με τα Μαθηματικά των Αιγυπτίων, τις αντλούμε από τον πάπυρο του Rhind, που χρονολογείται μεταξύ 1788 και 1580π.Χ. και φυλάσσεται στο Βρετανικό Μουσείο του Λονδίνου. Είναι γραμμένος σε ιερογλυφική και ιερατική γραφή από το γραφέα Ahmes. Μαζί με τον πάπυρο του Rhind ανακαλύφθηκε και ο δερμάτινος κύλινδρος (ΒΜ 10250) το ξετύλιγμα του οποίου υπήρξε επίτευγμα της σύγχρονης χημείας. Ο κύλινδρος αυτός περιέχει απλές σχέσεις μεταξύ κλασμάτων. 2. Η πινακίδα του Plimpton Βρίσκεται στο Πανεπιστήμιο της Κολούμπια των Ηνωμένων Πολιτειών της Αμερικής και μας δίνει πληροφορίες για τα Μαθηματικά των Βαβυλωνίων.
3 Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου /5 Χρονολογείται στα 1900 και 1600 π.χ. Η πινακίδα αυτή είναι αντίγραφο της αρχικής που έχει χαθεί. Διαβάστηκε για πρώτη φορά από τους Neugebauer και Sachs το Παρουσιάζει ουσιαστικά σχέσεις πλευρών του ορθογωνίου τριγώνου. Πώς οι Βαβυλώνιοι κατάφεραν να υπολογίσουν πυθαγόρειες τριάδες; Το ερώτημα παραμένει μέχρι σήμερα. 4. Ο πάπυρος της Μόσχας. Στον πάπυρο αυτό υπάρχει ένα ξεχωριστό επίτευγμα των αιγυπτιακών μαθηματικών που είναι ο ακριβής υπολογισμός του όγκου της κόλουρης πυραμίδας με τετραγωνική βάση. 5. Η πινακίδα με σφηνοειδές κείμενο(ybc 7289) από τη Βαβυλωνιακή Συλλογή του Πανεπιστημίου του Yale, στην οποία υπολογίζεται η διαγώνιος τετραγώνου. 6. Το βιβλίο «Sulvasutra» ή «κανόνας της χορδής» των Αρχαίων Ινδών είναι γραμμένο μεταξύ του 8ου και 6ου αιώνα π.χ. Σ αυτό περιέχονται πολλές μαθηματικές γνώσεις των λαών που ζούσαν στις όχθες του Ινδού ποταμού. Στο βιβλίο αυτό δίνονται οδηγίες για την κατασκευή βωμών και ιερών κτισμάτων με συγκεκριμένες διαστάσεις. Εκεί εμφανίζονται πυθαγόρειες τριάδες και αξιόλογοι υπολογισμοί. 7. το Ιερό Βιβλίο της Αριθμητικής το οποίο θεωρείται ότι γράφηκε στην περίοδο π.Χ. επί της ΙΙΙ δυναστείας της Κίνας μας πληροφορεί για τα μαθηματικά των αρχαίων Κινέζων. Τέλος πολλές αναφορές αρχαίων Ελλήνων και Αράβων συγγραφέων μας δίνουν πολύτιμες πληροφορίες για τα Μαθηματικά όλων αυτών των λαών. Τα μαθηματικά βέβαια αυτά σύμφωνα με τις απόψεις σύγχρονων μελετητών ήταν μαθηματικά με περίπλοκους υπολογισμούς όμως δεν προχώρησαν σε ανώτερες αποδεικτικές διαδικασίες όπως έγινε στη συνέχεια από τους Έλληνες Μαθηματικούς της Αρχαιότητας. Μαθηματικές προκλήσεις προσκλήσεις - ασκήσεις Λύσεις προηγουμένων προκλήσεων ασκήσεων 6. Αν διαθέτεις ένα δοχείο των 5 λίτρων και ένα ακόμα των 3 λίτρων, πως θα μπορέσεις να βάλεις από τη βρύση 4 λίτρα νερό στο μεγάλο δοχείο; Λύση: Σχηματικά λύνεται στις παρακάτω 7 φάσεις. 5 λίτρα 1η φάση 2η φάση
4 Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου /5 3η φάση 2 λίτρα 4η φάση 5η φάση 6η φάση 7η φάση Σημείωση Αν υπήρχε ένα τρίτο μεγάλο δοχείο τότε:θα ρίξουμε δύο φορές με το δοχείο των 5 λίτρων στο μεγάλο δοχείο και θα αδειάσεις δύο φορές με το δοχείο των 3 λίτρων. Έτσι μέσα στο μεγάλο δοχείο θα μείνουν 2Χ5-2Χ3=10-6=4 λίτρα. Για την άλλη φορά 9. Μία συνάντηση άρχισε ανάμεσα στις 3 και 4μ.μ. και τέλειωσε μεταξύ τις 6 και 7μ.μ. Στη συνάντηση αυτή οι δείκτες του ρολογιού τις στιγμές της έναρξης και της λήξης αντάλλαξαν θέση. Τι ώρα άρχισε η συνάντηση; 10. Θεωρούμε κύκλο με κέντρο Ο και ακτίνα R καθώς και εγγεγραμμένο τρίγωνο ΑΒΓ σ αυτόν. Φέρουμε τη διάμετρο ΒΒ. Να αποδείξετε ότι:
