ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5
|
|
- Ἰωσίας Γλυκύς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Πίνακες (Arrays) [1/2] Δομές δεδομένων για την αποθήκευση δεδομένων υπό ένα κοινό όνομα Η αποθήκευσή τους σε πίνακες βοηθάει κυρίως τη διαχείριση τους Διάκριση πινάκων: Μονοδιάστατοι πίνακες (1-D) Δισδιάστατοι πίνακες (2-D) Τρισδιάστατοι πίνακες (3-D) κτλ. 1-D 2-D D Α) Μονοδιάστατοι πίνακες (Διανύσματα - Vectors): Πρόκειται για διατεταγμένα στοιχεία ίδιου τύπου. Έχουν όνομα και μέγεθος (πλήθος στοιχείων). Π.χ.: Μέσες θερμοκρασίες ημέρας για μία εβδομάδα: Δ Τα Τ Π Π Σ Κ Αποθήκευση σε μονοδιάστατο πίνακα (διάνυσμα) Τ: Τ(1) Τ(2) Τ(3) Τ(4) Τ(5) Τ(6) Τ(7) Οι θέσεις του διανύσματος είναι αριθμημένες (δείκτες) Οι δείκτες ξεκινούν από το 1. Το μέγεθος (μήκος ή πλήθος στοιχείων) δίνεται από την εντολή: length(t) (στην περίπτωσή μας length(t) 7) ver Τμήμα Μαθηματικών ΕΚΠΑ 1
2 Δημιουργία διανυσμάτων: 1) Άμεσα από τον προγραμματιστή: α) Α = [ ]; Β = [ ]; β) Με τον τελεστή : για πίνακες με ισαπέχουσες τιμές: C = ΑρχικήΤιμή:Βήμα:ΤελικήΤιμή; π.χ. C = 0:5:20; C = [ ]; D = 5:8; D = [ ]; 2) Μέσω εσωτερικών συναρτήσεων του MATLAB: x = rand(1,10) διάνυσμα με 10 τυχαία στοιχεία y = zeros(1,5) διάνυσμα με 5 μηδενικά στοιχεία z = ones(1,20) διάνυσμα με 20 στοιχεία ίσα με 1 Πρόσβαση στα στοιχεία ενός διανύσματος: όνομα(δείκτης) Ο δείκτης είναι πάντα ακέραια τιμή ή μεταβλητή ή αριθμητική έκφραση και δηλώνει τη θέση στο διάνυσμα (ξεκινώντας από το 1). π.χ.: >> Α = [ ]; >> Α(2) (Τυπώνει 5) >> x = A(4); >> disp(x); (Τυπώνει 0) π.χ.: Εμφάνιση όλων των στοιχείων του Α: for i = 1:length(A) fprintf('το %gο στοιχείο του Α είναι το %g.',i,a(i)); Τυπώνει: Το 1o στοιχείο του Α είναι το 2. Το 2o στοιχείο του Α είναι το 5. Το 3o στοιχείο του Α είναι το 3. Το 4o στοιχείο του Α είναι το 0. Το 5o στοιχείο του Α είναι το 1. ver Τμήμα Μαθηματικών ΕΚΠΑ 2
3 Είσοδος/Έξοδος διανυσμάτων: Είσοδος (ανά στοιχείο): for i = 1:10 message = sprintf('δώσε το στοιχείο %g',i); A(i) = input(message); Η συνάρτηση sprintf είναι ίδια με την fprintf, αλλά αποθηκεύει το αποτέλεσμά της σε μια συμβολοσειρά. Μπορεί να χρησιμοποιηθεί για την εμφάνιση "μορφοποιημένου" κειμένου στην εντολή input, όπως παραπάνω. Είσοδος ολόκληρου πίνακα: A = input('δώσε τον πίνακα Α'); Ο χρήστης δίνει: >>[ ] Έξοδος (ανά στοιχείο): for i = 1:10 fprintf(a(%g) = %g\n',i,a(i)); %ή πιο απλά: disp(a(i)); Έξοδος ολόκληρου πίνακα: disp(a); Παραδείγματα διανυσμάτων: Μέση τιμή θερμοκρασιών και θερμοκρασιακές διαφορές: T = input('δώσε τον πίνακα θερμοκρασιών: '); sum = 0; for i = 1:length(T) sum = sum + T(i); mt = sum/length(t); fprintf('η μέση θερμοκρασία είναι %g.\n',mt); for i = 1:length(T) DT(i) = T(i) - mt; disp('θερμοκρασιακές διαφορές: '); disp(dt); ver Τμήμα Μαθηματικών ΕΚΠΑ 3
4 Μέγιστο κι ελάχιστο διανύσματος: list = input('δώσε το διάνυσμα: '); small = list(1); large = list(1); for i = 2:length(list) if list(i)<small small = list(i); else if list(i)>large large = list(i); Γιατί δεν χρησιμοποιήθηκαν 2 ανεξάρτητα if; Εσωτερικό γινόμενο διανυσμάτων: % έστω διανύσματα x, y ίδιου μήκους p = 0; for i = 1:length(x) p = p + x(i)*y(i); Αρχικοποίηση διανυσμάτων: α) for i = 1:100 x(i) = i; %εντολές που δεσμεύουν μνήμη Εικόνα της μνήμης: ver Τμήμα Μαθηματικών ΕΚΠΑ 4
