A A A B A ΦΥΛΛΑ ΙΟ ΘΕΜΑΤΩΝ 1/2. Μέϱος A. Πολλαπλές επιλογές (20%) Σειριακός αριθµός : 100 Πληροφορική Ι Εξέταση Φεβρουαρίου 2019
|
|
- Φαίδρα Αγγελοπούλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Σειριακός αριθµός : 100 Πληροφορική Ι Εξέταση Φεβρουαρίου 2019 Απαντήσεις Πολλαπλής Επιλογής Ε Ω : A A A B A ΦΥΛΛΑ ΙΟ ΘΕΜΑΤΩΝ 1/2 Τα ϑέµατα της εξέτασης δίνονται σε 2 ϕυλλάδια (ένα για κάϑε διδάσκοντα). Η διάϱκεια της εξέτασης είναι 2.5 ώϱες µε κλειστές σηµειώσεις. Σύνολο µονάδων και για τα 2 ϕυλλάδια: 12. Επιστϱέϕετε τα ϑέµατα µε τις απαντήσεις σας στα εϱωτήµατα πολλαπλής επιλογής σηµειωµένες στην πϱοκαϑοϱισµένη ϑέση στην πϱώτη σελίδα κάϑε ϕυλλαδίου. Οι εϱωτήσεις πολλαπλής επιλογής είναι ισοδύναµες ϐαϑµολογικά αλλά κάϑε λάϑος απάντηση µετϱάει αϱνητικά κατά τέτοιο τϱόπο ώστε αν ((παίξετε)) τυχαία την απάντησή σας, η µέση τιµή των πόντων που παίϱνετε είναι 0. Κενές απαντήσεις µετϱάνε 0. Υπάϱχει ακϱιϐώς µία σωστή απάντηση σε κάϑε εϱώτηση πολλαπλής επιλογής. ώστε τις απαντήσεις σας στα πϱογϱαµµατιστικά ϑέµατα του στον κενό χώϱο κάτω από την κάϑε εκϕώνηση. Μποϱείτε να χϱησιµοποιήσετε για Πϱόχειϱο την τελευταία σελίδα του τετϱαδίου, καϑώς και τον χώϱο δίπλα στις εϱωτήσεις πολλαπλής επιλογής. Μέϱος A. Πολλαπλές επιλογές (20%) Εϱώτηση 1: Πόσα X ϑα εµϕανίσει ο παϱακάτω κώδικας for i=0:5 disp( X ); for j=i:4, disp( X ); A: 21 B: Τίποτα από αυτά C: 22 D: 24 E: 42 Εϱώτηση 2: Με ποιες από τις παϱακάτω εκϕϱάσεις είναι ισοδύναµη η λογική έκϕϱαση x > 0 && x <= 1 I. (x > 1 x <= 0) II. 0<x<=1 III. (x <= 0) && (x > 1) A: I, III B: III C: Ολες D: Καµία E: II Εϱώτηση 3: Ποιόν αϱιϑµό εµϕανίϲει το παϱακάτω πϱόγϱαµµα? για τη συνάϱτηση sum = 0; i = 1; while i<=10 sum = sum + g(i); i = i + 1; fprintf( %g\n,sum); function s = g(n) s = 3*n; A: 165 B: 0 C: 300 D: 55 E: Τίποτα από αυτά Εϱώτηση 4: Τι εµϕανίϲει το παϱακάτω πϱόγϱαµµα
2 y = 5; x = -5*y; y = foo(x); disp(x); για τη συνάϱτηση function x = foo(x) if x<0, x = -x; disp(x); A: B: C: Τίποτα από αυτά D: E: Εϱώτηση 5: Ποιο το αποτέλεσµα της εντολής disp(fun(fun(3))) για τη συνάϱτηση function p = fun(n) p = 0; for i=1:n, p = p+i; ; A: 21 B: 0 C: 6 D: 3 E: Τίποτα από αυτά Μέϱος B. Πϱογϱαµµατισµός (60%) ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΟΛΑ ΤΑ ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Σχεδιάστε µε πϱοσοχή τις συναϱτήσεις που ϑα σας Ϲητηϑούν. Σκεϕτείτε τι ακϱιϐώς ϑα πϱέπει να δέχονται οι συναϱτήσεις σας, τι ϑα επιστϱέϕουν και χϱησιµοποιήστε τις ελάχιστες δυνατές παϱαµέτϱους εισόδου που είναι απαϱαίτητες για να λειτουϱγήσουν σωστά. Οι συναϱτήσεις σας δεν πϱέπει να πεϱιέχουν καµία εντολή εισόδου (π.χ. input) ή εξόδου (π.