5 Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου /5 α) Αν Η το ορθόκεντρο του τριγώνου τότε: ΑΗ = Β Γ β) Το τμήμα ΗΒ διέρχεται από το μέσο της πλευράς ΑΓ. γ) ΑΗ = 2RσυνΑ Παράρτημα της Ε.Μ.Ε. 2ο Εν.Λύκειο Κοζάνης Κάλβου Κοζάνη ή ηλεκτρονικά: emekozanis@yahoo.gr
Εαρινό Εξάμηνο 2011. 21.02.11 Χ. Χαραλάμπους ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών. Ιστορία των Μαθηματικών ΑΠΘ
Εαρινό εξάμηνο 2011 21.02.11 Χ. Χαραλάμπους Μεσοποταμία Αίγυπτος 3000 1000 π.χ. Αίγυπτος: ο πάπυρος του Rhind ~1650 π.χ. Αγοράσθηκε από τον Σκωτσέζο Rhind το 1858 Αίγυπτος: ο πάπυρος της Μόσχας ~ 1600
Διαβάστε περισσότερα26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014
Εαρινό εξάμηνο 2014 26.02.14 Χ. Χαραλάμπους 14 ο πρόβλημα (βρίσκεται στο Μουσείο Καλών Τεχνών της Μόσχας από το 1893 μ.χ.) «μετάφραση των συμβόλων: Εάν σου πουν: μία κομμένη πυραμίδα με ύψος 6, με βάση
Διαβάστε περισσότεραΕαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ
Εαρινό εξάμηνο 2012 29.02.12 Χ. Χαραλάμπους Ο πάπυρος του Rhind---Ahmes 81 από αυτά τα προβλήματα έχουν λύσεις που αναφέρονται σε κλασματικές ποσότητες Πρόβλημα 3, π. του Rhind: «να διαιρέσεις 6 φραντζόλες
Διαβάστε περισσότεραΕαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ
Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους Ποια είναι τα χαρακτηριστικά των μαθηματικών των αρχαίων Αιγυπτίων? Υπάρχει διαχωρισμός ανάμεσα στις ακριβείς τιμές ποσοτήτων και στις προσεγγίσεις? Όλοι αυτοί
Διαβάστε περισσότεραΤο Πυθαγόρειο Θεώρημα
Το Πυθαγόρειο Θεώρημα «Εν τοις ορθογωνίοις τριγώνοις το από της την ορθήν γωνίαν υποτεινούσης πλευράς τετράγωνον ίσον εστί τοις από των την ορθήν γωνίαν περιεχουσών πλευρών τετραγώνοις». Δηλαδή: «Το τετράγωνο
Διαβάστε περισσότεραΙστορία των Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή. Τα Μαθηματικά των αρχαίων Αιγυπτίων και των Βαβυλωνίων. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ
Διαβάστε περισσότεραΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014
Εαρινό εξάμηνο 2014 6.03.14 Χ. Χαραλάμπους 1(και 60) 8 10 30 11 79883= (22*60 2 )+(11*60)+23 70 Δεν έχουν βρεθεί πίνακες για πρόσθεση. Έχουν βρεθεί πολλοί πίνακες για τον πολλαπλασιασμό: Έτσι ένας πίνακας
Διαβάστε περισσότεραΕρευνητική Εργασία: Γεωμετρία και Αρχαιότητα (Από Αρχαία Κείμενα) Μαθητές: Δέσποινα Βαραμογιάννη, Μιχάλης Λεφαντζής, Πάμελα Μάχια, Κλειώ Οικονομάκη
Ερευνητική Εργασία: Γεωμετρία και Αρχαιότητα (Από Αρχαία Κείμενα) Μαθητές: Δέσποινα Βαραμογιάννη, Μιχάλης Λεφαντζής, Πάμελα Μάχια, Κλειώ Οικονομάκη Θέμα: Η Γεωμετρία εκτός της Ελλάδας, μέχρι τον 3 ο αιώνα
Διαβάστε περισσότεραΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια
ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Το Θεώρημα γεννιέται πριν από 4000 χρόνια Οι ρίζες του Πυθαγορείου Θεωρήματος βρίσκονται στη Γεωμετρία. Το θεώρημα διαδραματίζει κεντρικό ρόλο σε πολυάριθμους επιστημονικούς κλάδους,
Διαβάστε περισσότεραΙστορία των Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή. Τα Μαθηματικά των αρχαίων Αιγυπτίων και των Βαβυλωνίων. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ
Διαβάστε περισσότεραΔυνάμεις Φυσικών Αριθμών
Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο
Διαβάστε περισσότεραΟΙ ΕΠΙΣΤΗΜΕΣ ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΑΝΑΤΟΑΙΚΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ
Μέρος Πρώτο: Η Αρχαία και Μεσαιωνική Επιστήμη ΚΕΦΑΛΑΙΟ 1 ΟΙ ΕΠΙΣΤΗΜΕΣ ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΑΝΑΤΟΑΙΚΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ 1 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ Η ΑΣΤΡΟΝΟΜΙΑ ΣΓΗ ΜΕΣΟΠΟΤΑΜΙΑ Η μελέτη της ιστορίας της αρχαίας Μεσοποταμίας,
Διαβάστε περισσότεραΔημήτρης Ντρίζος Μαθηματικός, τ. Σχολικός Σύμβουλος Μέλος της Σ.Ε του Ευκλείδη Γ της Ε.Μ.Ε
2018 Έτος Μαθηματικών 100 χρόνια Ε.Μ.Ε Οι απαρχές της μαθηματικής σκέψης στην αρχαία Ελλάδα: από τον Θαλή και τον Πυθαγόρα στον Ευκλείδη Δημήτρης Ντρίζος Μαθηματικός, τ. Σχολικός Σύμβουλος Μέλος της Σ.Ε
Διαβάστε περισσότεραΕαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ
Εαρινό εξάμηνο 2011 23.02.11 Χ. Χαραλάμπους ΑΠΘ Υπολογισμός (ακρίβεια έως 5 δεκαδικά) Yale Babylonian collection, 1800 π.χ. 24 51 10 1+ + + = 1.41421296 2 3 60 60 60 Τετραγωνική ρίζα του 2 Ποια είναι η
Διαβάστε περισσότεραΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ
ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2
Διαβάστε περισσότεραΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ
ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΒΑΒΥΛΩΝΙΩΝ Οι Βαβυλώνιοι ζούσαν στη Μεσοποταµία,περιοχή µεταξύ των ποταµών Τίγρη και Ευφράτη.Η Μεσοποταµία ήταν κέντρο πολιτισµού των Σουµέριων,Ακκάδιων,Ασσύριων,Αραµαίων
Διαβάστε περισσότεραΗ Στήλη των μαθηματικών Από τον Κώστα Δόρτσιο, Σχ.Σύμβουλο Μαθηματικών
'' '', '' email kdortsi@gmail com 00-4 Στήλη των Μαθηματικών. Τετάρτη 8 Φεβρουαρίου 006 1/ Η Στήλη των μαθηματικών Από τον Κώστα Δόρτσιο, Σχ.Σύμβουλο Μαθηματικών Ν:1 ο Γενικά Όπως ανακοινώθηκε από την
Διαβάστε περισσότεραΤρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος
Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΧ. ΧΡ Ενότητα 2: Αξιοσημείωτες Ταυτότητες 1. Να βρείτε τα αναπτύγματα: (α) 2
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΧ. ΧΡ. 015-016 Ενότητα : Αξιοσημείωτες Ταυτότητες 1. Να βρείτε τα αναπτύγματα: (α) χ - 4 = (β) 3χ + = (γ) 3 χ + = (δ) 3 χ - 3 = (ε) χ - ψχ + ψ = (στ) 4χ - 3ψ = (ζ) αβ-γαβ+γ = (η) (x-3ω
Διαβάστε περισσότεραέτος 200 τεύχη 01-4 Κώστας Δόρτσιος Μαθηματικός
Κώστας Δόρτσιος Μαθηματικός Ξεκίνησε να δημοσιεύεται κάθε Τετάρτη στην Εφημερίδα ''Γραμμή '' της Κοζάνης το 006 καθ όλη τη διάρκεια του έτους. Ένα μεγάλο μέρος της έχει φιλοξενηθεί στην ιστοσελίδα του
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 4ο Γεωμετρικά Στερεά Χρύσα Παπαγεωργίου Μαθηματικός - Πληροφορικός Το ορθό πρίσμα και τα στοιχεία του Κάθε ορθό πρίσμα έχει: Δύο έδρες παράλληλες, που είναι ίσα
Διαβάστε περισσότεραΕ Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.
Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014
Εαρινό εξάμηνο 2014 8.04.14 Χ. Χαραλάμπους Παράδειγμα από το κείμενο του Abu Kamil (Αίγυπτος: γ ς ~850-930 μ.χ.) ) Σε ένα πρόβλημα υπολογίζει πως να χωρίσει κανείς το 10 σε δύο μέρη, έτσι ώστε όταν το
Διαβάστε περισσότερα1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.
Ερωτήσεις ανάπτυξης 1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο (A = 90 ) και πλευρές = 3 cm, = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Να βρείτε: α) Το εµβαδό Ε Π της παράπλευρης επιφάνειας.
Διαβάστε περισσότεραΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 102, Στρόβολος 200, Λευκωσία Τηλ. 57-2278101 Φαξ: 57-2279122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 201 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία:
Διαβάστε περισσότεραΟμάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία
Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία ΕΠΙΣΤΗΜΕΣ ΣΤΗΝ ΑΡΧΑΙΑ ΑΙΓΥΠΤΟ H γενική τάση των κατοίκων της Αιγύπτου στις επιστήμες χαρακτηριζόταν από την προσπάθεια
Διαβάστε περισσότεραΟ Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.
Αρχιμήδης ο Συρακούσιος Ο μεγαλύτερος μαθηματικός της αρχαιότητας και από τους μεγαλύτερους όλων των εποχών. Λέγεται ότι υπήρξε μαθητής του Ευκλείδη, ότι ταξίδεψε στην Αίγυπτο, σπούδασε στην Αλεξάνδρεια
Διαβάστε περισσότεραΠροσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ
1 ο Θεώρημα διαμέσου ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ Σε κάθε τρίγωνο, το άθροισμα των τετραγώνων δύο πλευρών τριγώνου ισούται με το διπλάσιο του τετραγώνου της περιεχόμενης διαμέσου, αυξημένο κατά το μισό του τετραγώνου
Διαβάστε περισσότεραΥπολογιστικά Συστήματα της Αρχαιότητας. Μηχανισμός των Αντικυθήρων Άβακας Κλαύδιος Πτολεμαίος Ήρωνας Αλεξανδρινός Το Κόσκινο του Ερατοσθένη
Υπολογιστικά Συστήματα της Αρχαιότητας Μηχανισμός των Αντικυθήρων Άβακας Κλαύδιος Πτολεμαίος Ήρωνας Αλεξανδρινός Το Κόσκινο του Ερατοσθένη Μηχανισμός των Αντικυθήρων Κατασκευή μηχανισμού : 2 ος 1 ος αιώνας
Διαβάστε περισσότεραΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί
Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 01 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ -ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ Ημερομηνία και ώρα
Διαβάστε περισσότεραΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αριθμητικά συστήματα 123, 231, 312 Τι σημαίνουν; Τι δίνει αξία σε κάθε ίδιο ψηφίο; Ποια είναι η αξία του κάθε ψηφίου; Αριθμητικά
Διαβάστε περισσότερα2 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο
Διαβάστε περισσότεραΝα αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.
Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Θέμα 1 ον ΘΕΩΡΙΑ : α) Τι καλείται αριθμητική παράσταση και τι καλείται αλγεβρική παράσταση ; β) Να συμπληρώσετε
Διαβάστε περισσότεραΒ Γυμνασίου. Θέματα Εξετάσεων
υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx
Διαβάστε περισσότερα5ο Παναρσακειακό Μαθητικό Συνέδριο Αγώνας και Αγώνες Πρόκληση στο πνεύμα, στην κοινωνία, στην επιστήμη, στον πολιτισμό
Υπεύθυνος καθηγητής: Γιώργος Καγκάκης 5ο Παναρσακειακό Μαθητικό Συνέδριο Αγώνας και Αγώνες Πρόκληση στο πνεύμα, στην κοινωνία, στην επιστήμη, στον πολιτισμό Τίτλος εργασίας: Ελληνική γλώσσα και «γλώσσα
Διαβάστε περισσότερα1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»
Κεφάλαιο 13: ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Θεωρούµε ένα επίπεδο p, µια κλειστή πολυγωνική γραµµή του p και µια ευθεία ε που έχει µε το p ένα µόνο κοινό σηµείο. Από κάθε σηµείο
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΙΣΤΟΡΙΑ ΤΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΙΣΤΟΡΙΑ ΤΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΟΜΑΔΑ Α ΘΕΜΑ Α1 Α.1.1. Να γράψετε στο τετράδιό σας τα
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότερα2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ
ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 193. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Με την βοήθεια των εξισώσεων δευτέρου βαθμού λύνουμε πολλά προβλήματα της καθημερινής ζωής και διαφόρων επιστημών.
Διαβάστε περισσότεραΑθανασίου Ανδρέας, Αντωνιάδης Μ., Γιασουµής Ν., Ιωάννου Ι., Ματθαίου Κ., Μουσουλίδου M., Παπαγιάννης Κ., Φιλίππου Α. (2013). Μαθηµατικά Α Γυµνασίου,
Αθανασίου Ανδρέας, Αντωνιάδης Μ., Γιασουµής Ν., Ιωάννου Ι., Ματθαίου Κ., Μουσουλίδου M., Παπαγιάννης Κ., Φιλίππου Α. (2013). Μαθηµατικά Α Γυµνασίου, ISBN: 978-9963-0-4611-9) Και Βανδουλάκης Ι., Καλλιγάς
Διαβάστε περισσότεραΠαράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Για αρχή 598 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Παράγωγοι Κώστας Γλυκός Για αρχή 598 ασκήσεις και τεχνικές σε 4 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 7 / / 0 7 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό : 697-00.88.88
Διαβάστε περισσότεραΠαράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΕΠΑΛ Κεφάλαιο ασκήσεις σε 19 σελίδες. εκδόσεις. Καλό πήξιμο / 1 1 /
Παράγωγοι Κώστας Γλυκός ΕΠΑΛ Κεφάλαιο 59 ασκήσεις σε 9 σελίδες 6 9 7. 0 0. 8 8. 8 8 εκδόσεις / / 0 8 Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό : 697-00.88.88 Τα πάντα για παραγώγους (ΕΠΑΛ) Να βρεις τα πεδία
Διαβάστε περισσότεραΗ Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών
Η στήλη των Μαθηματικών. Τετάρτη 5 Απριλίου 26 1/5 Ν:9 ο Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σ. Σύμβουλο Μαθηματικών Τα Μαθηματικά των Αραίων Ελλήνων Η σολή της Ιωνίας - Αναφορά στο έργο του
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α
1 ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ 5 η ΕΚ 1. Οι πλευρές ενός τριγώνου σε cm είναι = 3x 3, = 3x + 1 και = x και η περίµετρος Π του τριγώνου είναι Π = 8cm. Να βρείτε τα µήκη των πλευρών του τριγώνου. Να δείξτε ότι το τρίγωνο
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 013 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία και ώρα εξέτασης: Παρασκευή 31 Μαΐου
Διαβάστε περισσότεραΤι ονομάζουμε εμβαδόν μιας επίπεδης επιφάνειας; Αναφέρετε ονομαστικά τις μονάδες μέτρησης επιφανειών.
