Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
|
|
- Παρασκευή Κουντουριώτης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ιάλεξη : λάχιστα εννητορικά ένδρα Αλγόριθμος Prim Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: λάχιστα εννητορικά ένδρα () Minimum Spanning Trees Ο αλγόριθμος του Prim για εύρεση σε γράφους ιδάσκων: Κωνσταντίνος Κώστα ιαφάνειες: ημήτρης εϊναλιπούρ ΠΛ 035 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -
2 λάχιστα εννητορικά ένδρα () Το πρόβλημα Υποθέστε ότι έχουμε το weighted γράφο G(V,E), ο οποίος εκφράζει τις συνδέσεις σε ένα δίκτυο (το βάρος κάθε ακμής εκφράζει κάποιο κόστος π.χ. καθυστέρηση μετάδοσης). πίσης υποθέστε ότι θέλουμε να στείλουμε από ένα κόμβο (server) ένα video stream στις υπόλοιπες τερματικές κορυφές του γράφου. Ένας τρόπος θα ήταν να στείλουμε ένα video stream ανά κορυφή παραλήπτη (unicast) Όμως αυτό θα ήταν πολύ ακριβό. Ιδανικά θα θέλαμε να φτιάξουμε ένα μονοπάτι (δένδρο) προς όλους τους τερματικούς κόμβους έτσι ώστε το συνολικό άθροισμα των ακμών να είναι ελάχιστο. Ένα τέτοιο δένδρο θα μας επέτρεπε να στείλουμε την ταινία προς όλους με το ελάχιστο κόστος. Σήμερα θα μελετήσουμε τέτοια λάχιστο εννητορικά ένδρα -
3 λάχιστα εννητορικά ένδρα () Έστω ένας μη-κατευθυνόμενος γράφος με βάρη, G(V,E). εννητορικό δένδρο (spanning tree, ) του G ονομάζουμε κάθε δένδρο T που περιέχει όλους τους κόμβους του G και κάθε ακμή του οποίου είναι και ακμή του G. Σε ένα, όλες οι κορυφές καλύπτονται, γι αυτό το δένδρο ονομάζεται και δένδρο σκελετός (spanning tree: the tree spans all the vertices) Ένα γεννητορικό δένδρο γράφου με n κορυφές έχει n- ακμές. Βάρος ενός είναι το άθροισμα των βαρών όλων των ακμών του δένδρου. λάχιστο () είναι το με το μικρότερο βάρος. Ένας γράφος δυνατό να έχει περισσότερα από ένα. (άν ο γράφος δεν είχε βάρη τότε οποιονδήποτε δένδρο που ενώνει όλες τις ακμές θα ήταν ) Το πρόβλημα εύρεσης ενός μπορεί να εκφραστεί και για κατευθυνόμενους γράφους αλλά είναι κάπως δυσκολότερη η υλοποίηση ΠΛ 035 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -3
4 Παραδείγματα εννητορικών ένδρων ράφος G 6 6 Βάρος: Βάρος: 6 Κατ ακρίβεια αυτό το δένδρο είναι ένα λάχιστο (όπως θα δούμε στην συνέχεια) Υπάρχουν άλλα; ΠΛ 035 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -4
5 Ιδιότητες Υποθέτουμε στην συνέχεια ότι οι γράφοι που μελετάμε είναι συνεκτικοί (δηλαδή υπάρχει τουλάχιστο μια διαδρομή μεταξύ όλων των κορυφών). εν κάνει νόημα να βρούμε ένα ενός μη-συνεκτικού γράφου γιατί ο ορισμός του προϋποθέτει ότι το δένδρο καλύπτει όλες τις κορυφές. Η εύρεση είναι γνωστό και βαθιά μελετημένο πρόβλημα στην επεξεργασία γράφων. Έχει ποικίλες εφαρμογές. ΠΛ 035 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -5
6 Ο αλγόριθμός του Prim Αρχικά το δένδρο περιέχει ακριβώς μία κορυφή, η οποία επιλέγεται τυχαία. ια να κτίσουμε το δένδρο, σε κάθε βήμα συνδέουμε ακόμα μια κορυφή στο παρόν δένδρο με την επιλογή και εισαγωγή μιας καινούριας ακμής (από τις ακμές του γράφου). Πως μπορούμε να επιλέξουμε την κατάλληλη ακμή; Στην περίπτωση αυτού του αλγόριθμου, αν S είναι το σύνολο των κορυφών του παρόντος δένδρου, επιλέγουμε. Την ακμή με το μικρότερο βάρος,. Την ακμή η οποία μπορεί να μεγαλώσει το δένδρο κατά ένα κόμβο 3. Την ακμή η οποία δεν θα δημιουργήσει κάποιο κύκλο Ο αλγόριθμος του Prim είναι ένας Άπληστος Αλγόριθμος (Greedy lgorithm). Σε κάθε βήμα κάνει την κίνηση που ικανοποιεί όλες τις συνθήκες και έχει το πιο λίγο κόστος. ΠΛ 035 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -6