5 β) (με δημιουργία ολόκληρου του διανύσματος πριν την αρχικοποίηση) x = zeros(1,100); for i = 1:100 x(i) = i; %εντολές που δεσμεύουν μνήμη Εικόνα της μνήμης: Ταξινόμηση διανύσματος με τον αλγόριθμο της επιλογής (selection sort): 1. Ξεκίνα από την πρώτη θέση. 2. Βρες το ελάχιστο στοιχείο από τη θέση αυτή και μετά. 3. Ενάλλαξε (swap) τα στοιχεία της θέσης που ξεκίνησες και της θέσης του ελάχιστου. 4. Πήγαινε στην επόμενη θέση και επανάλαβε το Βήμα 2, μέχρι να φτάσεις στην προτελευταία θέση. Υλοποίηση με συνάρτηση: function v = selection(v) for i = 1:length(v)-1 minindex = i; % έστω ότι το στοιχείο αυτό είναι το ελάχιστο %αναζήτηση του ελάχιστου: for j = i+1:length(v) if v(j)<v(minindex) minindex = j; % η θέση του ελάχιστου στοιχείου if minindex ~= i; % αν βρέθηκε κάποιο μικρότερο στοιχείο temp = v(i); v(i) = v(minindex); v(minindex) = temp; ver Τμήμα Μαθηματικών ΕΚΠΑ 5
6 Ταξινόμηση διανύσματος με τον αλγόριθμο εισαγωγής (insertion sort): 1. Ξεκίνα από τo δεύτερο στοιχείο. 2. Σύγκρινε το στοιχείο με ένα-ένα τα στοιχεία που βρίσκονται αριστερά του μέχρι να βρεις (άρα while-loop) κάποιο μικρότερό το κι όσο βρίσκεις κάποιο μεγαλύτερό του, ενάλλασσέ τα. 3. Πήγαινε στο επόμενο στοιχείο και επανάλαβε το Βήμα 2. Υλοποίηση με συνάρτηση: function v = insertion(v) for i = 2:length(v) j = i; while j>1 && v(j-1)>v(j) temp = v(i); v(j) = v(j-1); v(j-1) = temp; j = j 1; Γραμμική αναζήτηση (linear search): Ξεκινώντας από το πρώτο στοιχείο, σύγκρινε ένα-ένα τα στοιχεία του διανύσματος με το προς αναζήτηση στοιχείο (key), μέχρι να το βρεις. Υλοποίηση με συνάρτηση: function pos = linearsearch(v,key) loc = 1; % η τρέχουσα θέση αναζήτησης pos = -1; % η θέση του στοιχείου αναζήτησης % Θα επιστρέψει -1 αν δε βρεθεί hit = false; % flag για το αν έχει βρεθεί το προς αναζήτηση στοιχείο % (δεν είναι απαραίτητο) while loc<=length(v) && ~hit if v(loc)==key pos = loc; hit = true; else loc = loc + 1; ver Τμήμα Μαθηματικών ΕΚΠΑ 6
7 Δυαδική αναζήτηση (binary search): Προϋπόθεση: Η λίστα πρέπει να είναι ταξινομημένη! 1. Σύγκρινε το αναζητούμενο στοιχείο με το μεσαίο στοιχείο της λίστας 2. Όσο αυτά διαφέρουν και υπάρχουν ακόμα στοιχεία στη λίστα: αν είναι μικρότερο του στοιχείου, επανάλαβε το Βήμα 1 για το αριστερό τμήμα της λίστας. αν είναι μεγαλύτερο του στοιχείου, επανάλαβε το Βήμα 1 για το δεξί τμήμα της λίστας. Υλοποίηση με συνάρτηση: function pos = binarysearch(v,key) left = 1; % το αριστερό άκρο της τρέχουσας λίστας right = length(v); % το δεξί άκρο της τρέχουσας λίστας pos = -1; hit = false; while left<=right && ~hit mid = fix((left+right)/2); if v(mid)==key pos = mid; hit = true; elseif key<v(mid) right = mid 1; else left = mid + 1; Το κόσκινο του Ερατοσθένη (3 ος αιώνας π.χ.): Αλγόριθμος για τη εύρεση των πρώτων αριθμών από το 2 έως το N. 1. Γράψε όλους τους αριθμούς από το 2 έως το N. 2. Κύκλωσε τον πρώτο διαθέσιμο αριθμό (θα είναι πρώτος). 3. Διέγραψε τα πολλαπλάσιά του. 4. Πήγαινε στο Βήμα 2. π.χ.: για N=10 έχουμε: ver Τμήμα Μαθηματικών ΕΚΠΑ 7