χ. fprintf). Θεωϱήστε ότι τα δεδοµένα που ϑα δίνονται από τον χϱήστη ϑα είναι σωστά, χωϱίς να χϱειάϲεται να γίνει πεϱαιτέϱω έλεγχος. ΠΡΟΣΟΧΗ!!! Στα παϱακάτω ϑέµατα προγραµµατισµού µποϱείτε να χρησιµοποιήσετε µόνο κάποιες από τις εξής έτοιµες συναρτήσεις του MATLAB: size, length, floor, ceil, fix, rem, mod, rand, ones, zeros. ΠΡΟΓΡΑΜΜΑ 1: 1. Γϱάψτε συνάϱτηση MATLAB που να πϱοσοµοιώνει τη ϱίψη 2 Ϲαϱιών. Η συνάϱτησή σας πϱέπει να επιστϱέϕει διάνυσµα 2 στοιχείων µε τις τιµές των 2 Ϲαϱιών µετά τη ϱίψη. 2. Γϱάψτε συνάϱτηση MATLAB που να υπολογίζει µε προσοµοίωση Monte Carlo την πιθανότητα να µην έρθει µια συγκεκριµένη Ϲαϱιά ζ µετά από n ϱίψεις δύο Ϲαϱιών. Η συνάϱτησή σας να δέχεται ως είσοδο το πλήϑος των ϱίψεων n, ένα διάνυσµα 2 στοιχείων µε την επιθυµητή Ϲαϱιά ζ και το πλήϑος των δοκιµών που ϑα γίνουν, και ϑα πϱέπει να χρησιµοποιεί κατάλληλα τη συνάϱτηση του προηγούµενου υπο-εϱωτήµατος. function p = pascal(n, Z, ntrials) nwins = 0; for t = 1:ntrials for i = 1:n z = roll(); if (z(1)==z(1) && z(2)==z(2)) (z(1)==z(2) && z(2)==z(1)) break; if i == n, nwins = nwins + 1; p = nwins/ntrials; function z = roll() z(1) = ceil(rand*6); z(2) = ceil(rand*6); ΠΡΟΓΡΑΜΜΑ 2: Η συνάρτηση cos x για κάθε x γράφεται ως ανάπτυγµα της σειράς Taylor: cos x = 1 x2 2! + x4 4! x6 6! + x8 8!...
3 Να γράψετε συνάρτηση MATLAB που να υπολογίζει το cos x αθροίζοντας όρους της παραπάνω σειράς έως ότου επιτευχθεί η µέγιστη δυνατή ακρίβεια. Προσπαθήστε να γράψετε τη συνάρτησή σας µε τον πιο αποτελεσµατικό τρόπο, αποφεύγοντας περιττούς υπολογισµούς. function sum = TaylorCos(x) factorial = 1; coeff = 1; xpower = 1; sum = 0; n = 0; while sum = sum + term sum = sum + term; n = n + 1; coeff = -coeff; xpower = xpower*xˆ2; factorial = factorial*(2*n-1)*(2*n); ΠΡΟΓΡΑΜΜΑ 3: Γράψτε συνάρτηση MATLAB που να δέχεται έναν δισδιάστατο M N πίνακα ακεραίων και να υπολογίζει το γινόµενο των περιττών στοιχείων κάθε στήλης του, καθώς και το άθροισµα των αρτίων στοιχείων κάθε γραµµής του. function [colprododd, rowsumeven] = ColProdOddRowSumEven(A) [m, n] = size(a); colprododd = ones(n,1); rowsumeven = zeros(m,1); for j = 1:n for i = 1:m if rem(a(i,j),2) == 0 rowsumeven(i) = rowsumeven(i) + A(i,j); else colprododd(j) = colprododd(j)*a(i,j);
4 Σειριακός αριθµός : 101 Πληροφορική Ι Εξέταση Φεβρουαρίου 2019 Απαντήσεις Πολλαπλής Επιλογής Ε Ω : C B D A D ΦΥΛΛΑ ΙΟ ΘΕΜΑΤΩΝ 1/2 Τα ϑέµατα της εξέτασης δίνονται σε 2 ϕυλλάδια (ένα για κάϑε διδάσκοντα). Η διάϱκεια της εξέτασης είναι 2.5 ώϱες µε κλειστές σηµειώσεις. Σύνολο µονάδων και για τα 2 ϕυλλάδια: 12. Επιστϱέϕετε τα ϑέµατα µε τις απαντήσεις σας στα εϱωτήµατα πολλαπλής επιλογής σηµειωµένες στην πϱοκαϑοϱισµένη ϑέση στην πϱώτη σελίδα κάϑε ϕυλλαδίου. Οι εϱωτήσεις πολλαπλής επιλογής είναι ισοδύναµες ϐαϑµολογικά αλλά κάϑε λάϑος απάντηση µετϱάει αϱνητικά κατά τέτοιο τϱόπο ώστε αν ((παίξετε)) τυχαία την απάντησή σας, η µέση τιµή των πόντων που παίϱνετε είναι 0. Κενές απαντήσεις µετϱάνε 0. Υπάϱχει ακϱιϐώς µία σωστή απάντηση σε κάϑε εϱώτηση πολλαπλής επιλογής. ώστε τις απαντήσεις σας στα πϱογϱαµµατιστικά ϑέµατα του στον κενό χώϱο κάτω από την κάϑε εκϕώνηση. Μποϱείτε να χϱησιµοποιήσετε για Πϱόχειϱο την τελευταία σελίδα του τετϱαδίου, καϑώς και τον χώϱο δίπλα στις εϱωτήσεις