7 Παράδειγμα κτέλεσης ράφος G 6 Ξεκινούμε διαλέγοντας τυχαία μια κορυφή Κορυφή : Α Β : 7, : 7 : Α : 7 Β : 5, :, : 3: Α : Β : 5, : :, : Κόστος Μετάβασης στην γειτονική κορυφή ΠΛ 035 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -7
8 Παράδειγμα κτέλεσης (συν.) 4: Β : 5, : 7 7 : 5: Β : 5 : 6 6: 6 λάχιστο εννητορικό ένδρο () Ο Αρχικός ράφος -8
9 Υλοποίηση Αλγόριθμου Prim ια να υλοποιήσουμε τον αλγόριθμο Prim θα χρησιμοποιήσουμε παράλληλους πίνακες Α) visited[n] : Κορυφές από τις οποίες περάσαμε. ) closest[n] : Η κοντινότερη κορυφή κάθε κόμβου στο δένδρο (μια δεδομένη στιγμή) C) distance[n] : Η απόσταση του κάθε επί μέρους κόμβου στο (Β) Αρχικοποίηση visited: closest: distance: Β ΠΛ 035 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -
10 Υλοποίηση Αλγόριθμου Prim Μέτα την εισαγωγή του Α στο ένδρο visited: closest: distance: Β Α Μέτα την εισαγωγή του Β στο ένδρο visited: closest: distance: Β Α Β Β Προσπαθούμε να μεγαλώσουμε το δένδρο με άπληστο τρόπο (διατηρώντας το συνδεδεμένο) -0
11 Υλοποίηση Αλγόριθμου Prim Μέτα την εισαγωγή του στο ένδρο visited: closest: distance: Β Α Β Β Β 6 υο τρόποι να πάμε στο, διατηρούμε τον ένα. ΠΛ 035 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -
12 Η Υλοποίηση του Αλγόριθμου Prim Prim(graph G){ int visited[n]={}; // Κορυφές που προστέθηκαν στο δένδρο (Αρχικά όλα 0 ) int closest[n]={}; // «Πιο Κοντινός είτονας» για κάθε i: Αρχικά κανένας int distance[n]=, // Απόσταση από «Κοντιν. είτονα» για κάθε i: Αρχικά άπειρο Tree = {}; // Το που θέλουμε να κτίσουμε (περιέχει ακμές (α,β)) // επιλογή αρχικής κορυφής ιάλεξε τυχαία κορυφή v; visited[v] = ; // Τώρα το v ανήκει στο δένδρο weight(a,b) : βάρος ακμής a-b για κάθε κορυφή v { // ενημέρωση πινάκων distance & closest για κάθε w γείτονα του v { if (weight(v,w) < distance[w]) { distance[w] = weight(v,w); // απόσταση κοντινότερου closest[w] = v; // ταυτότητα κοντινότερου } } // εύρεση επόμενης κορυφής με μικρότερη απόσταση) v = minvertex(visited, distance); visited[v]=; // επιλογή κόμβου Tree = Tree {(closest[v],v)}; //προσθήκη ακμής } ΠΛ 035 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. 6 -
13 Η βοηθητική συνάρτηση minvertex H βοηθητική διαδικασία minvertex βρίσκει μεταξύ όλων των κορυφών που δεν προστέθηκαν στο MST (Minimum Spanning Tree) την πιο κοντινή κορυφή. ηλαδή: vertex minvertex(int visited[], int distance[]){ min = ; for (i=0; i< V ; i++) { if (visited[i] == ) continue; // skip nodes already in MST if (distance[i] < distance[min]) min = i; } return min; // Return the minimum among all distances } visited: closest: distance: Β Α Β Β πόμενη πιλογή -3
14 Ανάλυση Χρόνου κτέλεσης Η διαδικασία minvertex απαιτεί χρόνο Ο( V ), όπου V είναι ο αριθμός των κορυφών του γράφου. Ο χρόνος εκτέλεσης του βρόχου της εντολής while στον αλγόριθμο Prim είναι και αυτός Ο( V ). (Και για υλοποίηση με πίνακα γειτνίασης και για υλοποίηση με λίστα γειτνίασης.) Άρα ο ολικός χρόνος εκτέλεσης είναι Θ( V ²). Μπορούμε να βελτιώσουμε τον αλγόριθμο; Ναι με την χρήση σωρών (μια ειδική μορφή δυαδικού δένδρου) Με την χρήση σωρών ο αλγόριθμος μπορεί να υλοποιηθεί σε Ο( log E ), όπου E οι ακμές του γράφου. Ωστόσο δεν θα μελετήσουμε αυτή την υλοποίηση ΠΛ 035 ομές εδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. -4
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 3: Ελάχιστα Γεννητορικά Δέντρα Ο λγόριθμος Prim Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ελάχιστα Γεννητορικά Δένδρα (ΕΓΔ) Minimum Spanning Trees -Ο αλγόριθμος του Primγια εύρεση
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 0: ΓράφοιIII -Ελάχιστα Γεννητορικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ελάχιστα Γεννητορικά Δένδρα (ΕΓΔ) Minimum Spanning Trees -Ο αλγόριθμος του Primγια εύρεση ΕΓΔ
Ελάχιστα Γεννητορικά ένδρα
λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
ιάλεξη : λάχιστα εννητορικά ένδρα Αλγόριθμος Kruskal Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ο αλγόριθμος του Kruskal για εύρεση σε γράφους Παράδειγμα κτέλεσης ιδάσκων: Κωνσταντίνος Κώστα
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 23: Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Βραχύτερα Μονοπάτια σε γράφους Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης Ο αλγόριθμος
ηδάζθωλ: εµήηξεο Εεϊλαιηπνύξ
ηάιεμε : ιάρηζηα ελλεηνξηθά έλδξα Αιγόξηζκνο Prim Σηελ ελόηεηα απηή ζα κειεηεζνύλ ηα εμήο επηκέξνπο ζέκαηα: λάτιζηα εννηηορικά ένδρα () Minimum Spanning Trees Ο αλγόριθμος ηοσ Prim για εύρεζη ζε γράθοσς
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 (α) Ο αλγόριθµος χρησιµοποιεί τη διαδικασία DFS(v) η οποία, ως γνωστό, επισκέπτεται όλους τους κόµβους που είναι συνδεδεµένοι µε τον κόµβο v. Για να µετρήσουµε
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 9: Εισαγωγή στους Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι - ορισμοί και υλοποίηση Διάσχιση Γράφων Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 3: Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους -Ο αλγόριθμος ijkstraγια εύρεση της βραχύτερης απόστασης -Ο αλγόριθμος
Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο
Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος
Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;
Άπληστοι Αλγόριθμοι ΙΙI Αλγόριθμοι γραφημάτων Ελάχιστο Γεννητικό Δένδρο Παράδειγμα Κατασκευή δικτύων Οδικά, επικοινωνίας Έχουμε ένα συνεκτικό γράφημα (V,E) και ένας βάρος we σε κάθε ακμή e. Να βρεθεί υποσύνολο
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 Χρησιμοποιούμε τις δομές: struct hashtable { struct node array[maxsize]; int maxsize; int size; struct node{ int data; int status; Στο πεδίο status σημειώνουμε
Διάλεξη 21: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους
Διάλεξη 2: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους - Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Μαΐου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 20: Τοπολογική Ταξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ολοκλήρωση Αλγορίθμων Διάσχισης Γράφων (Από Διάλεξη 19) Τοπολογική Ταξινόμηση Εφαρμογές, Παραδείγματα, Αλγόριθμοι
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων 1. Minimum Spanning Trees 2. Αλγόριθμος Prim 3. Αλγόριθμος Kruskal Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Minimum Spanning Tree Πρόβλημα: Για δοσμένο συνεκτικό, μη προσανατολισμένο,
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 11: Minimum Spanning Trees Αλγόριθμος Prim Αλγόριθμος Kruskal Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Στοιχεία Θεωρίας Γράφων (Graph Theory)
Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST)
Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST) Γεννητικό δέντρο (Spanning Tree) Ένα γεννητικό δέντρο για ένα γράφημα G είναι ένα υπογράφημα του G που είναι δέντρο (δηλ., είναι συνεκτικό και δεν
Θεωρία Γράφων Αλγόριθμοι BFS, Prim, Dijkstra, Bellman-Ford
Θεωρία ράφων λγόριθμοι BFS, Prim, Dijkstra, Bellman-Ford Θεωρία γράφων Υπογράφοι και spanning trees Ένας γράφος G =(V,E ) είναι υπογράφος (subgraph) ενός γράφου G=(V,E) αν V ' V και E' E Ένας υπογράφος
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Διάλεξη 29: Γράφοι. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 9: Γράφοι Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Διδάσκων: Παναγιώτης νδρέου ΕΠΛ035 Δομές Δεδομένων και λγόριθμοι για Ηλ. Μηχ.
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση
Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Αλγόριθμοι και Πολυπλοκότητα
7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 9: Άπληστοι Αλγόριθμοι. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 9: Άπληστοι Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Prim-Kruskal Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Prim-Kruskal
Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Τοπολογική Ταξινόμηση - Εφαρμογές, Παραδείγματα, Αλγόριθμοι
ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1
Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Διάσχιση Γράφων Τοπολογική Ταξινόµηση ΕΠΛ 23 Δοµές Δεδοµένων και Αλγόριθµοι - Γράφοι Η πιο γενική µορφή δοµής
ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.
Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες
Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 12 16 2 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 13 1 με τις ακόλουθες ιδιότητες 4 14 9 7 4 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση
Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007
Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό
ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,
Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Τοπολογική Ταξινόµηση ιάσχιση Γράφων ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26 - Γράφοι Ηπιο
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 11. Γράφοι 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 23/12/2016 Εισαγωγή Οι γράφοι
ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο
Γράφοι: κατευθυνόμενοι και μη
Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 4 Σωροί, Γράφοι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 4 Σωροί, Γράφοι Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 05/04/2013 Ημερομηνία
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά
Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 26: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας -Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Ενότητα 5: Αλγόριθμοι γράφων και δικτύων
Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών
Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Κινητός και ιάχυτος Υπολογισµός (Mobile & Pervasive Computing) Ιστοσελίδα του µαθήµατος. Περιεχόµενα. ηµήτριος Κατσαρός, Ph.D.
1 Κινητός και ιάχυτος Υπολογισµός (Mobile & Pervasive Computing) ηµήτριος Κατσαρός, Ph.D. Χειµώνας 2006 ιάλεξη 5η Ιστοσελίδα του µαθήµατος 2 http://skyblue.csd.auth.gr/~dimitris/courses/mpc_fall06.htm
Δομές Δεδομένων Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Γράφοι Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.
ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» ΤΟΜΟΣ Α ΤΟΜΟΣ Β ΑΓΓΛΙΚΗ Γράφημα, Γράφος, Ένα γράφημα αποτελείται από ένα σύνολο 94 11 κορυφών και ένα σύνολο ακμών.
Γράφοι. Ορολογία. Ορισµός: G = (V, E) όπου. Ορολογία (συνέχεια) γράφος ή γράφηµα (graph) V:ένα σύνολο E:µια διµελής σχέση στο V
Γράφοι Ορολογία γράφος ή γράφηµα (graph) Ορισµός: G = (V, E) όπου V:ένα σύνολο E:µια διµελής σχέση στο V Ορολογία (συνέχεια) κάθε v V ονοµάζεται κορυφή (vertex) ή κόµβος (node) κάθε (v 1, v 2 ) Ε ονοµάζεται
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ
ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
Ελάχιστο Συνδετικό έντρο
Ελάχιστο Συνδετικό έντρο ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό έντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Άπληστοι Αλγόριθμοι Είναι δύσκολο να ορίσουμε ακριβώς την έννοια του άπληστου
Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: ΓράφοιII -ΤοπολογικήΤαξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Τοπολογική Ταξινόμηση - Εφαρμογές, Παραδείγματα, Αλγόριθμοι Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231 Δομές
Θεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
Αλγόριθμοι και πολυπλοκότητα Περιήγηση Πανεπιστημίων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Περιήγηση Πανεπιστημίων Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Περιήγηση Πανεπιστημίων 5/8/008 :46 AM Campus Tour Περίληψη και ανάγνωση
Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια
Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια Περιεχόμενα Μεταβατικό Κλείσιμο Συνεκτικές συνιστώσες Συντομότερα μονοπάτια Breadth First Spanning
Εισαγωγή στους Αλγορίθμους Ενότητα 9η
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Ελάχιστα Γεννητικά Δένδρα Ελάχιστο Γεννητικό
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο
Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου
Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim Αικατερίνη Κούκιου Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διάλεξη 18: B-Δένδρα
Διάλεξη 18: B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή & Ισοζυγισμένα Δένδρα 2-3 Δένδρα, Περιγραφή Πράξεων της Εισαγωγής και άλλες πράξεις Β-δένδρα Διδάσκων: Κωνσταντίνος
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος
ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;
ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα ΔΕΝΔΡΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Εισαγωγή Ένα γράφημα G είναι δένδρο αν: 1. Είναι συνδεδεμένο και δεν έχει κύκλους.
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 3: Ελάχιστα Γεννητορικά Δέντρα Ο λγόριθμος Kruskal Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ο αλγόριθμος του Kruskalγια εύρεση ΕΓΔ σε γράφους - Παράδειγμα Εκτέλεσης Διδάσκων:
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων
Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 5 ΣΥΝΕΚΤΙΚΟΤΗΤΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Συνεκτικότητα Έννοια της συνδεσμικότητας: «Ποσότητα συνδεσμικότητας»...
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
u v 4 w G 2 G 1 u v w x y z 4
Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών
Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 3 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από
Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός
Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου
Αλγόριθμος Kruskal Δέντρα Επικάλυψης Ελάχιστου Κόστους
Αλγόριθμος Kruskal Δέντρα Επικάλυψης Ελάχιστου Κόστους Κοκκάλα Γεωργία α.μ. 1311 (εξ. 9ο) Παπαχρήστου Γεώργιος α.μ. 1394 (εξ. 7ο) Παρασκευαΐδης Μάριος α.μ. 625 (εξ.19ο) Σίμου Θεοδώρα α.μ. 1260 (εξ. 9ο)
6η Διάλεξη Διάσχιση Γράφων και Δέντρων
ΘΕΩΡΙΑ ΓΡΑΦΩΝ 6 η Διάλεξη Διάσχιση Γράφων και Δέντρων Αλγόριθμος αναζήτησης σε Βαθος Αλγόριθμος αναζήτησης κατά Πλάτος Αλγόριθμοι για Δένδρα Εύρεση ελαχίστων Γεννητορικών (Επικαλύπτοντα) Δένδρων Διάσχιση
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων 1. Συντομότατα μονοπάτια 2. Αλγόριθμος Bellman-Ford 3. Αλγόριθμος Dijkstra 4. Floyd-Warshall Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Single-Source Shortest Path Πρόβλημα:
Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.
Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων,
Γράφοι (συνέχεια) Ο αλγόριθµος Dijkstra για εύρεση βραχυτέρων µονοπατιών Ta µονοπάτια Euler
Γράφοι (συνέχεια) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος Dijkstra για εύρεση βραχυτέρων µονοπατιών Ta µονοπάτια Euler ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 28: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα
Ελάχιστο Συνδετικό έντρο
Ελάχιστο Συνδετικό έντρο ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα
Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Λίστες -Υλοποίηση ταξινομημένης λίστας με δυναμική δέσμευση μνήμης ΕΠΛ035
Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή
Εργαστήριο 10 Γράφηµα (Graph) Εισαγωγή Στην πληροφορική γράφηµα ονοµάζεται µια δοµή δεδοµένων, που αποτελείται από ένα σύνολο κορυφών ( vertices) (ή κόµβων ( nodes» και ένα σύνολο ακµών ( edges). Ενας
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91
Ε.Μ.Πoλυτεχνείο ΣΗΜΜΥ, ΣΕΜΦΕ Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Διδάσκων: Ε.Ζαχος Ονοματεπώνυμο:... Αριθμός Μητρώου:... Σχολή:... εξάμηνο:... ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 005 Σύνολο
Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα
Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε7: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Hashing, Final Exam Διδάσκων: Κωνσταντίνος Κώστα ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. Ε7-1
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ
ΠΝΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΣ ΔΔΟΜΝΩΝ ΚΙ ΛΓΟΡΙΘΜΟΙ ΗΜΡΟΜΗΝΙ: 14/11/2018 ΔΙΓΝΩΣΤΙΚΟ ΠΝΩ Σ ΔΝΔΡΙΚΣ ΔΟΜΣ ΚΙ ΓΡΦΟΥΣ Διάρκεια: 45 λεπτά Ονοματεπώνυμο:. ρ. Ταυτότητας:. ΒΘΜΟΛΟΓΙ ΣΚΗΣΗ ΒΘΜΟΣ
Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης
Δοµές Δεδοµένων 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων Ε. Μαρκάκης Περίληψη Quicksort Χαρακτηριστικά επιδόσεων Μη αναδροµική υλοποίηση Δέντρα Μαθηµατικές ιδιότητες Δοµές Δεδοµένων 11-2
Κατ οίκον Εργασία 4 Σκελετοί Λύσεων
Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Αναδρομική διαδικασία Η αναδρομική διαδικασία RecIsheap παίρνει ως παραμέτρους τον πίνακα, το μέγεθός του καθώς και το στοιχείο το οποίο θα τύχει επεξεργασίας.