8 Υλοποίηση με συνάρτηση: function primes = eratosthenis(n) P = 1:N % η λίστα των αριθμών P(1) = 0; % Όσοι διαγράφονται θα γίνονται 0. Το 1 ΔΕΝ είναι πρώτος. for i = 2:sqrt(N) if P(i) % αν το i δεν έχει διαγραφεί for j = 2*i:i:N % πήγαινε σε κάθε πολλαπλάσιο του i P(i) = 0; % και διέγραψέ το % Μέτρημα των πρώτων αριθμών που βρέθηκαν NP = 0; for i = 2:N if P(i) NP = NP + 1; primes = zeros(1,np); k = 0; for i = 2:N if P(i) k = k + 1; primes(k) = i; Δημιουργία διανύσματος με τη συνάρτηση linspace linspace(αρχική_τιμή, Τελική_Τιμή, πλήθος_στοιχείων) Π.χ., x = linspace(0, 2*pi, 9); [ ] Πράξεις με διανύσματα: Έστω τα διανύσματα: a = [10 8-5] b = [2 4 1] c = 5*a c: [ ] c = a/2 c: [ ] ver Τμήμα Μαθηματικών ΕΚΠΑ 8
9 c = -a c: [ ] c = 1./a c: [ ] c = a+5 c: [ ] c = a.^2 c: [ ] c = a+b c: [ ] c = a-b c: [8 4-6] c = a.*b c: [ ] c = a./b c: [5 2-5] Έστω το διάνυσμα v = [2 5 7] v(4) = 8; v: [ ] v(6) = 10; v: [ ] v(2:4) [5 7 8] v([4 6]) [8 10] [v(1:2) v([4 6])] [ ] Διανύσματα και γραφικές παραστάσεις: Να γραφεί πρόγραμμα που να εμφανίζει τη γραφική παράσταση της συνάρτησης x 2 ημ(5 x) e f (x)= στο διάστημα [-2, 3]. 1+x 2 Ένα πιο απλό πρόβλημα: σχεδίαση του ημ(x) στο [0, 2π]. Με το χέρι, θα παράγαμε έναν πίνακα τιμών, π.χ.: Στη συνέχεια θα συνδέαμε τα αντίστοιχα 5 σημεία: (0, 0), (1.571, 1), (3.142, 0), (4.712, -1), (6.283, 0) ver Τμήμα Μαθηματικών ΕΚΠΑ 9
10 Αν δημιουργήσουμε 9 δειγματοληπτικά σημεία αντί για 5: θα προκύψει το εξής: Για τη γραφική αποτύπωση μιας συνάρτησης y = f(x) σε ένα διάστημα [L, R]: 1. Δημιουργία πίνακα με τις τιμές του x από το δεδομένο διάστημα. 2. Δημιουργία πίνακα με τις τιμές του y που αντιστοιχούν (μέσω της f) στις τιμές του x. 3. Συνένωση των σημείων που ορίζονται από τα ζεύγη xy και εμφάνιση της γραμμής που προκύπτει. x = linspace(0,2*pi,9); y = sin(x); plot(x,y); Π.χ., το ακόλουθο script σχεδιάζει το ημ(x) για διάφορα πλήθη δειγματοληπτικών σημείων: for n = 25:25:500 x = linspace(0,2*pi,n); y = sin(x); plot(x,y); title(sprintf('n = %3d', n)); pause; ver Τμήμα Μαθηματικών ΕΚΠΑ 10
11 Script για τη σχεδίαση της αρχικής συνάρτησης: x = linspace(2,3,100); y1 = 5*x; y2 = sin(y1); y3 = -x; y4 = y3/2; y5 = exp(y4); y = sin(5*x).*exp(-x/2)./(1+x.^2); y6 = y2.*y5; y7 = x.^2; y8 = 1+y7; y = y6./y8; plot(x,y); Πολλαπλά γραφήματα: plot(x,y1,x,y2,x,y3,...) Η συνάρτηση plot με παραμέτρους μορφοποίησης: plot(x,y,'xyz') X: τύπος γραμμής Υ: τύπος σημείων Ζ: χρώμα σημείων και γραμμής ver Τμήμα Μαθηματικών ΕΚΠΑ 11
12 Επιλογές: X: - : Y:. o + x * Z: b (μπλε) w (άσπρο) c (γαλάζιο) m (μωβ) r (κόκκινο) y (κίτρινο) g (πράσινο) k (μαύρο) π.χ., plot(x,y,'-or'); κόκκινη συνεχής γραμμή με σημεία-κύκλους Βασικές εντολές γραφήματος: Τίτλος γραφήματος: title('...'); Τίτλος άξονα x: xlabel('...'); Τίτλος άξονα y: ylabel('...'); ver Τμήμα Μαθηματικών ΕΚΠΑ 12
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Πίνακες [1/2] (Διανύσματα)
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Πίνακες [1/2] (Διανύσματα) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική
Σε πολλά (κυρίως µαθηµατικά) προβλήµατα (π.χ. ανάλυση πειραµάτων, στατιστική επεξεργασία, γραφικές παραστάσεις, επίλυση γραµµικών συστηµάτων, κ.α.
Πίνακες (arrays) 1 οµές δεδοµένων Σε πολλά (κυρίως µαθηµατικά) προβλήµατα (π.χ. ανάλυση πειραµάτων, στατιστική επεξεργασία, γραφικές παραστάσεις, επίλυση γραµµικών συστηµάτων, κ.α.): Ανάγκη για αποθήκευση/διαχείριση
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Πίνακες (arrays)
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Πίνακες (arrays) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Πίνακες (arrays) 1 οµές δεδοµένων Σε πολλά (κυρίως µαθηµατικά) προβλήµατα (π.χ. ανάλυση πειραµάτων,
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 1
ΠΛΗΡΟΦΟΡΙΚΗ Ι Σημειώσεις MATLAB Ενότητα 1 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 1 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Περιεχόμενο μαθήματος: Αλγοριθμική
ΠΛΗΡΟΦΟΡΙΚΗ Ι (Python) Ενότητα 4
ΠΛΗΡΟΦΟΡΙΚΗ Ι (Python) Ενότητα 4 Λίστες (Lists) Λίστα (list) στην Python ονομάζεται μια δυναμική δομή δεδομένων (στην πραγματικότητα, ένα αντικείμενο) που περιέχει πολλαπλά δεδομένα. Ουσιαστικά, η λίστα
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αναζήτηση και ταξινόµηση 7 Αναζήτηση (search) Πρόβληµα: αναζήτηση της καταχώρησης key στη
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 2. Έστω x = [2 5 1 6] α. Προσθέστε το 16 σε κάθε στοιχείο β. Προσθέστε το 3 σε κάθε στοιχείο που βρίσκεται σε μονή θέση.
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 1
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 1 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Περιεχόμενο μαθήματος: Αλγοριθμική επίλυση προβλημάτων Προγραμματισμός
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση ονομάζεται ένα τμήμα κώδικα (ή υποπρόγραμμα) το
Εργαστήριο Γραμμικής Άλγεβρας. H Matlab ως γλώσσα προγραμματισμού
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας H Matlab ως γλώσσα προγραμματισμού Προγραμματιστικές δομές Έλεγχος ροής if if
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Έλεγχος συνθηκών - if Ας μελετήσουμε το πρόβλημα του υπολογισμού του ελάχιστου
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ
1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ
17. Εισαγωγή σε αριθμητικές μεθόδους για μηχανικούς και αλγορίθμους
ΠΠΜ 500: Εφαρμογές Μηχανικής με Ανάπτυξη Λογισμικού 17. Εισαγωγή σε αριθμητικές μεθόδους για μηχανικούς και αλγορίθμους Εαρινό εξάμηνο 2012 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros
Αξιοποίηση Η/Υ και Πληροφορικής στην Μηχανική
ΠΠΜ100 & ΜΜΠ100: Εισαγωγή στην Μηχανική Αξιοποίηση Η/Υ και Πληροφορικής στην Μηχανική ιάλεξη 4 η 2 Οκτωβρίου Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Περιεχόµενα ιάλεξη #1:
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 1: Εισαγωγή
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 1: Εισαγωγή Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 1 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και
A A A B A ΦΥΛΛΑ ΙΟ ΘΕΜΑΤΩΝ 1/2. Μέϱος A. Πολλαπλές επιλογές (20%) Σειριακός αριθµός : 100 Πληροφορική Ι Εξέταση Φεβρουαρίου 2019
Σειριακός αριθµός : 100 Πληροφορική Ι Εξέταση Φεβρουαρίου 2019 Απαντήσεις Πολλαπλής Επιλογής Ε Ω : 1 2 3 4 5 A A A B A ΦΥΛΛΑ ΙΟ ΘΕΜΑΤΩΝ 1/2 Τα ϑέµατα της εξέτασης δίνονται σε 2 ϕυλλάδια (ένα για κάϑε διδάσκοντα).
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 3
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 3 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ Πρόβλημα: Για δεδομένο αριθμό Α, μα βρεθεί η A. Γεωμετρική
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 4 ο Εργαστήριο. Διανύσματα-Πίνακες 1 ο Μέρος
Εργαστήρια Αριθμητικής Ανάλυσης Ι 4 ο Εργαστήριο Διανύσματα-Πίνακες 1 ο Μέρος 2017 Εισαγωγή Όπως έχουμε προαναφέρει σε προηγούμενα εργαστήρια. Ο βασικός τύπος δεδομένων στο Matlab είναι οι πίνακες. Ένα
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην
Δομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
ΒΑΣΙΚΕΣ ΕΠΕΞΕΡΓΑΣΙΕΣ ΜΟΝΟΔΙΑΣΤΑΤΩΝ ΚΑΙ ΔΙΣΔΙΑΣΤΑΤΩΝ ΠΙΝΑΚΩΝ ΟΙ ΠΙΟ ΣΗΜΑΝΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ
ΒΑΣΙΚΕΣ ΕΠΕΞΕΡΓΑΣΙΕΣ ΜΟΝΟΔΙΑΣΤΑΤΩΝ ΚΑΙ ΔΙΣΔΙΑΣΤΑΤΩΝ ΠΙΝΑΚΩΝ ΟΙ ΠΙΟ ΣΗΜΑΝΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗ ΜΕΓΑΛΥΤΕΡΟΥ/ΜΙΚΡΟΤΕΡΟΥ ΣΤΟΙΧΕΙΟΥ ΜΟΝΟΔΙΑΣΤΑΤΟΥ -1 Ολα τα στοιχεία του πίνακα είναι διαφορετικά μεταξύ τους.
Γ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης
Γ7.5 Αλγόριθμοι Αναζήτησης Γ Λυκείου Κατεύθυνσης Εισαγωγή Αλγόριθμος αναζήτησης θεωρείται ένας αλγόριθμος, ο οποίος προσπαθεί να εντοπίσει ένα στοιχείο με συγκεκριμένες ιδιότητες, μέσα σε μία συλλογή από
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη
2.2.7 Τίτλος στη γραφική παράσταση
2.2.7 Τίτλος στη γραφική παράσταση Η επιλογή title τοποθετεί μία επικεφαλίδα (τίτλο) στη γραφική παράσταση. title = None (προεπιλογή) title = επικεφαλίδα δεν θέτει καμία επικεφαλίδα θέτει ως επικεφαλίδα
I. ΑΛΓΟΡΙΘΜΟΣ II. ΠΡΑΞΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ III. ΕΠΑΝΑΛΗΨΕΙΣ. 1. Τα πιο συνηθισμένα σενάρια παραβίασης αλγοριθμικών κριτηρίων είναι:
ΑΕσΠΠ 1 / 8 I. ΑΛΓΟΡΙΘΜΟΣ 1. Τα πιο συνηθισμένα σενάρια παραβίασης αλγοριθμικών κριτηρίων είναι: i. Είσοδος : χρήση μιας μεταβλητής που δεν έχει πάρει προηγουμένως τιμή. ii. Έξοδος : ο αλγόριθμος δεν εμφανίζει
Εισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
Πίνακες. 1 Πίνακες. 30 Μαρτίου 2014
Πίνακες 0 Μαρτίου 014 1 Πίνακες Είδαμε ότι δηλώνοντας μία μεταβλητή κάποιου συγκεκριμένου τύπου δεσμεύουμε μνήμη κατάλληλη για να αποθηκευτεί μία οντότητα του συγκεκριμένου τύπου. Στην περίπτωση που θέλουμε
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΝΥΣΜΑΤΩΝ Χ (ΤΕΤΜΗΜΕΝΩΝ) ΚΑΙ Υ (ΤΕΤΑΓΜΕΝΩΝ) ΤΩΝ ΣΗΜΕΙΩΝ
Πληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Θέματα Προγραμματισμού Η/Υ
Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Υπολογιστική Βιοϊατρική Θέματα Προγραμματισμού Η/Υ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ Θεματική
Μαρία Λουκά. Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή. Τμήμα Πληροφορικής και Τηλεπικοινωνιών.
Μαρία Λουκά Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Στη MATLAB τα πολυώνυμα αναπαριστώνται από πίνακες που περιέχουν τους συντελεστές τους σε φθίνουσα διάταξη. Για
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι)
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 6 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Δομές επανάληψης
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Δομές επανάληψης Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 3 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη
Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
5 η ΕΝΟΤΗΤΑ Γραφήματα στο MATLAB
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 5 η ΕΝΟΤΗΤΑ Γραφήματα στο MATLAB Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Συναρτήσεις 60 Ροή ελέγχου Είναι η σειρά µε την οποία εκτελούνται οι εντολές. Μέχρι τώρα, «σειριακή»,
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Επανάληψη για τις Τελικές εξετάσεις. (Διάλεξη 24) ΕΠΛ 032: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕΘΟΔΩΝ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ
Επανάληψη για τις Τελικές εξετάσεις (Διάλεξη 24) Εισαγωγή Το μάθημα EPL032 έχει ως βασικό στόχο την επίλυση προβλημάτων πληροφορικής με την χρήση της γλώσσας προγραμματισμού C. Επομένως πρέπει: Nα κατανοήσετε
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι Σημειώσεις MATLAB Ενότητα 4 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο
ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ,
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΑΡΑΣΚΕΥΗ 22 ΣΕΠΤΕΜΒΡΙΟΥ 2017 ΘΕΜΑ Α ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 5ο Aντώνης Σπυρόπουλος Πράξεις μεταξύ των
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
Συστήματα Αναμονής (Queuing Systems)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΕΜΠ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής
Εργαστήριο Μαθηματικής Ανάλυσης Ι. Εισαγωγή στη Matlab Βασικές Συναρτήσεις-Γραφικές παραστάσεις. Πανεπιστήμιο Θεσσαλίας. Σχολή Θετικών Επιστημών
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με εφαρμογές στη Βιοϊατρική Εργαστήριο Μαθηματικής Ανάλυσης Ι Εισαγωγή στη Matlab Βασικές Συναρτήσεις-Γραφικές παραστάσεις Εισαγωγή στη
ΠΛΗΡΟΦΟΡΙΚΗ Ι Εργαστήριο 1 MATLAB ΠΛΗΡΟΦΟΡΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ 1. Θέμα εργαστηρίου: Εισαγωγή στο MATLAB και στο Octave
ΠΛΗΡΟΦΟΡΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ 1 Θέμα εργαστηρίου: Εισαγωγή στο MATLAB και στο Octave Περιεχόμενο εργαστηρίου: - Το περιβάλλον ανάπτυξης προγραμμάτων Octave - Διαδικασία ανάπτυξης προγραμμάτων MATLAB - Απλά
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Ενότητα 6 Πίνακες Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Τύπος πίνακα (array) Σύνθετος τύπος δεδομένων Αναπαριστά ένα σύνολο ομοειδών
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 8: Γραφικές παραστάσεις Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εργαστήριο 2: Πίνακες
Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Εργαστηριακή Άσκηση 1
Εργαστηριακή Άσκηση 1 Επανάληψη προγραμματισμού Βασικοί Αλγόριθμοι Είσοδος τιμών από το πληκτρολόγιο Σε όλα τα προγράμματα που θα γράψουμε στην συνέχεια του εξαμήνου θα χρειαστεί να εισάγουμε τιμές σε
Σύντομες εισαγωγικές σημειώσεις για την. Matlab
Σύντομες εισαγωγικές σημειώσεις για την Matlab Δήλωση Μεταβλητών Για να εισάγει κανείς δεδομένα στη Matlab υπάρχουν πολλοί τρόποι. Ο πιο απλός είναι στη γραμμή εντολών να εισάγουμε αυτό που θέλουμε και
ΠΡΟΣΟΜΟΙΩΣΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ - MATLAB
ΠΡΟΣΟΜΟΙΩΣΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ - MATLAB Εργασία εξαμήνου Ευαγγελία Βλιώρα Α.Μ. 120004 Τμήμα E1 Εξάμηνο Β' ΘΕΣΣΑΛΟΝΙΚΗ 2013 ΘΕΜΑ 1 Σας δίνεται η συνάρτηση α) Να τη σχεδιάσετε στο διάστημα [0,10]. β) Να
ΗΥ-150. Ταξινόµηση και Αναζήτηση
ΗΥ-150 Ταξινόµηση και Αναζήτηση To πρόβληµα της Αναζήτησης οθέντος δεδοµένων, λ.χ. σε Πίνακα (P) Ψάχνω να βρω κάποιο συγκεκριµένο στοιχείο (key) Αν ο πίνακας δεν είναι ταξινοµηµένος Γραµµική Αναζήτηση
Στόχοι και αντικείμενο ενότητας. Πέρασμα Πίνακα σε Συνάρτηση (συν.) Πέρασμα Πίνακα σε Συνάρτηση. #8.. Ειδικά Θέματα Αλγορίθμων
Στόχοι και αντικείμενο ενότητας Πέρασμα Πίνακα σε Συνάρτηση #8.. Ειδικά Θέματα Αλγορίθμων Προβλήματα Αναζήτησης Γραμμική Αναζήτηση (Linear Search) Ενημέρωση Μέτρηση Δυαδική Αναζήτηση (Binary Search) Προβλήματα
Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση
Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση Ηµεροµηνία επιστροφής : Τετάρτη 4/11/2010 18 Οκτωβρίου 2010 1 Γραµµική άλγεβρα (20 µονάδες) Η παράγωγος ενός µητρώου H ορίζεται ως η παράγωγος κάθε
Το πρόβλημα. Έχουμε έναν κύκλο με μοναδιαία ακτίνα. Η εξίσωσή του θα είναι:
Το πρόβλημα 1 x y Έχουμε έναν κύκλο με μοναδιαία ακτίνα. Η εξίσωσή του θα είναι: x 2 + y 2 = 1 2 Το πρόβλημα Για n=6 Εάν βάλουμε πάνω στην περιφέρειά του n σημεία, σε ίση απόσταση μεταξύ τους και τα ενώσουμε,
Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες).
Matlab Μάθημα Νέο υλικό www.cs.uoi.gr/~develeg Matlab.pdf - Παρουσίαση μαθήματος. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (3 σελίδες). Επαναληπτικές δομές Όταν εκτελείται μια πράξη σε ένα διάνυσμα,
ημιουργία και διαχείριση πινάκων
ημιουργία και διαχείριση πινάκων Για να δημιουργήσουμε έναν πίνακα στο MATLAB μπορούμε να γράψουμε A = [ 2 3 ; 7 9 0 ; - 0 5; -2-3 9 -] βλέπουμε ότι αμέσως μας επιστρέφει τον πίνακα που ορίσαμε A = 2 3
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στη Python Νικόλαος Ζ. Ζάχαρης Αναπληρωτής
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 10: Ταξινόμηση Πίνακα Αναζήτηση σε Ταξινομημένο Πίνακα Πρόβλημα Δίνεται πίνακας t από Ν ακεραίους. Ζητούμενο: να ταξινομηθούν τα περιεχόμενα του πίνακα σε αύξουσα αριθμητική
i 1 Όσο i <> 100 επανάλαβε i i + 2 Γράψε A[i] Τέλος_επανάληψης
ΘΕΜΑ Α A1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις α-δ και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη. a. Σε μία εντολή εκχώρησης του αποτελέσματος
4 η ΕΝΟΤΗΤΑ Μητρώα και συνθήκες στο MATLAB
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 4 η ΕΝΟΤΗΤΑ Μητρώα και συνθήκες στο MATLAB Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης
Προτεινόμενος τρόπος διδασκαλίας του μαθήματος με ενδεικτικό χρονοπρογραμματισμό. Α/Α Ενότητες Περιγραφή Ώρες 1 Εισαγωγικό μάθημα 1
Αγαπητοί συνάδελφοι, Σας αποστέλλω τις παιδαγωγικές απόψεις μου, εκ μέρους μίας ομάδας Σχολικών Συμβούλων Πληροφορικής, σχετικώς με την προτεινόμενη προσέγγιση για τη διδασκαλία του μαθήματος Ανάπτυξη
Υπολογισμός - Συλλογή Δεδομένων - Πίνακες
Προγραμματισμός Η/Υ Ι Υπολογισμός - - Πίνακες ΕΛΕΥΘΕΡΙΟΣ ΚΟΣΜΑΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2018-2019 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 1 Περίληψη Σήμερα... θα συζητήσουμε τη χρήση του πίνακα (array) για τη συλλογή
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 3)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 3) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος 2015
4. Εισαγωγή στο Matlab
ΠΠΜ 500: Εφαρμογές Μηχανικής με Ανάπτυξη Λογισμικού 4. Εισαγωγή στο Matlab Εαρινό εξάμηνο 2006 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www. www.eng. eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στο Matlab
Προγραµµατιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Προγραµµατιστικές Τεχνικές Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωµύλος Κορακίτης
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ. ΚΑΤΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗΣ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ Πληροφορική I "Προγραμματισμός" B. Φερεντίνος
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Πρόλογος... 11 Μέρος Α: Στοιχεία Αλγοριθμικής... 15 1 Επίλυση προβλημάτων με Η/Υ... 19 1.1 Εισαγωγή... 19 1.2 Αλγόριθμοι-αλγοριθμικά προβλήματα... 20 1.3 Το μαθηματικό μοντέλο... 26
Θέματα Προγραμματισμού Η/Υ
Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Υπολογιστική Βιοϊατρική Θέματα Προγραμματισμού Η/Υ Ενότητα 7: Θεματική Ενότητα: Δομές επανάληψης ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ Θεματική Ενότητα 7 Δομές επανάληψης
Μαρία Λουκά. Εργαστήριο Matlab. Αριθμητικός υπολογισμός ιδιοτιμών και ιδιοδιανυσμάτων. Τμήμα Πληροφορικής και Τηλεπικοινωνιών.
Μαρία Λουκά Εργαστήριο Matlab Αριθμητικός υπολογισμός ιδιοτιμών και ιδιοδιανυσμάτων Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Βασικές Συναρτήσεις της Matlab Γραμμικοί δείκτες (Linear indices) Ένας γραμμικός
ΠΛΗΡΟΦΟΡΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ 1. Θέμα εργαστηρίου: Εισαγωγή στην Python και στο IDLE
ΠΛΗΡΟΦΟΡΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ 1 Θέμα εργαστηρίου: Εισαγωγή στην Python και στο IDLE Περιεχόμενο εργαστηρίου: - Το περιβάλλον ανάπτυξης προγραμμάτων IDLE - Διαδικασία ανάπτυξης προγραμμάτων Python - Απλά προγράμματα
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Πρόλογος... 11 Μέρος Α: Στοιχεία Αλγοριθμικής... 15 1 Επίλυση προβλημάτων με Η/Υ... 19 1.1 Εισαγωγή... 19 1.2 Αλγόριθμοι αλγοριθμικά προβλήματα... 20 1.3 Το μαθηματικό μοντέλο... 26
Ι. ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Της Γ τάξης Ημερησίου Γενικού Λυκείου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης
Περιεχόμενα Δομές δεδομένων 37. Δομές δεδομένων (θεωρητικά στοιχεία)...11 38. Εισαγωγή στους μονοδιάστατους πίνακες...16 39. Βασικές επεξεργασίες στους μονοδιάστατους πίνακες...25 40. Ασκήσεις στους μονοδιάστατους
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ
ii ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. Εντολές εκχώρησης (αντικατάστασης)....1 1.1 Εισαγωγή...4 1.1.1 Χρήση ΛΣ και IDE της Turbo Pascal....4 1.1.2 Αίνιγμα...6 1.2 Με REAL...7 1.2.1 Ερώτηση...9 1.2.2 Επίλυση δευτεροβάθμιας
Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό
Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό 1 Εισαγωγή Σκεφτείτε έναν αριθμό από το 1 έως το 1000 και απαντήστε στην ερώτηση: Ο αριθμός που σκεφτήκατε είναι μεγαλύτερος
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
EΞΩΤΕΡΙΚΑ ΑΡΧΕΙΑ ΕΙΣΑΓΩΓΗ Ε ΟΜΕΝΩΝ
EΞΩΤΕΡΙΚΑ ΑΡΧΕΙΑ ΕΙΣΑΓΩΓΗ Ε ΟΜΕΝΩΝ ηµιουργία ενός m-αρχείου Εισαγωγή των δεδοµένων στο αρχείο Αποθήκευση του αρχείου Καταχώρηση των δεδοµένων του αρχείου από το λογισµικό Matlab, γράφοντας απλά το όνοµα
Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 2ο Μεταβλητές Μεταβλητή ονομάζεται ένα μέγεθος
Εχουμε ήδη συναντήσει μονοδιάστατους πίνακες, οι οποίοι ορίζονται ως εξής:
ΠΙΝΑΚΕΣ ΣΤΗΝ ΓΛΩΣΣΑ C Ενας πίνακας είναι ένα σύνολο μεταβλητών του ίδιου τύπου. Το κάθε στοιχείο του πίνακα αναγνωρίζεται από ένα ακέραιο δείκτη (index). Στη C ο δείκτης θέσης αρχίζει από το μηδέν (0)
3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή
3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ 3.1 ΑΝΑ ΡΟΜΗ 3.1.1 Εισαγωγή ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Αναδροµή είναι η µέθοδος κατά την οποία, σε µία γλώσσα προγραµµατισµού, µία διαδικασία ή συνάρτηση έχει την δυνατότητα
Αλγόριθμοι και Δομές Δεδομένων(Θ) Ευάγγελος Γ. Ούτσιος
Αλγόριθμοι και Δομές Δεδομένων(Θ) Ενότητα 5: ΑΝΑΖΗΤΗΣΗ Ευάγγελος Γ. Ούτσιος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
> μεγαλύτερο <= μικρότερο ή ίσο < μικρότερο == ισότητα >= μεγαλύτερο ή ίσο!= διαφορετικό
5 ο Εργαστήριο Λογικοί Τελεστές, Δομές Ελέγχου Λογικοί Τελεστές > μεγαλύτερο = μεγαλύτερο ή ίσο!= διαφορετικό Οι λογικοί τελεστές χρησιμοποιούνται για να ελέγξουμε
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία
Πίνακες. FORTRAN και Αντικειμενοστραφής Προγραμματισμός
Πίνακες (i) Δομημένη μεταβλητή: αποθηκεύει μια συλλογή από τιμές δεδομένων Πίνακας (array): δομημένη μεταβλητή που αποθηκεύει πολλές τιμές του ίδιου τύπου INTEGER:: pinakas(100)ή INTEGER, DIMENSION(100)::pinakas
Εισαγωγή στην πληροφορική
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Εισαγωγή στην πληροφορική Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Η γλώσσα προγραμματισμού
3 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΠΙΝΑΚΕΣ
Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2016-2017 Τομέας Συστημάτων Παραγωγής Εξάμηνο A Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης 23 ΝΟΕ 2016
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ
Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2014-2015 Πάτρα 5/5/2015 Ονοματεπώνυμο:.. Α1. α. Να γράψετε στο τετράδιό σας τον
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 8/11/07
Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 8/11/07 Συμπλήρωμα προηγούμενης εβδομάδας: ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 8/11/07 Τι συμβαίνει όταν στην ίδια έκφραση υπάρχει πάνω από
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Κανάρη 36, Δάφνη Τηλ. 210 9713934 & 210 9769376 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ο.Π. ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Θέμα Α A1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις
3ο σετ σημειώσεων - Πίνακες, συμβολοσειρές, συναρτήσεις
3ο σετ σημειώσεων - Πίνακες, συμβολοσειρές, συναρτήσεις 5 Απριλίου 01 1 Πίνακες Είδαμε ότι δηλώνοντας μία μεταβλητή κάποιου συγκεκριμένου τύπου δεσμεύουμε μνήμη κατάλληλη για να αποθηκευτεί μία οντότητα