1 Ονοματεπώνυμο μαθητή : Ημερομηνία :.../.../20... Μαθηματικές έννοιες: Εμβαδόν, Τετραγωνικό Μέτρο, Τετραγωνικό Δεκάμετρο, Τετραγωνικό Εκατοστόμετρο, Τετραγωνικό Χιλιοστόμετρο, Στρέμμα. Θυμόμαστε- Μαθαίνουμε:
Διαβάστε περισσότερα3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ
1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα Τι παρατηρήσατε στο video; 1η δραστηριότητα (Φύλλο Εφαρμογής (1) Στο ορθογώνιο τρίγωνο ΑΒΓ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
Κ. Τζιρώνης, Θ. Τζουβάρας ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Συµπλήρωµα στις λύσεις των ασκήσεων του βιβλίου Περιλαµβάνει λύσεις ή υποδείξεις για ασκήσεις του βιβλίου που αφορούν κυρίως προβλήµατα των οποίων η επίλυση
Διαβάστε περισσότεραΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ
ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΦΑΙΔΡΑ ΚΟΥΡΒΙΣΙΑΝΟΥ ΒΑΣΙΛΗΣ ΚΑΤΣΑΝΤΩΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΗΛΙΟΠΟΥΛΟΣ ΑΝΔΡΕΑΣ ΚΑΣΙΜΑΤΗΣ Ερευνητικά Ερωτήματα Ποιοι είναι ΟΙ ΣΗΜΑΝΤΙΚΟΙ
Διαβάστε περισσότεραΙστορία Επιστημών Ι. Αρχαιότητα και Μέσοι Χρόνοι. Μιχάλης Σιάλαρος
Ιστορία Επιστημών Ι Αρχαιότητα και Μέσοι Χρόνοι Μιχάλης Σιάλαρος msialaros@phs.uoa.gr 3. 19/10/17 4. 26/10/17 5. 02/11/17 6. 09/11/17 7. 23/11/17 8. 30/11/17 9. 07/12/17 10. 14/12/17 11. 21/12/17 12. 11/01/18
Διαβάστε περισσότεραβοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2
3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών
Διαβάστε περισσότεραΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια
Διαβάστε περισσότεραΠαράγοντας τον Τύπο της Δευτεροβάθμιας Εξίσωσης
Παράγοντας τον Τύπο της Δευτεροβάθμιας Εξίσωσης Οι τεχνικές επίλυσης δευτεροβάθμιων εξισώσεων εμφανίζονται τουλάχιστον πριν 4000 χρόνια, στην αρχαία Μεσοποταμία, σημερινό Ιράκ. Οι μέθοδοι πιθανόν προήλθαν
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2-ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ
Διαβάστε περισσότεραΠαράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Για αρχή 598 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Παράγωγοι Κώστας Γλυκός Για αρχή 598 ασκήσεις και τεχνικές σε 4 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglyks.gr 8 / / 0 9 εκδόσεις Καλό πήξιμο Τα πάντα είναι παράγωγοι Παραγώγιση
Διαβάστε περισσότεραΤο ιστορικό σημείωμα είναι απόσπασμα του κειμένου που περιέχεται στο έργο «Μαθαίνω Μαθηματικά με το Geometer s Sketchpad» (Πατσιομίτου, 2010)
Σ.Πατσιομίτου Ιστορία του Πυθαγόρειου θεωρήματος 1 Το Πυθαγόρειο θεώρημα έχει πάρει το όνομά του από τον Πυθαγόρα (569-475 π.χ.) που το απέδειξε. O Howard Eves (1983) αναφέρεται στο Πυθαγόρειο θεώρημα
Διαβάστε περισσότερα4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ
174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία
Διαβάστε περισσότεραΚύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας
Κύκλου μέτρησις Ολοκληρωμένο διδακτικό σενάριο Δημιουργία: Τεύκρος Μιχαηλίδης Μαθηματικό Εργαστήρι Β Αθήνας Η ιστορία του π 2 Κυ κλου με τρησις Η μέθοδος του Αρχιμήδη για την προσέγγιση του π και ο ρόλος
