ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ
|
|
- Μένθη Δραγούμης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ
2 ΕΙΣΑΓΩΓΗ ΠΙΝΑΚΩΝ ΣΤΟ MATHLAB Αν θέλουμε να εισάγουμε έναν πίνακα στο mathlab και να προβληθεί στην οθόνη βάζουμε τις τιμές του σε άγκιστρα χωρίζοντάς τις με κόμματα ή κενό και στα σημεία που θέλουμε να αλλάξουμε γραμμή βάζουμε ελληνικό ερωτηματικό (;). Π.χ. για τον πίνακα a = a=[5,8;4,9] ή a=[5 8;4 9]
3 ΣΥΝΕΧΕΙΑ... Αν πάλι θέλουμε να εισάγουμε πίνακα, αλλά να μην προβληθεί στην οθόνη πληκτρολογούμε στο τέλος του πίνακα ;. π.χ. για τον πίνακα b=[9,3;4,9]; Αν δεν εκχωρήσουμε μια τιμή σε μια μεταβλητή, το mathlab την αποθηκεύει αυτόματα σε μεταβλητή με όνομα ans. Για βοήθεια στο mathlab: help (εντολή) π.χ. help clear
4 ΔΙΑΦΟΡΕΣ ΕΝΤΟΛΕΣ ΣΤΟ MATHLAB who: Ταξινομεί τις τρέχουσες μεταβλητές κατά αλφαβητική σειρά whos: Ταξινομεί τις τρέχουσες μεταβλητές κατά αλφαβητική σειρά και δίνει τα μεγέθη και τους τύπους τους, καθώς επίσης αναφέρει το συνολικό μεγεθός τους. Αν θέλουμε να ταξινομήσουμε συγκεκριμένες μεταβλητές πληκτρολογούμε who ( variable_1, variable_2,., variable_n ) και whos ( variable_1, variable_2,., variable_n )
5 ΣΥΝΕΧΕΙΑ... clc: Kαθαρίζει την οθόνη από όλες τις εισόδους και εξόδους που είχαμε εισάγει προηγουμένως, χωρίς να χάνονται τα δεδομένα από την μνήμη. clear: Kαθαρίζει την μνήμη του υπολογιστή από τα δεδομένα που έχουμε εισάγει στο mathlab. a(κ,:) :Εμφάνιση όλων των στοιχείων της κ γραμμής του πίνακα a. a(:,n) :Εμφάνιση όλων των στοιχείων της n στήλης του πίνακα a. a=-2:0.2:10 :Eμφάνιση των τιμών από -2 έως 10 με βήμα 0,2 του πίνακα a, στην πρώτη γραμμή.
6 ΣΥΝΕΧΕΙΑ... c=(-2:0.2:10). :Εμφάνιση των τιμών από -2 έως 10 με βήμα 0,2 του πίνακα c, στην πρώτη στήλη. c(3) :Εμφάνιση του τρίτου στοιχείου του πίνακα c. a==b :Δημιουργία μιας αυτόματης μεταβλητής ans και μηδενισμός της, ανάλογα με τις στήλες και τις γραμμές των πινάκων a και b. a(1,1:2:5) :Εμφάνιση των στοιχείων της πρώτης γραμμής με αριθμό στηλών από 1 έως 5 με βήμα 2. a([2 4],:) :Εμφανίζει όλα τα στοιχεία της 2 και 4 γραμμής. a(:,5:-1:1) :Απ την κάθε γραμμή εμφανίζει τα στοιχεία του πίνακα a ξεκινώντας απ την 5 στήλη μέχρι την 1 με βήμα -1
7 Aλλαγή στοιχείου ενός πίνακα π.χ a(2,1)=-5. Aλλαγή της τιμής της δεύτερης γραμμής και πρώτης στήλης του a, σε -5. a[2,5;3,8;9,3]; a(2,1)=-5; a
8 ΔΙΑΦΟΡΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟ MATHLAB 1)Ρίζα και ύψωση σε δύναμη Ρίζα των στοιχείων :sqrt( ) Ύψωση σε δύναμη :^ Π.χ. a=[sqrt(3),2;1,2^5]
9 ΣΥΝΕΧΕΙΑ... 2)Λογάριθμοι στοιχείων πίνακα Λογάριθμος :log10( ) Π.χ. log10(a) Φυσικός λογάριθμος :log( ) Π.χ. log(a) Λογάριθμος με βάση το e: exp( ) Π.χ. exp(a)
10 ΣΥΝΕΧΕΙΑ... rand(4) :Πίνακας 4Χ4, ο οποίος περιέχει τυχαίους αριθμούς 3)Άλλες συναρτήσεις ones(2,3) :Πίνακας 2Χ3, του οποίου όλα τα στοιχεία είναι 1 eye(3,4) :Πίνακας 3Χ4, του οποίου τα στοιχεία της πρώτης διαγωνίου είναι 1 norm(a) :Μέτρο διανύσματος a
11 ΠΡΑΞΕΙΣ ΠΙΝΑΚΩΝ 1)Πρόσθεση / Αφαίρεση πινάκων a+b, a-b a= b= Π.χ Tότε, a+b=
12 2)Πολλαπλασιασμός /Διαίρεση πινάκων Πολλαπλασιασμός /Διαίρεση δύο πινάκων a και b με ίδιες διαστάσεις a*b και a/b Π.χ. a= Τότε: a*b= b=
13 ΣΥΝΕΧΕΙΑ... Αν πάλι θέλουμε να πολ/σουμε τα στοιχεία των πινάκων ξεχωριστά μεταξύ τους τότε: a.*b=
14 3)Ύψωση σε δύναμη Ύψωση ενός πίνακα a σε μια δύναμη n, a^n Π.χ. a= Τότε, a^2=
15 ΟΡΙΖΟΥΣΑ To mathlab βρίσκει αυτόματα την ορίζουσα ενός πίνακα a, απλά με την εντολή det(a) Π.χ. Για τον προηγούμενο πίνακα det(a)=0
16 AΝΤΙΣΤΡΟΦΟΣ ΠΙΝΑΚΑΣ Έτοιμη ενσωματωμένη (built-in) συνάρτηση του mathlab που αποδίδει τον αντίστροφο ενός αντιστρέψιμου πίνακα a, inv(a) /3 1/3 1 Π.χ. a= inv(a)= 1/3-1/ , 2/3 1/3-1
17 ΥΠΟΛΟΓΙΣΜΟΣ ΑΘΡΟΙΣΜΑΤΩΝ ΜΕ ΛΟΥΠΑ FOR Έστω ότι έχουμε το άθροισμα : Σ 10 1/κ(κ+1) κ=1 s=0 for k=1:10 s=s+1/(k*(k+1)); end s α τρόπος
18 ΥΠΟΛΟΓΙΣΜΟΣ ΑΘΡΟΙΣΜΑΤΩΝ ΜΕ ΛΟΥΠΑ WHILE Για το ίδιο άθροισμα: β τρόπος n=10; s=0; k=1; while k<=n s=s+1/(k*(k+1)); end s
19 MATLAB Β ΜΕΡΟΣ
20 γραμμικός συνδυασμός Οι συντελεστές και οι πίνακες αποθηκεύονται σε κελιά (cells). Στο Matlab ένα κελί εισάγεται χρησιμοποιώντας αγκύλες { }. >> a={1,-4, 6 0} >>whos κώδικας : function L=lincombin(r,A) %linear combination of matrices of the same size %input -r={r1,r2,,rk} the coefficients %of linear combination %-A={A1,A2,,Ak} the matrices of lin. comb. %-L the matrix corresponding to the lin. comb. k=length(r); [m,n]=size(a{1}); l=zeros(m,n); for i=1:k L=L+r{i}*A{i}; end >> r={-2,3,1,4}; >> A1=[1 2;-2 3]; A2[0-2;3 4]; A3[9 4;-3 1]; A4[-2 1;8 3]; >> A={A1,A2,A3,A4}; >> L=lincombin(r,A)
21 συναρτήσεις length Μήκος διανύσματος Σύνταξη n= length(x) Examples x = ones(1,8); n = length(x) n = 10 norm Μέτρα διανυσμάτων και πινάκων Σύνταξη n = norm(a) n = norm(a,p) ones Δημιουργεί διάταξη η οποία αποτελείται από μονάδες Σύνταξη Y = ones(n) Y = ones(m,n) Y = ones([m n]) Y = ones(m,n,p,...) Y = ones([m n p...]) Y = ones(size(a)) ones(m, n,...,classname) ones([m,n,...],classname) Example x = ones(2,3,'int8');
22 συναρτήσεις size Διάσταση διανύσματος Σύνταξη d= size(x) [m,n] = size(x) m = size(x,dim) [d1,d2,d3,...,dn] = size(x) Examples Example 1. 1 Το μέγεθος της δεύτερης διάστασης rand(2,3,4) είναι 3. m = size(rand(2,3,4),2) m = 3 Εδώ είναι η έξοδος του μεγέθους ως μονοδιάστατο διάνυσμα d = size(rand(2,3,4)) d = Εδώ το μέγεθος κάθε διάστασης τοποθετείται σε μια ξεχωριστή μεταβλητή. [m,n,p] = size(rand(2,3,4)) m = 2 n = 3 p = 4 Example 2 Example 2. Αν X = ones(3,4,5), τότε [d1,d2,d3] = size(x) d1 = d2 = d3 = Αλλά όταν ο αριθμός των τιμών εξόδου είναι μικρότερος από ndims(x): [d1,d2] = size(x) d1 = d2 = 3 20 Οι επιπλέον διαστάσεις καταστρέφονται μέσα σε ένα μονοδιάστατο προϊόν. Αν n> ndims(x), όλες οι επιπλέον μεταβλητές παρουσιάζονται ως ξεχωριστές διαστάσεις: [d1,d2,d3,d4,d5,d6] = size(x) d1 = d2 = d3 = d4 = d5 = d6 = 1 1 1
23 To πλήθος των διανυσμάτων μιας οποιασδήποτε βάσης του διανυσματικού χώρου V λέγεται διάσταση του V,συμβολικά dim(v). rref(a) ανοιγμένη κλιμακωτή μορφή του Α, οπότε συμπεραίνουμε αν τα διανύσματα είναι γραμμικώς εξαρτημένα ή ανεξάρτητα. ΠΑΡΑΔΕΙΓΜΑ >>Α=[1 3 1; ; ;4 1-7]; >>Ar Ar= rref(a) No = null(a) μας αποδίδει πίνακα του οποίου οι στήλες αποτελούν μια ορθοκανονική βάση του null(a), πρόκειται για μια βάση της οποίας τα διανύσματα είναι ορθογώνια μεταξύ τους και έχουν μέτρο 1. ΠΑΡΑΔΕΙΓΜΑ >>No =null(ones(4)) >>for i=1:3 N(i) =norm(no(:,1)); end >>n >>No(:,1) *No(:,2)
24 Ν = null(a, r ) ) μας επιστρέφει τον πίνακα Ν του οποίου οι στήλες είναι τα διανύσματα μιας βάσης του null(a) και η εντολή x1 =A\b μας απόδίδει μια λύση του Αx = b. Αυτές οι εντολές αρκούν για να εκφράσουμε τη γενική λύση Νλ + Αx του συστήματος. Ωστόσο το MATLAB μας παρέχει μια λύση A\bακόμα και στη περίπτωση που το σύστημα είναι αδύνατο (υπολογίζοντας τη λύση των ελαχίστων τετραγώνων). ΠΑΡΑΔΕΙΓΜΑ >>Α=[ ; ; ; ]; >>b=[ ] ; N = null(a, r ) >> x1 =A\b
25 ορθοκανονικότητα ΠΑΡΑΔΕΙΓΜΑΤΑ >>v1=[ ] ; v2=[ ] ; v3=[ ] ; >>v4=[ ] ; >>V=[v1 v2 v3 v4] >>for i=1:4 for j=1:4 A(i,j)=V(:,i) *V(:,j); end end >>A >>u1=v1/norm(v1); u2=v2/norm(v2); u3=v3/norm(v3); u4=v4/norm(v4); >>U=[u1 u2 u3 u4] >>for i=1:4 for j=1:4 B(i,j)=U(:,i) *U(:,j); end end >>B
26 συνέχεια Το Matlab διαθέτει ενσωματωμένη συνάρτηση που μετατρέπει έναν τυχαίο πίνακα σε πίνακα με ορθοκανονικές στήλες. Η εντολή αυτή είναι Α = orth(a) παράδειγμα >> A=rand(4,3); >> A=orth(A); >> A *A >>A*A >> A=orth(rand(4,3)) >> P=A*A >> b=ones(4,1) >>w=p* b Στο MATLAB εξ ορισμού οι αριθμοί εμφανίζονται σε Format Short στρογγυλοποιημένοι σε 4 ψηφία μετά το δεκαδικό μέρος. Για να τους στρογγυλοποιήσουμε σε 15 ψηφία πληκτρολογούμε: >>format long >>όνομαπίνακα
ημιουργία και διαχείριση πινάκων
ημιουργία και διαχείριση πινάκων Για να δημιουργήσουμε έναν πίνακα στο MATLAB μπορούμε να γράψουμε A = [ 2 3 ; 7 9 0 ; - 0 5; -2-3 9 -] βλέπουμε ότι αμέσως μας επιστρέφει τον πίνακα που ορίσαμε A = 2 3
Διαβάστε περισσότεραΤυπικές χρήσεις της Matlab
Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις
Διαβάστε περισσότεραΕισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
Διαβάστε περισσότεραΣύντομες εισαγωγικές σημειώσεις για την. Matlab
Σύντομες εισαγωγικές σημειώσεις για την Matlab Δήλωση Μεταβλητών Για να εισάγει κανείς δεδομένα στη Matlab υπάρχουν πολλοί τρόποι. Ο πιο απλός είναι στη γραμμή εντολών να εισάγουμε αυτό που θέλουμε και
Διαβάστε περισσότεραΕργαστήρια Αριθμητικής Ανάλυσης Ι. 4 ο Εργαστήριο. Διανύσματα-Πίνακες 1 ο Μέρος
Εργαστήρια Αριθμητικής Ανάλυσης Ι 4 ο Εργαστήριο Διανύσματα-Πίνακες 1 ο Μέρος 2017 Εισαγωγή Όπως έχουμε προαναφέρει σε προηγούμενα εργαστήρια. Ο βασικός τύπος δεδομένων στο Matlab είναι οι πίνακες. Ένα
Διαβάστε περισσότεραΟ ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB
Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB (το παρόν αποτελεί τροποποιηµένη έκδοση του οµόνυµου εγχειριδίου του κ. Ν. Μαργαρη) 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ 1.1.1 ΠΡΟΣΘΕΣΗ» 3+5 8 % Το σύµβολο
Διαβάστε περισσότεραΠίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων
Πίνακες Ένας πίνακας είναι μια δισδιάστατη λίστα από αριθμούς. Για να δημιουργήσουμε ένα πίνακα στο Matlab εισάγουμε κάθε γραμμή σαν μια ακολουθία αριθμών που ξεχωρίζουν με κόμμα (,) ή κενό (space) και
Διαβάστε περισσότεραΕισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα #4: Πίνακες στο MATLAB Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Πίνακες στο MATLAB MATLAB Fundamentals Α. Καλαμπούνιας Επισκόπιση: Scalars και
Διαβάστε περισσότεραΧρονικές σειρές 4 o μάθημα: ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΝΥΣΜΑΤΑ
Χρονικές σειρές 4 o μάθημα: ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΝΥΣΜΑΤΑ Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Διαβάστε περισσότεραΕργαστήρια Αριθμητικής Ανάλυσης Ι. 7 ο Εργαστήριο. Διανύσματα-Πίνακες 2 ο Μέρος
Εργαστήρια Αριθμητικής Ανάλυσης Ι 7 ο Εργαστήριο Διανύσματα-Πίνακες 2 ο Μέρος 2017 Εντολή size Σε προηγούμενο εργαστήριο είχαμε κάνει αναφορά στην συνάρτηση length, και την χρησιμότητα της όταν δουλεύουμε
Διαβάστε περισσότεραΕισαγωγή στο MATLAB. Κολοβού Αθανασία, ΕΔΙΠ,
Εισαγωγή στο MATLAB Κολοβού Αθανασία, ΕΔΙΠ, akolovou@di.uoa.gr Εγκατάσταση του Matlab Διανέμεται ελεύθερα στα μέλη του ΕΚΠΑ το λογισμικό MATLAB με 75 ταυτόχρονες (concurrent) άδειες χρήσης. Μπορείτε να
Διαβάστε περισσότεραΠρογραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 4ο Aντώνης Σπυρόπουλος Διατεταγμένα σύνολα
Διαβάστε περισσότεραΠρογραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 5ο Aντώνης Σπυρόπουλος Πράξεις μεταξύ των
Διαβάστε περισσότεραΠρογραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 2ο Μεταβλητές Μεταβλητή ονομάζεται ένα μέγεθος
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1
Διαβάστε περισσότεραΣυστήματα Αναμονής (Queuing Systems)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΕΜΠ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής
Διαβάστε περισσότερα1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΈξοδος Matlab: Έξοδος Matlab:
Πίνακας (matrix) είναι μια ορθογώνια διάταξη αριθμών, που καθορίζεται από τον αριθμό των στηλών και σειρών, που ονομάζονται διαστάσεις του πίνακα. Έτσι, ένας πίνακας διαστάσεων ΜxΝ αποτελείται από M σειρές
Διαβάστε περισσότερα1 η Εργαστηριακή Άσκηση MATLAB Εισαγωγή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΠΕΙΡΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Εργαστήριο Επεξεργασία Εικόνας & Βίντεο 1 η Εργαστηριακή Άσκηση MATLAB Εισαγωγή Νικόλαος Γιαννακέας Άρτα 2018 1 Εισαγωγή Το Matlab
Διαβάστε περισσότεραΣημαντικές δυνατότητες των σύγχρονων υπολογιστικών μηχανών: Αξιόπιστη καταγραφή πολύ μεγάλου όγκου δεδομένων
Σημαντικές δυνατότητες των σύγχρονων υπολογιστικών μηχανών: Γρήγορες προσθέσεις αριθμών Γρήγορες συγκρίσεις αριθμών Αξιόπιστη καταγραφή πολύ μεγάλου όγκου δεδομένων Σχετικά γρήγορη μετάδοση και πρόσληψη
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB. Κολοβού Αθανασία Ε.Τ.Ε.Π.
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB Κολοβού Αθανασία Ε.Τ.Ε.Π. http://users.uoa.gr/~akolovou/ MATRIX LABORATORY Μαθηματικό λογισμικό πακέτο Everything is a matrix Εύκολο να ορίσουμε τους πίνακες >> A = [6 3; 5 0] A = 6
Διαβάστε περισσότεραΕισαγωγή στον επιστημονικό προγραμματισμό 2 o Μάθημα
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στον επιστημονικό προγραμματισμό 2 o Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Μελάς Ιωάννης Υποψήφιος
Διαβάστε περισσότεραΠρογραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 2: Δημιουργία και Επεξεργασία διανυσμάτων και πινάκων μέσω του Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες
Διαβάστε περισσότερα4 η ΕΝΟΤΗΤΑ Μητρώα και συνθήκες στο MATLAB
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 4 η ΕΝΟΤΗΤΑ Μητρώα και συνθήκες στο MATLAB Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος
9/6/5 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 5 Δίνεται ο πίνακας A 5. Αν διαγωνοποιείται να τον διαγωνοποιήσετε και στη συνέχεια να k υπολογίσετε το A όπου k θετικός
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες
Διαβάστε περισσότεραΕισαγωγή στο Matlab Μέρος Α. Κυριακίδης Ιωάννης 2011
Εισαγωγή στο Matlab Μέρος Α Κυριακίδης Ιωάννης 2011 Εισαγωγή στο Matlab Το όνομα του προέρχεται από τα αρχικά γράμματα των λέξεων MATtrix LABoratory (εργαστήριο πινάκων). To MATLAB (MathWorks Inc.) παρέχει
Διαβάστε περισσότεραΈναρξη Τερματισμός του MatLab
Σύντομος Οδηγός MATLAB Β. Χ. Μούσας 1/6 Έναρξη Τερματισμός του MatLab Η έναρξη της λειτουργίας του MatLab εξαρτάται από το λειτουργικό σύστημα. Στα συστήματα UNIX πληκτρολογούμε στη προτροπή του συστήματος
Διαβάστε περισσότεραΠληροφορική. Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πληροφορική Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες. Κωνσταντίνος Καρατζάς
Διαβάστε περισσότεραΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017
ΜΑΣ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο 07-08, Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: ώρες 8 Νοεμβρίου, 07 Δίνονται 4 προβλήματα που αντιστοιχούν σε 0 μονάδες με άριστα το 00! ΟΝΟΜΑ: Αρ.
Διαβάστε περισσότεραΔιανύσµατα στο επίπεδο
Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή
Διαβάστε περισσότεραMATLAB. Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών.
MATLAB Tι είναι το λογισµικό MATLAB? Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών. Σύστηµα αλληλεπίδρασης µε τοχρήστηγια πραγµατοποίηση επιστηµονικών υπολογισµών (πράξεις µε πίνακες επίλυση
Διαβάστε περισσότεραA A A B A ΦΥΛΛΑ ΙΟ ΘΕΜΑΤΩΝ 1/2. Μέϱος A. Πολλαπλές επιλογές (20%) Σειριακός αριθµός : 100 Πληροφορική Ι Εξέταση Φεβρουαρίου 2019
Σειριακός αριθµός : 100 Πληροφορική Ι Εξέταση Φεβρουαρίου 2019 Απαντήσεις Πολλαπλής Επιλογής Ε Ω : 1 2 3 4 5 A A A B A ΦΥΛΛΑ ΙΟ ΘΕΜΑΤΩΝ 1/2 Τα ϑέµατα της εξέτασης δίνονται σε 2 ϕυλλάδια (ένα για κάϑε διδάσκοντα).
Διαβάστε περισσότεραΕισαγωγή στη Matlab Βασικές Συναρτήσεις
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας Εισαγωγή στη Matlab Βασικές Συναρτήσεις 2016-2017 Εισαγωγή στη Matlab Matlab
Διαβάστε περισσότεραΣυνοπτικός οδηγός MATLAB & OCTAVE. (έως και συναρτήσεις) Ιωάννης Καλατζής 2018d
Συνοπτικός οδηγός MATLAB & OCTAVE (έως και συναρτήσεις) Ιωάννης Καλατζής 2018d ΕΓΚΑΤΑΣΤΑΣΗ ΓΕΝΙΚΑ 2 MATLAB Το MATLAB είναι ένα περιβάλλον για επιστημονικό και τεχνικό προγραμματισμό, ιδανικό για ανάπτυξη
Διαβάστε περισσότεραΜαρία Λουκά. Εργαστήριο Matlab Άμεσες Μέθοδοι. Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Μαρία Λουκά Εργαστήριο Matlab Άμεσες Μέθοδοι. Τμήμα Πληροφορικής και Τηλεπικοινωνιών Βασικές συναρτήσεις του Matlab b = trace(a) : Είναι το άθροισμα των διαγωνίων στοιχείων του πίνακα Α. d = det(a) : επιστρέφει
Διαβάστε περισσότεραΥπολογισμός αθροισμάτων
Υπολογισμός αθροισμάτων Τα αθροίσματα θα τα δημιουργούμε σαν συναρτήσεις και θα τα αποθηκεύουμε σε αρχείο (m-file) με την ίδια ονομασία με τη συνάρτηση. Για να δημιουργήσουμε ένα άθροισμα ξεκινάμε μηδενίζοντας
Διαβάστε περισσότεραΓρήγορος οδηγός Scilab/Octave/MATLAB
Γρήγορος οδηγός Scilab/Octave/MATLAB Tα Scilab/Octave/MATLAB είναι διαδραστικά προγράμματα αριθμητικών υπολογισμών, τα οποία δέχονται εντολές από τον χρήστη μέσω μιας γραμμής εντολών. Εάν η εντολή δεν
Διαβάστε περισσότερα1 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΑΘΑΙΝΟΝΤΑΣ ΤΟ MATLAB, ΜΕΡΟΣ Α Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)
ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ. Ακέραιοι αριθμοί (int) Πράξεις μεταξύ ακεραίων αριθμών
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ 1 Τύποι δεδομένων Η γλώσσα προγραμματισμού C++ υποστηρίζει τους παρακάτω τύπους δεδομένων: 1) Ακέραιοι αριθμοί (int). 2) Πραγματικοί αριθμοί διπλής ακρίβειας
Διαβάστε περισσότεραΠληροφορική. Ενότητα 2: Α. Μεταβλητές. Όλα είναι πίνακες. Β. Δεδομένα. Σφάλματα. Δομές. Κωνσταντίνος Καρατζάς Τμήμα Μηχανολόγων Μηχανικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πληροφορική Ενότητα 2: Α. Μεταβλητές. Όλα είναι πίνακες. Β. Δεδομένα. Σφάλματα. Δομές. Κωνσταντίνος Καρατζάς Τμήμα Μηχανολόγων Μηχανικών
Διαβάστε περισσότερα21 a 22 a 2n. a m1 a m2 a mn
Παράρτημα Α Βασική γραμμική άλγεβρα Στην ενότητα αυτή θα παρουσιαστούν με συνοπτικό τρόπο βασικές έννοιες της γραμμικής άλγεβρας. Ο στόχος της ενότητας είναι να αποτελέσει ένα άμεσο σημείο αναφοράς και
Διαβάστε περισσότεραΜαρία Λουκά. Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή. Τμήμα Πληροφορικής και Τηλεπικοινωνιών.
Μαρία Λουκά Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Στη MATLAB τα πολυώνυμα αναπαριστώνται από πίνακες που περιέχουν τους συντελεστές τους σε φθίνουσα διάταξη. Για
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ Ι. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ. Παράδειγμα #1. Πράξεις μεταξύ ακεραίων αριθμών
ΥΠΟΛΟΓΙΣΤΕΣ Ι ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ Τύποι δεδομένων Οι παρακάτω τύποι δεδομένων υποστηρίζονται από τη γλώσσα προγραμματισμού Fortran: 1) Ακέραιοι αριθμοί (INTEGER). 2) Πραγματικοί αριθμοί απλής ακρίβειας
Διαβάστε περισσότεραΚεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων
Κεφάλαιο 1 Αρχή ήμισυ παντός. Πλάτων, 427-347 π.χ., Φιλόσοφος Τι θα μάθουμε σήμερα: -AND, OR, NOT -Ενσωματωμένες συναρτήσεις -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD -Προτεραιότητα πράξεων 1 Λογικές
Διαβάστε περισσότεραΕισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink. Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος
Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος 1 Τι είναι τα Matlab και Simulink? Το Matlab (MATrix LABoratory) είναι ένα περιβάλλον επιστημονικού
Διαβάστε περισσότερα1 Πίνακες 1.1 Συνοπτική θεωρία
1 Πίνακες Σε αυτήν την ενότητα θα εξοικειωθείτε με την έννοια των πινάκων στον προγραμματισμό (χωρίς τον ιδιαίτερο τρόπο χειρισμού των πινάκων στο MATLAB), και συγκεκριμένα θα δείτε: πώς ορίζεται ένας
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται
Διαβάστε περισσότεραΧρήσεις Η/Υ και Βάσεις Βιολογικών Δεδομένων : ΒΙΟ109 [4] Επεξεργασία Δεδομενων σε λογιστικα φυλλα
Χρήσεις Η/Υ και Βάσεις Βιολογικών Δεδομένων : ΒΙΟ109 [4] Επεξεργασία Δεδομενων σε λογιστικα φυλλα Στόχοι του μαθήματος Στο συγκεκριμένο μάθημα θα παρουσιαστούν οι βασικές λειτουργίες ενός προγράμματος
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τµήµα Εφαρµοσµένων Μαθηµατικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τµήµα Εφαρµοσµένων Μαθηµατικών «Γραµµική Άλγεβρα Ι» (ΕΜ111) Χειµερινό Εξάµηνο 2006-2007, ιδάσκων: Ι. Τσαγράκης 5 Ο ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ Άσκηση 1: Έστω V ένας διανυσµατικός χώρος επί
Διαβάστε περισσότεραΝέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες).
Matlab Μάθημα Νέο υλικό www.cs.uoi.gr/~develeg Matlab.pdf - Παρουσίαση μαθήματος. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (3 σελίδες). Επαναληπτικές δομές Όταν εκτελείται μια πράξη σε ένα διάνυσμα,
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
1 Oct 16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 4 η Γεωμετρική Αναπαράσταση
Διαβάστε περισσότεραΜαθηµατικοί Υπολογισµοί στην R
Κεφάλαιο 3 Μαθηµατικοί Υπολογισµοί στην R Ενα µεγάλο µέρος της ανάλυσης δεδοµένων απαιτεί διάφορους µαθηµατικούς υπολογισµούς. Αυτό το κεφάλαιο εισαγάγει τον αναγνώστη στις διάφορες δυνατότητες που έχει
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία. Εργαστήριο 5 ο : MATLAB
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ηλεκτρονική Υγεία Εργαστήριο 5 ο : MATLAB Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012)
Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός
Διαβάστε περισσότεραΕισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής
Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής email: dzavanti@cs.uoi.gr Περιεχόμενα Τι είναι η Matlab; Ιστορικά Χρήσεις και στοιχεία της Matlab
Διαβάστε περισσότεραΧρονικές σειρές 5 o μάθημα: ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΝΥΣΜΑΤΑ (2) Μ-Files
Χρονικές σειρές 5 o μάθημα: ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΝΥΣΜΑΤΑ (2) Μ-Files Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό
Διαβάστε περισσότεραΧρονικές σειρές 1 ο μάθημα: Εισαγωγή στη MATLAB
Χρονικές σειρές 1 ο μάθημα: Εισαγωγή στη MATLAB Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Διαβάστε περισσότεραΕισαγωγή στο Mathematica
Εισαγωγή στο Mathematica Συντακτικοί κανόνες, βασικές συναρτήσεις και σύμβολα Το Mathematica είναι ένα λογισμικό το οποίο εγκαθιστά στον υπολογιστή ένα διαδραστικό μαθηματικό περιβάλλον. Το περιβάλλον
Διαβάστε περισσότερα1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 2. Έστω x = [2 5 1 6] α. Προσθέστε το 16 σε κάθε στοιχείο β. Προσθέστε το 3 σε κάθε στοιχείο που βρίσκεται σε μονή θέση.
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΠΡΩΤΗΣ ΕΝΟΤΗΤΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ Τμήμα Βιομηχανικής Διοίκησης & Τεχνολογίας Διαχείριση Δεδομένων και Γλώσσες Προγραμματισμού (Β Εξάμηνο) Διδάσκουσες: Τατιάνα Ταμπουρατζή/ Αγγελική Γεροντή Ακαδημαϊκό Έτος: 2011 2012
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Τύποι δεδομένων, μεταβλητές, πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΠρογραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 1: Εισαγωγή στο Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 2)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 2) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 2) Σεπτέμβριος 2015
Διαβάστε περισσότεραΙδιοτιμές και ιδιοδιανύσματα
Ιδιοτιμές και ιδιοδιανύσματα Έστω Α ένας τετραγωνικός πίνακας n x n και u διάνυσμα στήλη με n στοιχεία και ας θεωρούμε την εξίσωση A u = λ u Ο αριθμός λ λέγεται ιδιοτιμή του Α και το αντίστοιχο διάνυσμα
Διαβάστε περισσότεραΙδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα
Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που
Διαβάστε περισσότεραΔιαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 7 η Πίνακες Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή Σωτήρης Χριστοδούλου
Διαβάστε περισσότεραΕισαγωγικές σημειώσεις στο Matlab
Εισαγωγικές σημειώσεις στο Matlab 2011 Athens by Cheilakos Nick Τι είναι το Matlab; Το Matlab είναι ένα διαδραστικό πακέτο για αριθμητικούς υπολογισμούς που δημιουργήθηκε από τον Cleve Moler την δεκαετία
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι
Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 9/6/08 Διδάσκων: Ι. Λυχναρόπουλος Έστω A= k και w = 3 0. Να βρεθεί η τιμή του k για την οποία
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες
Διαβάστε περισσότερα1 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΑΛΓΟΡΙΘΜΟΙ
Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2017-2018 Τομέας Συστημάτων Παραγωγής Εξάμηνο A Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης 03 ΟΚΤ 2017 ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΗΝ
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η
Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2015-2016 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ :
Διαβάστε περισσότεραΆθροισμα τριών ποσοτήτων (1/2)
Πίνακες Άθροισμα τριών ποσοτήτων (1/2) Πρόβλημα Πώς γενικεύεται για πχ 300 ποσότητες; Άθροισμα τριών ποσοτήτων (2/2) Να το τροποποιήσω ώστε να χρησιμοποιήσω εντολή ; Άθροισμα τριών ποσοτήτων (2/2) Να το
Διαβάστε περισσότεραΕισαγωγή στους. Υπολογιστές
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή γή στον επιστημονικό προγραμματισμό 2 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo Μελάς Ιωάννης Υποψήφιος
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ ΙΙ Εντολές επανάληψης Εντολές επανάληψης while for do-while ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ Παράδειγμα #1 Εντολή while
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ Εντολές επανάληψης Εντολές επανάληψης Στη C++ υπάρχουν 3 διαφορετικές εντολές επανάληψης: while for do-while 1 2 ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ Εντολή while Παράδειγμα #1 Κατασκευάστε πρόγραμμα που για
Διαβάστε περισσότερα0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,
I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΧρονικές σειρές 2 o μάθημα: Εισαγωγή στη MATLAB
Χρονικές σειρές 2 o μάθημα: Εισαγωγή στη MATLAB Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι Εργαστήριο 1 MATLAB ΠΛΗΡΟΦΟΡΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ 1. Θέμα εργαστηρίου: Εισαγωγή στο MATLAB και στο Octave
ΠΛΗΡΟΦΟΡΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ 1 Θέμα εργαστηρίου: Εισαγωγή στο MATLAB και στο Octave Περιεχόμενο εργαστηρίου: - Το περιβάλλον ανάπτυξης προγραμμάτων Octave - Διαδικασία ανάπτυξης προγραμμάτων MATLAB - Απλά
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η
Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2018-2019 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Διαβάστε περισσότεραΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ (20/2/2012)
1. Να γραφεί πρόγραµµα FORTRAN το οποίο θα ορίζει έναν µονοδιάστατο ακέραιο πίνακα και έναν δυδιάστατο πραγµατικό πίνακα ίδιου µεγέθους και θα υπολογίζει τον µέσο όρο των τιµών του µονοδιάστατου πίνακα.
Διαβάστε περισσότεραD = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].
4. Φυλλάδιο Ασκήσεων IV σύντομες λύσεις, ενδεικτικές απαντήσεις πολλαπλής επιλογής 4.. Άσκηση. Χρησιμοποιήστε τη διαδικασία Gauss-Jordan γιά να βρείτε τους αντιστρόφους των παρακάτω πινάκων, αν υπάρχουν.
Διαβάστε περισσότεραΠίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες.
1 Πίνακες Ορίζουσες Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες. Παράδειγμα (χορήγηση Βαλασικλοβιρης (αντιυπερτασικό) σε νήπια) Ηλικία (μήνες) Μέσο Cmax (μg/ml) Μέσο βάρος
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.5) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/07 Διδάσκων: Ι. Λυχναρόπουλος Προσδιορίστε το c R ώστε το διάνυσμα (,, 6 ) να ανήκει στο
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η
Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2017-2018 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Διαβάστε περισσότερα5.9 ΘΕΤΙΚΑ ΟΡΙΣΜΕΝΟΙ ΠΙΝΑΚΕΣ ΚΑΙ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ
ΠΙΝΑΚΕΣ ΚΑΙ ΓΡΑΜΜΙΚΟΙ ΤΕΛΕΣΤΕΣ Α Β Δ J 1 =A+Γ και J 3 = Β Γ Ε Δ Ε Ζ d + c x + a + b y ac+ bd x y = R A έχουμε: 1 1 1 1 Για την εξίσωση ( ) ( ) ( ) ( ) A, B,, 0, E 0, Z A = c + d = ac+ bd Γ= a + b Δ= =
Διαβάστε περισσότεραεπιστρέφει αριθµό που προκύπτει µε αντιστροφή των στοιχείων του πρώτου
ΑΕσΠΠ-Κεφ.10 Υποπρογράµµατα 1 1. Να γραφεί µία συνάρτηση για κάθε ένα από τα παρακάτω: i. Να δέχεται την ακτίνα ενός κύκλου και να επιστρέφει το εµβαδόν του. ii. Να δέχεται την ακτίνα ενός κύκλου και να
Διαβάστε περισσότεραPascal, απλοί τύποι, τελεστές και εκφράσεις
Pascal, απλοί τύποι, τελεστές και εκφράσεις 15 Νοεμβρίου 2011 1 Γενικά Στην standard Pascal ορίζονται τέσσερις βασικοί τύποι μεταβλητών: integer: Παριστάνει ακέραιους αριθμούς από το -32768 μέχρι και το
Διαβάστε περισσότεραStrings. Τα strings μπορούν να αντιστοιχηθούν σε μεταβλητές δηλώνοντας τα με απόστροφο
Strings Τα strings μπορούν να αντιστοιχηθούν σε μεταβλητές δηλώνοντας τα με απόστροφο >>s = ' Hi there ' ; Αν πρέπει να θέσουμε και μια απόστροφο στο string τότε ο απόστροφος πρέπει να επαναληφθεί. >>s
Διαβάστε περισσότεραΒάση και Διάσταση Διανυσματικού Χώρου
Βάση και Διάσταση Διανυσματικού Χώρου Έστω V ένας διανυσματικός χώρος επί του σώματος F. Ορισμός : Ένα υποσύνολο S του διανυσματικού χώρου V θα λέμε ότι είναι βάση του V αν ισχύει Α) Η θήκη του S παράγει
Διαβάστε περισσότερα2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 4) Σεπτέμβριος 2015
Διαβάστε περισσότερα