πολλαπλής επιλογής. Μέϱος A. Πολλαπλές επιλογές (20%) Εϱώτηση 1: Αν ο a είναι δισδιάστατος πίνακας 5 5, πόσες τιµές ϑα εµϕανίσει ο παϱακάτω κώδικας? for i=1:5 for j=1:5 if i==j, a(i,j) = i+j; else, a(i,j) = i-j; for i=1:5 for j=1:5 a(i,j) = a(i,j) + j; if a(i,j) > a(1,1), disp(a(i,j)); A: 13 B: 9 C: 12 D: Τίποτα από αυτά E: 25 Εϱώτηση 2: Ποιόν αϱιϑµό εµϕανίϲει το παϱακάτω πϱόγϱαµµα? για τη συνάϱτηση sum = 0; i = 1; while i<=10 sum = sum + g(i); i = i + 1; fprintf( %g\n,sum); function s = g(n) s = 3*n; A: Τίποτα από αυτά B: 165 C: 300 D: 55 E: 0 Εϱώτηση 3: Ποια από τις παϱακάτω εντολές είναι εντολή εξόδου? A: for B: else C: input D: disp E: while Εϱώτηση 4: Ποιο ϑα είναι το πεϱιεχόµενο του πίνακα a µετά την εκτέλεση του παϱακάτω κώδικα: a = [0,1,2,3,4,5,6]; for i = 1:length(a)-1, a(i) = a(i+1) + a(i);
5 A: [1,3,5,7,9,11,6] B: Τίποτα από αυτά C: [1,3,5,7,9,11,13] D: [0,1,3,6,10,15,21] E: [0,1,2,3,4,5,6] Εϱώτηση 5: Ποια η τιµή της µεταϐλητής x µετά την ανάϑεση: x = fix(7/2) * (10/4); A: B: 7.5 C: D: 9.0 E: 8.5 Μέϱος B. Πϱογϱαµµατισµός (60%) ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΟΛΑ ΤΑ ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Σχεδιάστε µε πϱοσοχή τις συναϱτήσεις που ϑα σας Ϲητηϑούν. Σκεϕτείτε τι ακϱιϐώς ϑα πϱέπει να δέχονται οι συναϱτήσεις σας, τι ϑα επιστϱέϕουν και χϱησιµοποιήστε τις ελάχιστες δυνατές παϱαµέτϱους εισόδου που είναι απαϱαίτητες για να λειτουϱγήσουν σωστά. Οι συναϱτήσεις σας δεν πϱέπει να πεϱιέχουν καµία εντολή εισόδου (π.χ. input) ή εξόδου (π.χ. fprintf). Θεωϱήστε ότι τα δεδοµένα που ϑα δίνονται από τον χϱήστη ϑα είναι σωστά, χωϱίς να χϱειάϲεται να γίνει πεϱαιτέϱω έλεγχος. ΠΡΟΣΟΧΗ!!! Στα παϱακάτω ϑέµατα προγραµµατισµού µποϱείτε να χρησιµοποιήσετε µόνο κάποιες από τις εξής έτοιµες συναρτήσεις του MATLAB: size, length, floor, ceil, fix, rem, mod, rand, ones, zeros. ΠΡΟΓΡΑΜΜΑ 1: 1. Γϱάψτε συνάϱτηση MATLAB που να πϱοσοµοιώνει τη ϱίψη 2 Ϲαϱιών. Η συνάϱτησή σας πϱέπει να επιστϱέϕει διάνυσµα 2 στοιχείων µε τις τιµές των 2 Ϲαϱιών µετά τη ϱίψη. 2. Γϱάψτε συνάϱτηση MATLAB που να υπολογίϲει µε πϱοσοµοίωση Monte Carlo την πιϑανότητα να έϱϑει µια συγκεκϱιµένη Ϲαϱιά ζ σε n το πολύ ϱίψεις δύο Ϲαϱιών. Η συνάϱτησή σας να δέχεται ως είσοδο το πλήϑος των ϱίψεων n, ένα διάνυσµα 2 στοιχείων µε την επιϑυµητή Ϲαϱιά ζ και το πλήϑος των δοκιµών που ϑα γίνουν, και ϑα πϱέπει να χϱησιµοποιεί κατάλληλα τη συνάϱτηση του πϱοηγούµενου υπο-εϱωτήµατος. function p = pascal(n, Z, ntrials) nwins = 0; for t = 1:ntrials for i = 1:n z = roll(); if (z(1)==z(1) && z(2)==z(2)) (z(1)==z(2) && z(2)==z(1)) nwins = nwins + 1; break; p = nwins/ntrials; function z = roll() z(1) = ceil(rand*6); z(2) = ceil(rand*6); ΠΡΟΓΡΑΜΜΑ 2: Η συνάρτηση sin x για κάθε x γράφεται ως ανάπτυγµα της σειράς Taylor: sin x = x x3 3! + x5 5! x7 7! + x9 9!... Να γράψετε συνάρτηση MATLAB που να υπολογίζει το sin x αθροίζοντας όρους της παραπάνω σειράς έως ότου επιτευχθεί η µέγιστη δυνατή ακρίβεια. Προσπαθήστε να γράψετε τη συνάρτησή σας µε τον πιο αποτελεσµατικό τρόπο, αποφεύγοντας περιττούς υπολογισµούς. function sum = TaylorSin(x) factorial = 1; coeff = 1; xpower = x; sum = 0; n = 0;
6 while sum = sum + term sum = sum + term; n = n + 1; coeff = -coeff; xpower = xpower*xˆ2; factorial = factorial*(2*n)*(2*n+1); ΠΡΟΓΡΑΜΜΑ 3: Γράψτε συνάρτηση MATLAB που να δέχεται έναν δισδιάστατο M N πίνακα ακεραίων και να υπολογίζει το άθροισµα των αρτίων στοιχείων κάθε στήλης του, καθώς και το γινόµενο των περιττών στοιχείων κάθε γραµµής του. function [rowprododd, colsumeven] = RowProdOddColSumEven(A) [m, n] = size(a); rowprododd = ones(m,1); colsumeven = zeros(n,1); for j = 1:n for i = 1:m if rem(a(i,j),2) == 0 colsumeven(j) = colsumeven(j) + A(i,j); else rowprododd(i) = rowprododd(i)*a(i,j);
ημιουργία και διαχείριση πινάκων
ημιουργία και διαχείριση πινάκων Για να δημιουργήσουμε έναν πίνακα στο MATLAB μπορούμε να γράψουμε A = [ 2 3 ; 7 9 0 ; - 0 5; -2-3 9 -] βλέπουμε ότι αμέσως μας επιστρέφει τον πίνακα που ορίσαμε A = 2 3
Υπολογισμός αθροισμάτων
Υπολογισμός αθροισμάτων Τα αθροίσματα θα τα δημιουργούμε σαν συναρτήσεις και θα τα αποθηκεύουμε σε αρχείο (m-file) με την ίδια ονομασία με τη συνάρτηση. Για να δημιουργήσουμε ένα άθροισμα ξεκινάμε μηδενίζοντας
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 7 ο Εργαστήριο. Διανύσματα-Πίνακες 2 ο Μέρος
Εργαστήρια Αριθμητικής Ανάλυσης Ι 7 ο Εργαστήριο Διανύσματα-Πίνακες 2 ο Μέρος 2017 Εντολή size Σε προηγούμενο εργαστήριο είχαμε κάνει αναφορά στην συνάρτηση length, και την χρησιμότητα της όταν δουλεύουμε
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 4 ο Εργαστήριο. Διανύσματα-Πίνακες 1 ο Μέρος
Εργαστήρια Αριθμητικής Ανάλυσης Ι 4 ο Εργαστήριο Διανύσματα-Πίνακες 1 ο Μέρος 2017 Εισαγωγή Όπως έχουμε προαναφέρει σε προηγούμενα εργαστήρια. Ο βασικός τύπος δεδομένων στο Matlab είναι οι πίνακες. Ένα
Σύντομες εισαγωγικές σημειώσεις για την. Matlab
Σύντομες εισαγωγικές σημειώσεις για την Matlab Δήλωση Μεταβλητών Για να εισάγει κανείς δεδομένα στη Matlab υπάρχουν πολλοί τρόποι. Ο πιο απλός είναι στη γραμμή εντολών να εισάγουμε αυτό που θέλουμε και
Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y)
Λογικά Διανύσματα Τα λογικά διανύσματα του Matlab είναι πολύ χρήσιμα εργαλεία. Για παράδειγμα ας υποθέσουμε ότι θέλουμε να κάνουμε την γραφική παράσταση της tan(x) στο διάστημα από -3π/2 μέχρι 3π/2. >>x
1 Πίνακες 1.1 Συνοπτική θεωρία
1 Πίνακες Σε αυτήν την ενότητα θα εξοικειωθείτε με την έννοια των πινάκων στον προγραμματισμό (χωρίς τον ιδιαίτερο τρόπο χειρισμού των πινάκων στο MATLAB), και συγκεκριμένα θα δείτε: πώς ορίζεται ένας
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι)
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 6 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 2. Έστω x = [2 5 1 6] α. Προσθέστε το 16 σε κάθε στοιχείο β. Προσθέστε το 3 σε κάθε στοιχείο που βρίσκεται σε μονή θέση.
ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Παρασκευή 25 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Μαθηματικές εφαρμογές
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Μαθηματικές εφαρμογές Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μαθηµατικές εφαρµογές 34 Μέγιστος Κοινός ιαιρέτης (gcd) - I Εξαντλητικός αλγόριθµος 1 1. Εστω
Εισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: ΣΕΠΤΕΜΒΡΙΟΥ 6 Ι ΑΣΚΩΝ: Ε. ΚΟΦΙ ΗΣ Όλα τα ερωτήµατα είναι ισοδύναµα. Καλή επιτυχία! ΘΕΜΑ ο a) Βρείτε την αναπαράσταση
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 3
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 3 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ Πρόβλημα: Για δεδομένο αριθμό Α, μα βρεθεί η A. Γεωμετρική
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Πίνακες (Arrays) [1/2] Δομές δεδομένων για την αποθήκευση δεδομένων υπό
Σε πολλά (κυρίως µαθηµατικά) προβλήµατα (π.χ. ανάλυση πειραµάτων, στατιστική επεξεργασία, γραφικές παραστάσεις, επίλυση γραµµικών συστηµάτων, κ.α.
Πίνακες (arrays) 1 οµές δεδοµένων Σε πολλά (κυρίως µαθηµατικά) προβλήµατα (π.χ. ανάλυση πειραµάτων, στατιστική επεξεργασία, γραφικές παραστάσεις, επίλυση γραµµικών συστηµάτων, κ.α.): Ανάγκη για αποθήκευση/διαχείριση
ΟΝΟΜΑTΕΠΩΝΥΜΟ: Α.Μ. (13ψηφία): ΦΥΛΛΑΔΙΟ ΘΕΜΑΤΩΝ 2/2. Μέρος A. Πολλαπλές επιλογές (20%) Σειριακός αριθμός: 100 Πληροφορική I Εξέταση Φεβρουαρίου 2019
Σειριακός αριθμός: 100 Πληροφορική I Εξέταση Φεβρουαρίου 2019 ΟΝΟΜΑTΕΠΩΝΥΜΟ: Α.Μ. (13ψηφία: Απαντήσεις Πολλαπλής Επιλογής ΕΔΩ: 1 2 3 4 5 ΦΥΛΛΑΔΙΟ ΘΕΜΑΤΩΝ 2/2 Μέρος A. Πολλαπλές επιλογές (20% 1. Τι υπολογίζει
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Παρασκευή 25 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 (ΕΠΤΑ)
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 (ΕΠΤΑ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό καθεμιάς
8. Η δημιουργία του εκτελέσιμου προγράμματος γίνεται μόνο όταν το πηγαίο πρόγραμμα δεν περιέχει συντακτικά λάθη.
1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2015 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) ΣΥΝΟΛΟ
Άθροισμα τριών ποσοτήτων (1/2)
Πίνακες Άθροισμα τριών ποσοτήτων (1/2) Πρόβλημα Πώς γενικεύεται για πχ 300 ποσότητες; Άθροισμα τριών ποσοτήτων (2/2) Να το τροποποιήσω ώστε να χρησιμοποιήσω εντολή ; Άθροισμα τριών ποσοτήτων (2/2) Να το
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Δομές επανάληψης
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Δομές επανάληψης Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 3 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στη Python Νικόλαος Ζ. Ζάχαρης Αναπληρωτής
Να γράψετε τους αριθμούς 1, 2, 3 από τη Στήλη Α και δίπλα το γράμμα α, β, γ, δ, ε από τη Στήλη Β που δίνει τη σωστή αντιστοιχία.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : Προγραμματισμός Υπολογιστών / Γ ΕΠΑ.Λ. ΗΜΕΡΟΜΗΝΙΑ: 22-1-2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΓΙΑΝΝΗΣ ΜΙΧΑΛΕΑΚΟΣ- ΑΝΝΑ ΚΑΤΡΑΚΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ ΕΩΣ 02/04/2018 ΕΩΣ 14/04/2018 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Πίνακες (arrays)
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Πίνακες (arrays) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Πίνακες (arrays) 1 οµές δεδοµένων Σε πολλά (κυρίως µαθηµατικά) προβλήµατα (π.χ. ανάλυση πειραµάτων,
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α :
Α. unsigned int Β. double. Γ. int. unsigned char x = 1; x = x + x ; x = x * x ; x = x ^ x ; printf("%u\n", x); Β. unsigned char
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Β Περιόδου 2015 (8/9/2015) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
Στη C++ υπάρχουν τρεις τύποι βρόχων: (a) while, (b) do while, και (c) for. Ακολουθεί η σύνταξη για κάθε μια:
Εργαστήριο 6: 6.1 Δομές Επανάληψης Βρόγχοι (Loops) Όταν θέλουμε να επαναληφθεί μια ομάδα εντολών τη βάζουμε μέσα σε ένα βρόχο επανάληψης. Το αν θα (ξανα)επαναληφθεί η εκτέλεση της ομάδας εντολών καθορίζεται
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων Πληροφορικής 2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών 3. Ο αλγόριθμος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕΘΟΔΩΝ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 032 2 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕΘΟΔΩΝ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ Ενδιάμεση Εξέταση Ημερομηνία:08/03/10 Διάρκεια: 13:30 15:00 Διδάσκων: Παύλος Αντωνίου Ονοματεπώνυμο: Αριθμός Ταυτότητας: Η εξέταση
ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)
ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 05/01/2010 ΘΕΜΑ 1 ο Α) Δίνεται η παρακάτω ακολουθία εντολών αλγορίθμου: ΑΛΓΟΡΙΘΜΟΣ Θέμα1 ΔΙΑΒΑΣΕ Ν Σ 0 π 0 ΓΙΑ ψ ΑΠΟ -1 ΜΕΧΡΙ
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση ονομάζεται ένα τμήμα κώδικα (ή υποπρόγραμμα) το
I (JAVA) Ονοματεπώνυμο: Α. Μ.: Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην.
I (JAVA) Ονοματεπώνυμο: Α. Μ.: + ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην. + 1 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 2/3) 2 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 3/3)
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Συναρτήσεις 60 Ροή ελέγχου Είναι η σειρά µε την οποία εκτελούνται οι εντολές. Μέχρι τώρα, «σειριακή»,
Συστήματα Αναμονής (Queuing Systems)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΕΜΠ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α :
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Πίνακες [1/2] (Διανύσματα)
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Πίνακες [1/2] (Διανύσματα) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΟΚΤΩΒΡΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Δομή Επανάληψης Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Δομή Επανάληψης Επανάληψη με αρίθμηση DO = ,
Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C
Εισαγωγή στην C Μορφή Προγράµµατος σε γλώσσα C Τµήµα Α Με την εντολή include συµπεριλαµβάνω στο πρόγραµµα τα πρότυπα των συναρτήσεων εισόδου/εξόδου της C.Το αρχείο κεφαλίδας stdio.h είναι ένας κατάλογος
Προσομοίωση (simulation) στο Matlab
Προσομοίωση (simulation) στο Matlab Monte Carlo simulation: Μια γεννήτρια τυχαίων αριθμών μπορεί να χρησιμοποιηθεί για μια εκτίμηση του π ως εξής. Γράψτε ένα script που παράγει τυχαία σημεία σ'ένα τετράγωνο
1. Δεν μπορεί να γίνει κλήση μίας διαδικασίας μέσα από μία συνάρτηση.
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιο σας τον αριθμό για καθεμία από τις παρακάτω
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης
Περιεχόμενα Δομές δεδομένων 37. Δομές δεδομένων (θεωρητικά στοιχεία)...11 38. Εισαγωγή στους μονοδιάστατους πίνακες...16 39. Βασικές επεξεργασίες στους μονοδιάστατους πίνακες...25 40. Ασκήσεις στους μονοδιάστατους
α. Λογικό διάγραμμα είναι η μέθοδος που χρησιμοποιεί απλά σχήματα που υποστηρίζονται με απλές λέξεις για την αναπαράσταση συγκεκριμένων λειτουργιών.
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (Α ΟΜΑΔΑ) & ΜΑΘΗΜΑΤΑ ΕΙΔΙΚΟΤΗΤΑΣ ΣΑΒΒΑΤΟ 16/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις
TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ
Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2013 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω
ΚΕΦΑΛΑΙΑ 3 & 9 (ΠΙΝΑΚΕΣ)
ΚΕΦΑΛΑΙΑ 3 & 9 (ΠΙΝΑΚΕΣ) ίνακες - Ερωτήσεις Σ/Λ ίνακες Ερωτήσεις Σ/Λ 1. Το ακριβές μέγεθος ενός πίνακα καθορίζεται κατά τη διάρκεια του προγραμματισμού και δεν μπορεί να τροποποιηθεί κατά τη διάρκεια εκτέλεσης
int array[10]; double arr[5]; char pin[20]; Προγραµµατισµός Ι
Εισαγωγή Στον Προγραµµατισµό «C» Πίνακες Πανεπιστήµιο Πελοποννήσου Τµήµα Πληροφορικής & Τηλεπικοινωνιών Νικόλαος Δ. Τσελίκας Νικόλαος Προγραµµατισµός Δ. Τσελίκας Ι Πίνακες στη C Ένας πίνακας στη C είναι
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέµα 1 ο Α. Να απαντήσετε τις παρακάτω ερωτήσεις τύπου Σωστό Λάθος (Σ Λ) 1. Σκοπός της συγχώνευσης 2 ή περισσοτέρων ταξινοµηµένων πινάκων είναι η δηµιουργία
ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ
ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΠΙΝΑΚΩΝ ΣΤΟ MATHLAB Αν θέλουμε να εισάγουμε έναν πίνακα στο mathlab και να προβληθεί στην οθόνη βάζουμε τις τιμές του σε άγκιστρα χωρίζοντάς τις με κόμματα ή κενό
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΘΕΜΑ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 28 Απριλίου 2013 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Α1.
ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. β. Οι πληροφορίες είναι δεδομένα τα οποία δεν έχουν υποστεί επεξεργασία.
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ Α ΚΥΡΙΑΚΗ 16/04/2014- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (9) ΕΚΦΩΝΗΣΕΙΣ Α1. Να χαρακτηρίσετε
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα #4: Πίνακες στο MATLAB Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Πίνακες στο MATLAB MATLAB Fundamentals Α. Καλαμπούνιας Επισκόπιση: Scalars και
Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες).
Matlab Μάθημα Νέο υλικό www.cs.uoi.gr/~develeg Matlab.pdf - Παρουσίαση μαθήματος. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (3 σελίδες). Επαναληπτικές δομές Όταν εκτελείται μια πράξη σε ένα διάνυσμα,
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 23/04/2012. Α. Να απαντήσετε με Σ ή Λ στις παρακάτω προτάσεις:
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 23/04/2012 ΘΕΜΑ Α Α. Να απαντήσετε με Σ ή Λ στις παρακάτω προτάσεις: 1. Κάθε βρόγχος που υλοποιείται με την εντολή Για μπορεί να
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 7 η Πίνακες Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή Σωτήρης Χριστοδούλου
Επανάληψη για τις Τελικές εξετάσεις. (Διάλεξη 24) ΕΠΛ 032: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕΘΟΔΩΝ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ
Επανάληψη για τις Τελικές εξετάσεις (Διάλεξη 24) Εισαγωγή Το μάθημα EPL032 έχει ως βασικό στόχο την επίλυση προβλημάτων πληροφορικής με την χρήση της γλώσσας προγραμματισμού C. Επομένως πρέπει: Nα κατανοήσετε
Ινστιτούτο Επαγγελµατική Κατάρτιση Κορυδαλλού "ΤΕΧΝΙΚΟΣ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ" (Ερωτήσεις Πιστοποίησης στην γλώσσα προγραµµατισµού C)
Ινστιτούτο Επαγγελµατική Κατάρτιση Κορυδαλλού "ΤΕΧΝΙΚΟΣ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ" (Ερωτήσεις Πιστοποίησης στην γλώσσα προγραµµατισµού C) ΚΑΤΑΛΟΓΟΣ ΕΡΩΤΗΣΕΩΝ ΕΡΩΤΗΣΕΙΣ ΕΙ ΙΚΩΝ ΓΝΩΣΕΩΝ (γλώσσα προγραµµατισµού
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Να το ξαναγράψετε χρησιμοποιώντας αντί για την εντολή Για Τέλος_επανάληψης: α. την εντολή Όσο Τέλος_επανάληψης
ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΠΑΡΑΡΤΗΜΑ ΔΙΑΡΚΕΙΑ 3 ΩΡΕΣ ΘΕΜΑ Α Α1. Να γράψετε στο γραπτό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις
γραπτή εξέταση στo μάθημα ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ' ΛΥΚΕΙΟΥ
γραπτή εξέταση στo μάθημα ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ' ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α A Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς
ΘΕΜΑ Α. 1. Η δυαδική αναζήτηση χρησιμοποιείται μόνο σε ταξινομημένες συλλογές δεδομένων.
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΑ ΕΙΔΙΚΟΤΗΤΑΣ ΤΕΤΑΡΤΗ 19/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) Α1. Να χαρακτηρίσετε τις προτάσεις που
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-6 και
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ
ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Ηµεροµηνία: Σάββατο 8 Απριλίου 2017 ιάρκεια Εξέτασης: 3 ώρες
I (JAVA) Ονοματεπώνυμο: Α. Μ.: Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην.
I (JAVA) Ονοματεπώνυμο: Α. Μ.: + ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην. + 1 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 2/3) 2 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 3/3)
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. ii) Πόσες φορές θα εκτελεστεί η εντολή ΔΙΑΒΑΣΕ Α[μ,λ] στον αλγόριθμο της προηγούμενης ερώτησης; α) 35 β) 12 γ) 20
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό
ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ ΘΕΩΡΙΑ
ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ ΘΕΩΡΙΑ Ερωτήσεις Σωστό / Λάθος 1. Η έννοια του αλγορίθμου συνδέεται αποκλειστικά και μόνο με προβλήματα της Πληροφορικής (ΕΞΕΤΑΣΕΙΣ 2003, 2007) 2. Ο αλγόριθμος μπορεί
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Μέρος 5ο ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 1 Η ΕΝΤΟΛΗ for Με την εντολή for δημιουργούμε βρόχους επανάληψης σε
Υπολογιστική Επιστήμη & Τεχνολογία
Υπολογιστική Επιστήμη & Τεχνολογία Εξέταση Αυγούστου 2015 Διάρκεια 2.5 ώρες 1. Ιεραρχίες μνήμης (1μ) Γράψτε αλγόριθμο σε MATLAB που να υπολογίζει τα αθροίσματα των στηλών ενός τετραγωνικού πίνακα N N γνωρίζοντας
E(X(t)) = 1 k + k sin(2π) + k cos(2π) = 1 k + k 0 + k 1 = 1
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών ΤΗΛ 2: ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΤΥΧΑΙΑ ΣΗΜΑΤΑ 4ο Εξάμηνο 2009-200 4η ΕΡΓΑΣΙΑ ΑΣΚΗΣΗ Εστω τυχαία διαδικασία X(t) =
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ: Γ2-Γ3
ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ: Γ2-Γ3 ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD ΕΙΣΑΓΩΓΗ Οι πίνακες είναι συλλογές δεδομένων που μοιράζονται τα ίδια χαρακτηριστικά.
Ανάπτυξη εφαρμογών/ Βασικές γνώσεις/ πρώτο θέμα ΕΡΩΤΗΣΕΙΣ ΣΥΝΤΟΜΗΣ ΑΠΑΝΤΗΣΗΣ
ΕΡΩΤΗΣΕΙΣ ΣΥΝΤΟΜΗΣ ΑΠΑΝΤΗΣΗΣ 1. Ερωτήσεις -θέματα στη σελίδες 21, 49, 160 του σχολικού βιβλίου Μαθητή 2. Τεστ αυτοαξιολόγησης σελίδες 16, 27, 68 του τετραδίου του Μαθητή 3. Ν' αναφέρετε ονομαστικά τους
Α2. Να γράψετε στο τετράδιο απαντήσεών σας το κατάλληλο τμήμα κώδικα, κάνοντας τις απαραίτητες αλλαγές σύμφωνα με την εκάστοτε εκφώνηση:
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) ΣΥΝΟΛΟ
Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1
Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Για συνάρτηση μιας
Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ C Προγραμματιστικές Ασκήσεις, Φυλλάδιο Εκφώνηση: 9/3/0 Παράδοση: 5/4/0,.59 Άσκηση 0 η : Το πρόβλημα της βελόνας του Buffon Θέμα της εργασίας
ΑΣΚΗΣΕΙΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΤΕΡΖΑΚΗΣ ΓΙΑΝΝΗΣ ΚΑΘΗΓΗΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΕ 19 1 Ο ΛΥΚΕΙΟ ΑΛΙΜΟΥ (ΘΟΥΚΥΔΙΔΕΙΟ) ΑΣΚΗΣΕΙΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 1 Δίνεται το παρακάτω πρόγραμμα που καλεί
Επαναληπτική δοκιμασία στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Απρίλης 2015
ΘΕΜΑ Α Επαναληπτική δοκιμασία στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Απρίλης 2015 Α1.Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα να σημειώσετε
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΥ
ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α : Α1. Να
καθώς και το παρακάτω τμήμα αλγορίθμου γραμμένο σε «ΓΛΩΣΣΑ»:
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 25/04/2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 1
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 1 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Περιεχόμενο μαθήματος: Αλγοριθμική επίλυση προβλημάτων Προγραμματισμός
ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013
ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΚΠΑΙΔΕΥΤΙΚΉ ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Να γράψετε
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. ii) Πόσες φορές θα εκτελεστεί η εντολή ΔΙΑΒΑΣΕ Α[μ,λ] στον αλγόριθμο της προηγούμενης ερώτησης; α) 35 β) 12 γ) 20
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό
ΔΙΑΦΟΡΑ ΘΕΜΑΤΑ. Ως «γειτονικά» ορίζονται τα κελιά που συγγενεύουν οριζόντια, κάθετα και διαγώνια. Για παράδειγμα γειτονικά του Α[3,3] είναι τα:
ΔΙΑΦΟΡΑ ΘΕΜΑΤΑ ΑΣΚ 1 Το παιχνίδι ναρκαλιευτής, βασίζεται σε ένα ταμπλω (πίνακα), τα περιεχόμενα του οποίου αποτελούνται από νάρκες, και αριθμούς. Κάθε αριθμός συμβολίζει το πλήθος των ναρκών που βρίσκονται
ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ
ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΣΕ ΟΛΕΣ ΤΙΣ ΕΡΩΤΗΣΕΙΣ. Το εξεταστικό δοκίμιο αποτελείται από δύο Ενότητες Α και Β. ΕΝΟΤΗΤΑ Α - Αποτελείται από δέκα (10) ερωτήσεις. Κάθε ορθή απάντηση
ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΟΔΟΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΟΚΤΩΒΡΙΟΥ 2015
ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΟΔΟΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΟΚΤΩΒΡΙΟΥ 2015 Θέμα 1 (Α) Να απαντήσετε στις παρακάτω προτάσεις χαρακτηρίζοντάς τες με το γράμμα Σ αν
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Τελικό επαναληπτικό διαγώνισμα Επιμέλεια: Δρεμούσης Παντελής
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Τελικό επαναληπτικό διαγώνισμα Επιμέλεια: Δρεμούσης Παντελής ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές ή λανθασμένες. 1. Μια διαδικασία
ΠΡΟΓΡΜΜΑΤΑ ΣΕ C. Γράψτε σε γλώσσα προγραμματισμού C τη συνάρτηση:
ΠΡΟΓΡΜΜΑΤΑ ΣΕ C Γράψτε σε γλώσσα προγραμματισμού C τη συνάρτηση: int b_to_d(int dyad[16]) που δέχεται ως είσοδο έναν θετικό ακέραιο δυαδικό αριθμό με τη μορφή πίνακα δυαδικών ψηφίων και επιστρέφει τον
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται