ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 3
|
|
- Μνάσων Αλεξόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 3 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ Πρόβλημα: Για δεδομένο αριθμό Α, μα βρεθεί η A. Γεωμετρική αναδιατύπωση: Για θετικό αριθμό Α, να βρεθεί τετράγωνο με εμβαδόν Α. - Μια αρχική ιδέα: W = 1 L = A - Παρατήρηση: Η απάντηση είναι μεταξύ του L και του W: W < S < L S - Βασική ιδέα: W L L 1 = L+W 2 W 1 W 1 = A L 1 L1 επανάληψη: L 2 = L 1 +W 1 2 W 2 W 2 = A L 2 L2 ver Τμήμα Μαθηματικών ΕΚΠΑ 1
2 Ένα πρώτο script: Α = input('a:'); L0 = A; W0 = A/L0; L1 = (L0+W0)/2; W1 = A/L1; L2 = (L1+W1)/2; W2 = A/L2; L3 = (L2+W2)/2; W3 = A/L3; L4 = (L3+W3)/2; W4 = A/L4; Δεν υπάρχει λόγος να δημιουργηθούν όλες αυτές οι μεταβλητές: Α = input('a:'); L = A; W = A/L; L = (L+W)/2; W = A/L; L = (L+W)/2; W = A/L; L = (L+W)/2; W = A/L; L = (L+W)/2; W = A/L; Άρα: ανάγκη δομής που επαναλαμβάνει κώδικα για συγκεκριμένο αριθμό επαναλήψεων Ο βρόχος for for <τιμές μετρητή επανάληψης> εντολές που θα επαναληφθούν; Συνήθης μορφή for: for <μετ/τη> = <Α.Τ.>:[Βήμα]:<Τ.Τ.> <εντολές> Σημειολογία: < > : υποχρεωτικό μέρος [ ] : προαιρετικό μέρος Όταν το βήμα είναι μοναδιαίο: for <μετ/τη> = <Α.Τ.>:<Τ.Τ.> <εντολές> Άρα το προηγούμενο παράδειγμα: Α = input('a:'); L = A; W = A/L; for k = 1:4 L = (L+W)/2; W = A/L; ver Τμήμα Μαθηματικών ΕΚΠΑ 2
3 και πιο γενικά Α = input('a:'); nsteps = input('nsteps:'); L = A; W = A/L; for k = 1:nSteps; L = (L+W)/2; W = A/L; Άλλα παραδείγματα: for i=1:10 disp(i); for odd = 1:2:100 disp(odd); for even = 2:2:100 disp(even); for countdown = 10:-1:0 disp(countdown); for i=1:10 x=rand; fprintf('%.3f\n',x); Υπολογισμός αθροίσματος: Ν: sum = 0; for i=1:n sum = sum+i; disp(sum); Υπολογισμός γινομένου: 1*2*3* *Ν: prod = 1; for i=1:n prod = prod*i; disp(prod); ver Τμήμα Μαθηματικών ΕΚΠΑ 3
4 Πρόβλημα: Ένα κλαδί μοναδιαίου μήκους κόβεται σε τυχαίο σημεία. Τι μήκος θα έχει κατά μέσο όρο το μικρότερο κομμάτι; Προσομοίωση: η αναπαράσταση ενός πειράματος ή μιας φυσικής διεργασίας με τη χρήση ενός προγράμματος (μοντέλο). % μία δοκιμή του πειράματος breakpt = rand; if breakpt < 0.5 shortpiece = breakpt; else shortpiece = 1-breakPt; breakpt = rand; shortpiece = min(breakpt, 1-breakPt); Αλγόριθμος λύσης του προβλήματος: - Επανάληψη του πειράματος n φορές - Υπολογισμός μέσου όρου - Εμφάνιση αποτελέσματος n = 10000; % αριθμός δοκιμών total = 0; % τρέχον άθροισμα για το μήκος for i=1:n breakpt = rand; shortpiece = min(breakpt, 1-breakPt); total = total+shortpiece; avglength = total/n; fprintf('το μέσο μήκος είναι %.2f\n', avglength); Παράδειγμα: μ.ο. 10 αριθμών από τον χρήστη: n=10; total=0; for k=1:n num = input('δώσε έναν αριθμό:'); total = total+num; avg = total/n; fprintf('μέσος όρος: %.3%f\n', avg); ver Τμήμα Μαθηματικών ΕΚΠΑ 4
5 Πρόβλημα: Προσέγγιση του π με τη μέθοδο Monte Carlo L L/2 Ρίχνουμε n βελάκια στο τετράγωνο hit: το βελάκι μέσα στον κύκλο Το ποσοστό των hits προσεγγίζει τον λόγο των δύο εμβαδών: Άρα: for i=1:n % ρίχνω το βελάκι i % αν το βελάκι είναι μέσα στον κύκλο: % hits = hits+1 mypi = 4*hits/n; Ας υποθέσουμε ότι έχουμε τον μοναδιαίο κύκλο με κέντρο (0,0): Ένα σημείο (x,y) είναι hit εάν x 2 +y 2 1 Πρέπει να βρεθεί τρόπος να παράγουμε τυχαία σημεία στο τετράγωνο. Θέλουμε: -1<x<1 και -1<y<1, δηλαδή εύρος = 2 και διάστημα (-1, 1). Η rand δίνει τυχαίους αριθμούς στο διάστημα (0, 1) (εύρος = 1). Με rand x 2 εύρος 2, αλλά στο διάστημα (0, 2). Άρα: 2*rand-1 τυχαίοι αριθμοί στο (-1, 1). ver Τμήμα Μαθηματικών ΕΚΠΑ 5