Διαβάστε περισσότεραΙστορία των Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή. Τα Μαθηματικά των αρχαίων Αιγυπτίων και των Βαβυλωνίων. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου
ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Μαθηματικά Β Γυμνασίου Κριτήρια Αξιολόγησης Θέση υπογραφής δικαιούχου δικαιωμάτων πνευματικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από τη σύμβαση. «Το παρόν έργο πνευματικής ιδιοκτησίας
Διαβάστε περισσότεραΔ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ. ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ. Τελευταία ενημέρωση 16 Μαρτίου w w w. c o m m o n m a t h s. w e e b l y. c o m
Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΞΙΣΩΣΕΙΣ 2ου Τελευταία ενημέρωση 16 Μαρτίου 2016 ΒΑΘΜΟΥ w w w. c o m m o n m a t h s. w e e b l y. c o m A. Αρχικά θα ασχοληθούμε με τα τριώνυμα 2 ου βαθμού. Η γενική μορφή τους είναι
Διαβάστε περισσότεραΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R
Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο
Διαβάστε περισσότεραΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΒΔΗΡΩΝ
ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΒΔΗΡΩΝ Τμήμα Α1 Ομάδα 1 Γούλα Χρυσούλα Δέλλιου Ευγενία Γκλατκίχ Γιάννης Μακράκης Παναγιώτης Εμίν Ογλού Εμίν ΑΡΧΑΙΟΙ ΕΛΛΗΝΕΣ ΜΑΘΗΜΑΤΙΚΟΙ Πυθαγόρας ο Σάμιος (580-500 π.χ.) Ιπποκράτης ο Χίος
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Β ΤΑΞΗΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Β ΤΑΞΗΣ 1) Οι ακέραιοι αριθμοί από το 1 μέχρι το 10 είναι τοποθετημένοι στο διπλανό διάγραμμα. Με τη βοήθεια του πιο πάνω διαγράμματος: α) Να συμπληρώσετε τα κενά με ένα από τα σύμβολα,,
Διαβάστε περισσότερα1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,
. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -
Διαβάστε περισσότεραΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ
ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος
Διαβάστε περισσότερα( ) ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ 2 = ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. 1) Να βρεθεί το Π.Ο.
ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ 1) Να βρεθεί το Π.Ο. των συναρτήσεων : α) f ( ) β) f ( ) + 5 + 6 ln( + 1) γ) f ( ) δ) 1 f( ) 4 ) Να βρεθεί
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ
ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)
Διαβάστε περισσότεραΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ
Αναστασία Πέτρου Κωνσταντίνος Χρήστου Β 3 ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Ο Πυθαγόρας ο Σάμιος, υπήρξε σημαντικός Έλληνας φιλόσοφος, μαθηματικός, γεω μέτρης και θεωρητικός της μουσικής. Είναι ο κατεξοχήν
Διαβάστε περισσότεραΕπαναληπτικές ασκήσεις για τα Χριστούγεννα.
Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για τα Χριστούγεννα. Μέρος Α Άλγεβρα. 1. Να γίνουν οι πράξεις: α. Α=(-3)(-4)+3[(-3).4+(-6) ] β. Β=--8.3+7[7(-3)+(-)(-1)] 8 γ. Γ= 3 ( ) ( 8) 3 9 3 δ. Δ=(-3+9-)(3-9)+(9-0)(4:+).
Διαβάστε περισσότερα1. * Η κάθετη τοµή ορθού κανονικού τριγωνικού πρίσµατος είναι τρίγωνο Α. ισοσκελές. Β. ισόπλευρο. Γ. ορθογώνιο.. αµβλυγώνιο. Ε. τυχόν.
Ερωτήσεις πολλαπλής επιλογής 1 * Η κάθετη τοµή ορθού κανονικού τριγωνικού πρίσµατος είναι τρίγωνο Α ισοσκελές Β ισόπλευρο Γ ορθογώνιο αµβλυγώνιο Ε τυχόν * Κάθε παραλληλεπίπεδο έχει ακµές Α Β 6 Γ 8 10 Ε
Διαβάστε περισσότεραΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ. ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες
ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ : 1 Η Διδακτική ώρα : Εισαγωγή
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Διαβάστε περισσότεραΠαρασκευή-Ανδριάννα Μαρούτσου Πρότυπο Γυμνάσιο Ευαγγελικής Σχολής Σμύρνης Επιβλέπων καθηγητής: Νικόλαος Μεταξάς, Δρ. Μαθηματικών Θεματική Ενότητα:
Παρασκευή-Ανδριάννα Μαρούτσου Πρότυπο Γυμνάσιο Ευαγγελικής Σχολής Σμύρνης Επιβλέπων καθηγητής: Νικόλαος Μεταξάς, Δρ. Μαθηματικών Θεματική Ενότητα: Μαθηματικά Ο σκοπός της έρευνας είναι η αναζήτηση για
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου
Διαβάστε περισσότεραΠαράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 1. Kglykos.gr. 359 ασκήσεις σε 19 σελίδες. εκδόσεις.
Παράγωγοι Κώστας Γλυκός ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 59 ασκήσεις σε 9 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / 6 / 0 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της
Διαβάστε περισσότερα15% % % 30% ********************************************************
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΓΙΑ ΠΡΟΣΛΗΨΗ ΕΙ ΙΚΩΝ ΑΣΤΥΝΟΜΙΚΩΝ ΣΥΜΦΩΝΑ ΜΕ ΤΟ NOMO ΠΕΡΙ ΑΞΙΟΛΟΓΗΣΗΣ ΥΠΟΨΗΦΙΩΝ ΓΙΑ ΙΟΡΙΣΜΟ
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ Τελευταία ενημέρωση: 21 Φεβρουαρίου 2015 w w w. c o m m o n m a t h s. w e e b l y. c o m A. Αρχικά θα ασχοληθούμε με τα τριώνυμα 2 ου βαθμού. Η γενική μορφή τους
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Προτεινόμενες Λύσεις
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ (4) Ημερομηνία και ώρα εξέτασης: Τρίτη, 27/5/2014
Διαβάστε περισσότερα: :
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 19 Οκτωβρίου 013 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 16 1 74 3 1 : 4 53 3 4 :. 9 8 9 Πρόβλημα Ένας οικογενειάρχης πήρε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ :
ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΤΑΞΗ : Β ΧΡΟΝΟΣ : 2 ΩΡΕΣ ΑΡΙΘΜΟΣ ΣΕΛΙΔΩΝ : 8 ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΤΜΗΜΑ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν
Διαβάστε περισσότεραΑ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.
Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι
Διαβάστε περισσότεραΕπαναληπτικές ασκήσεις για το Πάσχα.
Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:
Διαβάστε περισσότεραΚύκλος Ερευνητικής Εργασίας: «Μαθηµατικά, Φυσικές Επιστήµες και Τεχνολογία»
3ο Γενικό Λύκειο Λάρισας Κύκλος Ερευνητικής Εργασίας: «Μαθηµατικά, Φυσικές Επιστήµες και Τεχνολογία» Θέµα Ερευνητικής Εργασίας: ιερεύνηση των εξισώσεων και ανισώσεων µέσα από την επίλυση καθηµερινών προβληµάτων.
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 4) Να κάνετε τις πράξεις και μετά να βρείτε την αριθμητική τιμή του
ΕΠΑΝΑΗΠΤΙΚΕ ΑΚΗΕΙ Γ ΓΥΜΝΑΙΟΥ ΕΝΟΤΗΤΑ : Αξιοσημείωτες Ταυτότητες 1. Να βρείτε τα αναπτύγματα: 1) 3 ) 3) 5 3 3 5 3 5) 5 4) 3 5 6) ( α 3 + 3β ) 7) (7 + )(7 ) 8) (β 4 + 1)(β + 1)(β + 1)(β 1). Να κάνετε τις
Διαβάστε περισσότερα1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ
Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:
Διαβάστε περισσότερα2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.
Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι
Διαβάστε περισσότερα