6 Το script: n = 10000; hits = 0; for i=1:n %ρίχνω το βελάκι i x = 2*rand-1; y = 2*rand-1; % ελέγχω αν είναι hit if x^2 + y^2 <= 1 hits = hits+1; mypi = 4*hits/n; Πρόβλημα: Έστω n σημεία πάνω στον μοναδιαίο κύκλο. Όσο αυξάνεται το n (τα σημεία), το Α n αυξάνεται και το Β n μειώνεται και προσεγγίζουν το Ε του κύκλου, δηλαδή το π. Άρα, ο μέσος όρος τους αποτελεί μια καλή προσέγγιση του π: π A n +B n, με το σφάλμα να εξαρτάται από την απόλυτη διαφορά των δύο εμβαδών. 2 Μας ενδιαφέρει ποια είναι η μικρότερη τιμή του n (n * ) για την οποία ικανοποιείται η σχέση: A n* B n* δ, όπου δ η ανοχή σφάλματος π.χ. δ= Αλγόριθμος: Δώσε την ανοχή σφάλματος δ και θέσε n=3. Υπολόγισε τα Α 3, Β 3 και το όριο του σφάλματος Β 3 -Α 3 Όσο το όριο του σφάλματος > δ, επανέλαβε: Αύξησε το n κατά 1 Ενημέρωσε τα Α n και Β n και το όριο του σφάλματος. Θέσε n * = n και εμφάνισε το A n * +B n* 2 (προσέγγιση του π). ver Τμήμα Μαθηματικών ΕΚΠΑ 6
7 Ο αλγόριθμος αυτός δεν μπορεί να υλοποιηθεί με for γιατί δεν είναι γνωστός εκ των προτέρων ο αριθμός των επαναλήψεων. Για τέτοιες επαναλήψεις υπάρχει ο βρόχος while. Ο βρόχος while while <λογική συνθήκη> <εντολές> Σημαντικό: Πρέπει κάποια από τις εντολές να μεταβάλλει τη συνθήκη ώστε κάποτε να γίνεται false, διαφορετικά: ατέρμονας βρόχος. Το script: delta = input('δώσε το δ:'); n = 3; A_n = (n/2)*sin(2*pi/n); B_n = n*tan(pi/n); errorbound = B_n A_n; while errorbound>delta n = n+1; A_n = (n/2)*sin(2*pi/n); B_n = n*tan(pi/n); errorbound = B_n A_n; nstar = n; mypi = (A_n + B_n)/2; fprintf(...); Άλλα παραδείγματα: - Άθροισμα άγνωστων πλήθους θετικών αριθμών: sum = 0; x = input('δώσε θετικό αριθμό:'); while x>0 sum = sum+x; x = input('δώσε θετικό αριθμό ή μη-θετικό αριθμό για τερματισμό'); disp(sum); Αν θέλαμε να εμφανίσουμε και πόσοι αριθμοί δόθηκαν; ver Τμήμα Μαθηματικών ΕΚΠΑ 7
8 - Άθροισμα ψηφίων ακεραίου: Για τον ακέραιο n: Εύρεση τελευταίου ψηφίου: rem(n,10) π.χ. rem(1975,10) 5 Αποκοπή τελευταίου ψηφίου: fix(n/10) π.χ. fix(1975/10) 197 n = input('δώσε ακέραιο:'); dsum = 0; while n>0 % αν βάζαμε n>=0: ατέρμονες επαναλήψεις dsum =dsum+rem(n,10); n = fix(n/10); fprintf('το άθροισμα των ψηφίων του %g είναι %g\n', n,dsum); Σχέση for και while: for μετ/τη = ΑΤ:Β:ΤΤ εντολές; μετ/τη = AT; while μετ/τη <= ΤΤ εντολές; μετ/τη = μετ/τη + Β; To while μπορεί να χρησιμοποιηθεί πάντα. Το for προτιμάται όταν το πλήθος των επαναλήψεων είναι γνωστό. Όταν το πλήθος των επαναλήψεων είναι άγνωστο: while Π.χ., χρόνια για διπλασιασμό κεφαλαίου 1000 ευρώ με ετήσιο επιτόκιο 5%. money = 1000; years = 0; while money < 2000 money = money * 1.05; years = years + 1; disp(years); Πιο γενικό: money = input('κεφάλαιο?'); years = 0; goal = 2*money; while money < goal ver Τμήμα Μαθηματικών ΕΚΠΑ 8
9 Η εντολή break Π.χ. υπολογισμός γινομένου αγνώστου πλήθους αριθμών: Χωρίς break OfData=0; prod=1; x=input('δώσε αριθμό:'); while x~=ofdata prod=prod*x; x=input( Δώσε αριθμό ή... 0 για τερματισμό ); disp(prod); Με break OfData=0; prod=1; while true x=input( Δώσε αριθμό... ή 0 για τερματισμό ); if x==ofdata break; prod=prod*x; disp(prod); H break τερματίζει τις επαναλήψεις for ή while που το εκτελούν. Ένθετα for (nested) N = input('n?'); for i=1:n for j=1:n if i<j fprintf('.'); else fprintf('*'); fprintf('\n'); π.χ. για Ν=5: * * * * *. * * * *.. * * *... * *.... * ver Τμήμα Μαθηματικών ΕΚΠΑ 9
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Δομές επανάληψης
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Δομές επανάληψης Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 3 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 1
ΠΛΗΡΟΦΟΡΙΚΗ Ι Σημειώσεις MATLAB Ενότητα 1 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 1 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Περιεχόμενο μαθήματος: Αλγοριθμική
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Εντολές ελέγχου και επανάληψης
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Εντολές ελέγχου και επανάληψης Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Εντολές ελέγχου και επανάληψης 13 Μερικά χρήσιµα «εργαλεία»... για οποιεσδήποτε εκφράσεις
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση ονομάζεται ένα τμήμα κώδικα (ή υποπρόγραμμα) το
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 1
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 1 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Περιεχόμενο μαθήματος: Αλγοριθμική επίλυση προβλημάτων Προγραμματισμός
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Έλεγχος συνθηκών - if Ας μελετήσουμε το πρόβλημα του υπολογισμού του ελάχιστου
Θέματα Προγραμματισμού Η/Υ
Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Υπολογιστική Βιοϊατρική Θέματα Προγραμματισμού Η/Υ Ενότητα 7: Θεματική Ενότητα: Δομές επανάληψης ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ Θεματική Ενότητα 7 Δομές επανάληψης
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι Σημειώσεις MATLAB Ενότητα 4 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο
Το πρόβλημα. Έχουμε έναν κύκλο με μοναδιαία ακτίνα. Η εξίσωσή του θα είναι:
Το πρόβλημα 1 x y Έχουμε έναν κύκλο με μοναδιαία ακτίνα. Η εξίσωσή του θα είναι: x 2 + y 2 = 1 2 Το πρόβλημα Για n=6 Εάν βάλουμε πάνω στην περιφέρειά του n σημεία, σε ίση απόσταση μεταξύ τους και τα ενώσουμε,
Στη C++ υπάρχουν τρεις τύποι βρόχων: (a) while, (b) do while, και (c) for. Ακολουθεί η σύνταξη για κάθε μια:
Εργαστήριο 6: 6.1 Δομές Επανάληψης Βρόγχοι (Loops) Όταν θέλουμε να επαναληφθεί μια ομάδα εντολών τη βάζουμε μέσα σε ένα βρόχο επανάληψης. Το αν θα (ξανα)επαναληφθεί η εκτέλεση της ομάδας εντολών καθορίζεται
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 1: Εισαγωγή
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 1: Εισαγωγή Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 1 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και
Δομημένος Προγραμματισμός
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Δομημένος Προγραμματισμός Ενότητα 5: Εντολές επανάληψης Κουκουλέτσος Κώστας Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστικών Συστημάτων
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Μέρος 5ο ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 1 Η ΕΝΤΟΛΗ for Με την εντολή for δημιουργούμε βρόχους επανάληψης σε
Εισαγωγή στην πληροφορική
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Εισαγωγή στην πληροφορική Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Η γλώσσα προγραμματισμού
ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ
ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Τρίτη Διάλεξη Εντολές Επιλογής και Επανάληψης Εντολές επιλογής Εντολή if Η πιο απλή μορφή της if συντάσσεται ως εξής: if ( συνθήκη ) Οι εντολές μέσα στα άγκιστρα αποτελούν
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Πίνακες (Arrays) [1/2] Δομές δεδομένων για την αποθήκευση δεδομένων υπό
A A A B A ΦΥΛΛΑ ΙΟ ΘΕΜΑΤΩΝ 1/2. Μέϱος A. Πολλαπλές επιλογές (20%) Σειριακός αριθµός : 100 Πληροφορική Ι Εξέταση Φεβρουαρίου 2019
Σειριακός αριθµός : 100 Πληροφορική Ι Εξέταση Φεβρουαρίου 2019 Απαντήσεις Πολλαπλής Επιλογής Ε Ω : 1 2 3 4 5 A A A B A ΦΥΛΛΑ ΙΟ ΘΕΜΑΤΩΝ 1/2 Τα ϑέµατα της εξέτασης δίνονται σε 2 ϕυλλάδια (ένα για κάϑε διδάσκοντα).
ΠΛΗΡΟΦΟΡΙΚΗ ΙI Ενότητα 3: Έλεγχος ροής προγράμματος
ΠΛΗΡΟΦΟΡΙΚΗ ΙI Ενότητα 3: Έλεγχος ροής προγράμματος Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (Java) Ενότητα 3 ΕΛΕΓΧΟΣ ΡΟΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Ι. Ελεγκτές συνθηκών ή περιπτώσεων:
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη
Βρόχοι. Εντολή επανάληψης. Το άθροισμα των αριθμών 1 5 υπολογίζεται με την εντολή. Πρόβλημα. Πώς θα υπολογίσουμε το άθροισμα των ακέραιων ;
Εντολή επανάληψης Το άθροισμα των αριθμών 1 5 υπολογίζεται με την εντολή Πρόβλημα Πώς θα υπολογίσουμε το άθροισμα των ακέραιων 1 5000; Ισοδύναμοι υπολογισμοί του Ισοδύναμοι υπολογισμοί του Ισοδύναμοι υπολογισμοί
Υπολογισμός - Εντολές Επανάληψης
Προγραμματισμός Η/Υ Ι Υπολογισμός - Εντολές Επανάληψης ΕΛΕΥΘΕΡΙΟΣ ΚΟΣΜΑΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2018-2019 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 1 Περίληψη Σήμερα... θα συνεχίσουμε τη συζήτησή μας για τα βασικά στοιχεία
Πληροφορική ΙΙ Θεματική Ενότητα 7
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Θεματική Ενότητα 7 Δομές επανάληψης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Συναρτήσεις 60 Ροή ελέγχου Είναι η σειρά µε την οποία εκτελούνται οι εντολές. Μέχρι τώρα, «σειριακή»,
Η γλώσσα προγραμματισμού C
Η γλώσσα προγραμματισμού C Οι εντολές επανάληψης (while, do-while, for) Γενικά για τις εντολές επανάληψης Συχνά στο προγραμματισμό είναι επιθυμητή η πολλαπλή εκτέλεση μιας ενότητας εντολών, είτε για ένα
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 6 η Βρόχοι Επανάληψης Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή
Εισαγωγή στον Προγραμματισμό με C++
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στον Προγραμματισμό με C++ Ενότητα # 3: Επαναλήψεις Κωνσταντίνος Κουκουλέτσος Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν
Η γλώσσα προγραμματισμού C
Η γλώσσα προγραμματισμού C Οι εντολές επανάληψης (while, do-while, for) Γενικά για τις εντολές επανάληψης Συχνά στο προγραμματισμό είναι επιθυμητή η πολλαπλή εκτέλεση μιας ενότητας εντολών, είτε για ένα
Το πρόβλημα: Εμβαδόν σφαίρας
Το πρόβλημα: Εμβαδόν σφαίρας Θέλουμε να γράψουμε ένα πρόγραμμα που θα υπολογίζει το εμβαδόν Α μιας σφαίρας, ακτίνας r. Για παράδειγμα, έστω πως έχουμε την σφαίρα της γης, η οποία έχει ως γνωστόν ακτίνα
Ασκή σεις στή δομή επανα λήψής
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 1 Ασκή σεις στή δομή επανα λήψής Ανάγνωση Στοιχείων Εύρεση Πλήθους 1. Να γραφεί αλγόριθμος ο οποίος να διαβάζει Ν πραγματικούς αριθμούς. Αλγόριθμος Άσκηση1
2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης
2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ
ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΣΤΑΘΕΡΕΣ είναι τα μεγέθη που δεν μεταβάλλονται κατά την εκτέλεση ενός αλγόριθμου. Εκτός από τις αριθμητικές σταθερές (7, 4, 3.5, 100 κλπ), τις λογικές σταθερές (αληθής και ψευδής)
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι
for for for for( . */
Εισαγωγή Στον Προγραµµατισµό «C» Βρόχοι Επανάληψης Πανεπιστήµιο Πελοποννήσου Τµήµα Πληροφορικής & Τηλεπικοινωνιών Νικόλαος Δ. Τσελίκας Νικόλαος Προγραµµατισµός Δ. Τσελίκας Ι Ο βρόχος for Η εντολή for χρησιµοποιείται
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07
Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public
Προγραμματισμός στο Matlab
Προγραμματισμός στο Matlab Εντολές επανάληψης Βρόχοι for Βρόχοι while Ασκήσεις και παραδειγματα ΑΤΕΙ Λάρισας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής ΚΑΛΟΓΙΑΝΝΗΣ ΓΡΗΓΟΡΙΟΣ Εργαστηριακός
1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;
1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι
Ο βρόχος for Η εντολή for χρησιμοποιείται για τη δημιουργία επαναληπτικών βρόχων στη C
Ο βρόχος for Η εντολή for χρησιμοποιείται για τη δημιουργία επαναληπτικών βρόχων στη C Επαναληπτικός βρόχος καλείται το τμήμα του κώδικα μέσα σε ένα πρόγραμμα, το οποίο εκτελείται από την αρχή και επαναλαμβάνεται
Η γλώσσα προγραμματισμού C
Η γλώσσα προγραμματισμού C Εντολές ελέγχου ροής προγράμματος (if-else & switch) Η εντολή if-else Η εντολή if-else υπάρχει σχεδόν σε όλες τις γλώσσες προγραμματισμού. Χρησιμοποιείται για τον έλεγχο της
Επαναληπτικές Διαδικασίες
Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Μαθηματικές εφαρμογές
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Μαθηματικές εφαρμογές Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μαθηµατικές εφαρµογές 34 Μέγιστος Κοινός ιαιρέτης (gcd) - I Εξαντλητικός αλγόριθµος 1 1. Εστω
Η Δομή Επανάληψης. Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες
Η Δομή Επανάληψης Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες Οι 2 πρώτες διδακτικές ώρες στην τάξη Η τρίτη διδακτική ώρα στο εργαστήριο Γενικός Διδακτικός Σκοπός Ενότητας Να εξοικειωθούν
Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές
Μορφές Εντολών Είδη εντολών Απλές εντολές Εκτελούν κάποια ενέργεια Εντολές ελέγχου Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Εντολές και παραστάσεις Μιαεντολήείναιμιαπαράστασηπου ακολουθείται
Μέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
Εισαγωγή στον Προγραµµατισµό. Διάλεξη 3 η : Επίλυση Προβληµάτων Χειµερινό Εξάµηνο 2011
Εισαγωγή στον Προγραµµατισµό Διάλεξη 3 η : Επίλυση Προβληµάτων Χειµερινό Εξάµηνο 2011 Τελεστής σύντοµης ανάθεσης Τελεστής σύντοµης ανάθεσης (shorthand assignment operator) µεταβλητή = µεταβλητή τελεστής
Διαδικαστικός Προγραμματισμός
Διαδικαστικός Προγραμματισμός Ενότητα 3: Εντολές ελέγχου επανάληψη Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στη Python Νικόλαος Ζ. Ζάχαρης Αναπληρωτής
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι)
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 6 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική
Διδακτικά προβλήματα σχετικά με την έννοια της επανάληψης
Διδακτικά προβλήματα σχετικά με την έννοια της επανάληψης Έρευνες-Δομές Επανάληψης Από τις έρευνες προκύπτει ότι οι αρχάριοι προγραμματιστές δεν χρησιμοποιούν αυθόρμητα την επαναληπτική διαδικασία για
Εντολές Επανάληψης. int sum = 0, i=1; sum += i++ ; sum += i++ ; Η πράξη αυτή θα πρέπει να επαναληφθεί Ν φορές!
Εντολές Επανάληψης Πολλές φορές χρειάζεται να επαναλάβουμε τις ίδιες εντολές Πχ. Έστω ότι θέλουμε να υπολογίσουμε το άθροισμα όρων μιας ακολουθίας διαδοχικών ακεραίων. Δηλαδή αν ο χρήστης δώσει τον αριθμό
Δομές ελέγχου ροής προγράμματος
Δομές ελέγχου ροής προγράμματος Υπάρχουν δύο είδη δομών ελέγχου ροής (control flow): Οι δομές επιλογής και Οι δομές επανάληψης Δομές ελέγχου ροής προγράμματος Είδος δομής Δομές επιλογής Δομή ελέγχου ροής
Γλώσσα Προγραμματισμού C. Προγραμματισμός HY: Γλώσσα Προγραμματισμού C. Γρήγορος Πίνακας Αναφοράς Σύνταξης. Εισήγηση #4. Επαναληπτικές δομές:
Προγραμματισμός HY: Γλώσσα Προγραμματισμού C Δρ. Ηλίας Κ. Σάββας, Αναπληρωτής Καθηγητής, Τμήμα Μηχανικών Πληροφορικής Τ.Ε., T.E.I. Θεσσαλίας Email: savvas@teilar.gr URL: http://teilar.academia.edu/iliassavvas
Προγραμματισμός ΗΥ και Υπολογιστική Φυσική. Χρήστος Γκουμόπουλος
Προγραμματισμός ΗΥ και Υπολογιστική Φυσική Χρήστος Γκουμόπουλος Προγραμματισμός ΗΥ και Υπολογιστική Φυσική Χρήστος Γκουμόπουλος Προγραμματισμός ΗΥ και Υπολογιστική Φυσική Χρήστος Γκουμόπουλος Προγραμματισμός
Εκτέλεση της εντολής1 και στη συνέχεια εκτέλεση της ΕΝΟΤΗΤΑΣ και της εντολής2 όσο η ΣΥΝΘΗΚΗ είναι αληθής.
ΟΙ 3 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΟΜΕΣ ΣΤΗΝ ΓΛΩΣΣΑ C Η εντολή for: Η γενικευμένη σύνταξη της εντολής είναι: for (εντολή1; ; εντολή2) ΕΝΟΤΗΤΑ Η ΕΝΟΤΗΤΑ μπορεί να είναι μία ή περισσότερες εντολές (block) μέσα
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 2. Έστω x = [2 5 1 6] α. Προσθέστε το 16 σε κάθε στοιχείο β. Προσθέστε το 3 σε κάθε στοιχείο που βρίσκεται σε μονή θέση.
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα
Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήμερα Διάλεξη 9 - Δευτέρα while() τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές
Σύντομες εισαγωγικές σημειώσεις για την. Matlab
Σύντομες εισαγωγικές σημειώσεις για την Matlab Δήλωση Μεταβλητών Για να εισάγει κανείς δεδομένα στη Matlab υπάρχουν πολλοί τρόποι. Ο πιο απλός είναι στη γραμμή εντολών να εισάγουμε αυτό που θέλουμε και
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ Εντολές επανάληψης Εντολές επανάληψης while for do-while ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ Παράδειγμα #1 Εντολή while
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ Εντολές επανάληψης Εντολές επανάληψης Στη C++ υπάρχουν 3 διαφορετικές εντολές επανάληψης: while for do-while 1 2 ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ Εντολή while Παράδειγμα #1 Κατασκευάστε πρόγραμμα που για
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 5 η Έλεγχος Προγράμματος Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 29/11/07
Συνέχεια για το for: ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 29/11/07 Nested for-loops (for μέσα σε for): π.χ. int k; for (int i=0; i
Θέματα Προγραμματισμού Η/Υ
Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Υπολογιστική Βιοϊατρική Θέματα Προγραμματισμού Η/Υ Ενότητα 9: Θεματική Ενότητα: Αναδρομή και αναδρομική κλήση ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ Θεματική Ενότητα
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Δομή Επανάληψης Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Δομή Επανάληψης Επανάληψη με αρίθμηση DO = ,
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Πληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας
Μαθησιακές δυσκολίες ΙΙ Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μάρτιος 2010 Προηγούμενη διάλεξη Μαθησιακές δυσκολίες Σε όλες
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Πίνακες [1/2] (Διανύσματα)
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Πίνακες [1/2] (Διανύσματα) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
1 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΑΛΓΟΡΙΘΜΟΙ
Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2017-2018 Τομέας Συστημάτων Παραγωγής Εξάμηνο A Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης 03 ΟΚΤ 2017 ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΗΝ
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι
Εισαγωγή στους Αλγόριθμους και τον Προγραμματισμό. 3η Διάλεξη Είσοδος Δεδομένων Συνθήκες Βρόχοι Παραδείγματα
Εισαγωγή στους Αλγόριθμους και τον Προγραμματισμό 3η Διάλεξη Είσοδος Δεδομένων Συνθήκες Βρόχοι Παραδείγματα Τελεστές συντομογραφίας Τελεστές σύντομης ανάθεσης += παράδειγμα: sum+=10; αντί για: sum = sum
Δομές Επανάληψης. Όσο μέχρις ότου για. 22/11/08 Ανάπτυξη εφαρμογών 1
Δομές Επανάληψης Όσο μέχρις ότου για 22/11/08 Ανάπτυξη εφαρμογών 1 Όσο. επανάλαβε Όσο Συνθήκη επανάλαβε Εντολή1 Εντολή2.. Ομάδα εντολών Συνθήκη Αληθής Ομάδα εντολών Εντολή Ν Τέλος_Επανάληψης Ψευδής 1.
Κατ οίκον Εργασία 1 Σκελετοί Λύσεων
ΕΠΛ 1 Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 009 Κατ οίκον Εργασία 1 Σκελετοί Λύσεων Άσκηση 1 Αρχικά θα πρέπει να υπολογίσουμε τον αριθμό των πράξεων που μπορεί να εκτελέσει ο υπολογιστής σε μια ώρα,
4. Επιλογή και Επανάληψη
Σελίδα 53 4. Επιλογή και Επανάληψη 4.1 Η Εντολή Επιλογής if.. then Η εντολή If.. Then.. χρησιμοποιείται για την λήψη λογικών αποφάσεων σε ένα πρόγραμμα. Η εντολή αυτή έχει διάφορες μορφές σύνταξης οι οποίες
ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Έλεγχος ροής Δομή επιλογής (if, switch) Δομές επανάληψης (while, do-while, for) Διακλάδωση
Δομημένος Προγραμματισμός. Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων
Δομημένος Προγραμματισμός Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων www.bpis.teicrete.gr Τμήμα Επιχειρηματικού Σχεδιασμού και Πληροφοριακών Συστημάτων www.bpis.teicrete.gr 2 Νέο Πρόγραμμα
Κεφάλαιο 5ο: Εντολές Επανάληψης
Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Λύσεις Σειράς Ασκήσεων 5
Άσκηση Λύσεις Σειράς Ασκήσεων 5 Έστω P και Q συνθήκες και S ένα πρόγραμμα. Να εξηγήσετε με λόγια τις πιο κάτω προδιαγραφές (i) με την έννοια της μερικής ορθότητας και (ii) με την έννοια της ολικής ορθότητας.
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Μέρος 4ο ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 1 ΟΙ ΤΕΛΕΣΤΕΣ ΣΥΓΚΡΙΣΗΣ Με τους τελεστές σύγκρισης, συγκρίνουμε τις
Κεφάλαιο : Επαναλήψεις (for, do-while)
Κεφάλαιο 5.4-5.11: Επαναλήψεις (for, do-while) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήµερα while(){ τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές Παραδείγµατα Σήµερα for(){ Η εντολές break/continue;
Νικόλαος Μιχαλοδημητράκης Σημειώσεις C (Εργαστήριο) 5 ο Μέρος 5 ο Μέρος Εντολές Επανάληψης: FOR - WHILE. Περιγραφή
Νικόλαος Μιχαλοδημητράκης Σημειώσεις C (Εργαστήριο) 5 ο Μέρος 5 ο Μέρος Εντολές Επανάληψης: FOR - WHILE Περιγραφή Χρησιμοποιούμε την εντολή επανάληψης for όταν γνωρίζουμε εκ των προτέρων πόσες αλλά και
Εντολές ελέγχου ροής if, for, while, do-while
Εντολές ελέγχου ροής if, for, while, do-while 1 Μαρτίου 014 1 Εντολές εκτέλεσης υπό συνθήκη Μπορούμε να εκτελέσουμε εντολές της γλώσσας σε περίπτωση που κάποια συνθήκη ισχύει χρησιμοποιώντας την εντολή
Παρατηρήσεις για την δομή Όσο..επανάλαβε( ΣΟΣ)
Δομή επανάληψης: Αποτελείται από ένα σύνολο εντολών που εκτελούνται πολλές φορές (αυτοματοποιημένα). Εφαρμόζεται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι κοινό.
Β7.1.4 Δομές Επανάληψης. Β Λυκείου Κατεύθυνσης
Β7.1.4 Δομές Επανάληψης Β Λυκείου Κατεύθυνσης Εισαγωγή Δομές επανάληψης ή βρόχοι (loops) ονομάζονται μέρη του κώδικα που εκτελούνται περισσότερες από μία φορές, ανάλογα με τη συνθήκη που έχουμε δηλώσει.
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Προγραµµατισµός Η/Υ. Μέρος2
Προγραµµατισµός Η/Υ Μέρος2 Περιεχόμενα Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής Αλγόριθμος Ψευδοκώδικας Παραδείγματα Αλγορίθμων Γλώσσες προγραμματισμού 2 Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής
ΠΕΚ ΤΡΙΠΟΛΗΣ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
ΠΕΚ ΤΡΙΠΟΛΗΣ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ 4-11-07 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ Γ Γενικού Λυκείου (τεχνολογική κατεύθυνση) ΚΕΦ. 2 ο -7 ο : ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Δομές Ανακυκλώσεων. Εντολές ελέγχου - 1
Δομές Ανακυκλώσεων Σε όλες τις γλώσσες προγραμματισμού, οι εντολές ανακυκλώσεων επιτρέπουν να επαναλαμβάνουμε ένα σύνολο εντολών, περισσότερες από μια φορές και μέχρι να επιτευχθεί μια ορισμένη συνθήκη
Διδακτική της Πληροφορικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 13: Διδακτική της Δομής Επανάληψης Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 2.4.5 8.2 Βασικές Ασκήσεις στις Δομές Επανάληψης Έλεγχος Εισαγόμενων Τιμών Εύρεση Αθροισμάτων - Μέσων όρων Εύρεση Μέγιστου- Ελάχιστου Εύρεση Πλήθους Ποσοστών
ιαδικαστικός Προγραμματισμός
ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ιαδικαστικός Προγραμματισμός Α Εξάμηνο Μάθημα 3 ο : Εντολές ελέγχου > επανάληψη Στόχοι μαθήματος Να μάθετε τις λεπτομέρειες των εντολών while και for και τις περιπτώσεις
Εισαγωγή στην Πληροφορική & τον Προγραμματισμό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 7 η : Εντολές Επανάληψης Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα Διοίκησης Επιχειρήσεων
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 10: Ταξινόμηση Πίνακα Αναζήτηση σε Ταξινομημένο Πίνακα Πρόβλημα Δίνεται πίνακας t από Ν ακεραίους. Ζητούμενο: να ταξινομηθούν τα περιεχόμενα του πίνακα σε αύξουσα αριθμητική
Κεφάλαια Εντολές επανάληψης. Τρεις εντολές επανάληψης. Επιλογή εντολής επανάληψης ΟΣΟ...ΕΠΑΝΑΛΑΒΕ. Σύνταξη στη ΓΛΩΣΣΑ
Εντολές επανάληψης Κεφάλαια 02-08 οµές Επανάληψης Επιτρέπουν την εκτέλεση εντολών περισσότερες από µία φορά Οι επαναλήψεις ελέγχονται πάντοτε από κάποια συνθήκη η οποία καθορίζει την έξοδο από το βρόχο
d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Λύσεις Σειράς Ασκήσεων 5
Άσκηση 1 (α) {x = 12 y = 7} skip {y = 7} Λύσεις Σειράς Ασκήσεων 5 Η προδιαγραφή αυτή είναι ορθή τόσο με την έννοια της μερικής ορθότητας όσο και με την έννοια της ολικής ορθότητας. Αυτό οφείλεται στο γεγονός
Εισαγωγή στη γλώσσα προγραμματισμού C++
Εισαγωγή στη γλώσσα προγραμματισμού C++ Επαναληπτική Δομή 2 1. Εισαγωγή Δομές επανάληψης ή βρόχοι (loops) ονομάζονται τμήματα του κώδικα που εκτελούνται περισσότερες από μία φορές, ανάλογα με τη συνθήκη
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν